Comparing the succinctness of monadic query languages over finite trees
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 38 (2004) no. 4, pp. 343-373.

We study the succinctness of monadic second-order logic and a variety of monadic fixed point logics on trees. All these languages are known to have the same expressive power on trees, but some can express the same queries much more succinctly than others. For example, we show that, under some complexity theoretic assumption, monadic second-order logic is non-elementarily more succinct than monadic least fixed point logic, which in turn is non-elementarily more succinct than monadic datalog. Succinctness of the languages is closely related to the combined and parameterised complexity of query evaluation for these languages.

DOI : https://doi.org/10.1051/ita:2004017
Classification : 03B70,  68P15,  68Q45
@article{ITA_2004__38_4_343_0,
     author = {Grohe, Martin and Schweikardt, Nicole},
     title = {Comparing the succinctness of monadic query languages over finite trees},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {343--373},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {4},
     year = {2004},
     doi = {10.1051/ita:2004017},
     zbl = {1067.03018},
     mrnumber = {2098195},
     language = {en},
     url = {http://www.numdam.org/item/ITA_2004__38_4_343_0/}
}
Grohe, Martin; Schweikardt, Nicole. Comparing the succinctness of monadic query languages over finite trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 38 (2004) no. 4, pp. 343-373. doi : 10.1051/ita:2004017. http://www.numdam.org/item/ITA_2004__38_4_343_0/

[1] S. Abiteboul, P. Buneman and D. Suciu, Data on the Web: From Relations to Semistructured Data and XML. Morgan Kaufmann (1999).

[2] S. Abiteboul, R. Hull and V. Vianu, Foundations of databases. Addison-Wesley (1995). | Zbl 0848.68031

[3] M. Adler and N. Immerman, An n! lower bound on formula size. ACM Trans. Comput. Logic 4 (2003) 296-314.

[4] N. Alechina and N. Immerman, Reachability logic: An efficient fragment of transitive closure logic. Logic Journal of the IGPL 8 (2000) 325-338. | Zbl 0948.03022

[5] A. Chandra and D. Harel, Structure and complexity of relational queries. J. Comput. Syst. Sci. 25 (1982) 99-128. | Zbl 0511.68073

[6] E. Dantsin, A. Goerdt, E.A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan and U. Schöning, A deterministic (2-2/(k+1)) n algorithm for k-SAT based on local search. Theor. Comput. Sci. 289 (2002) 69-83. Revised version of: Deterministic algorithms for k-SAT based on covering codes and local search, ICALP'00. Lect. Notes Comput. Sci. 1853. | Zbl 1061.68071

[7] H.-D. Ebbinghaus and J. Flum, Finite Model Theory. Springer-Verlag, 2nd edition (1999). | MR 1716820 | Zbl 0932.03032

[8] K. Etessami, M.Y. Vardi and T. Wilke, First-order logic with two variables and unary temporal logic. Inform. Comput. 179 (2002) 279-295. | Zbl 1096.03013

[9] R. Fagin, Monadic generalized spectra. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 21 (1975) 89-96. | Zbl 0317.02054

[10] M.F. Fernandez, J. Siméon and P. Wadler, An algebra for XML query, in Proc. of the 20th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'00), edited by S. Kapoor and S. Prasad, Springer-Verlag. Lect. Notes Comput. Sci. 1974 (2000) 11-45. | Zbl 1044.68577

[11] M. Frick and M. Grohe, The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Logic, accepted (2004). | MR 2092847 | Zbl 1062.03032

[12] M. Frick, M. Grohe and C. Koch, Query evaluation on compressed trees, in Proc. of the 18th IEEE Symposium on Logic in Computer Science (LICS'03) (2003) 188-197.

[13] G. Gottlob and C. Koch, Monadic datalog and the expressive power of web information extraction languages. J. ACM 51 (2004) 74-113.

[14] E. Grädel and M. Otto, On Logics with Two Variables. Theor. Comput. Sci. 224 (1999) 73-113. | Zbl 0948.03023

[15] M. Grohe and N. Schweikardt, Comparing the succinctness of monadic query languages over finite trees, in Proc. of the 17th International Workshop on Computer Science Logic (CSL'03), Springer-Verlag. Lect. Notes Comput. Sci. 2803 (2003) 226-240. | Zbl 1116.03327

[16] M. Grohe and N. Schweikardt, Comparing the succinctness of monadic query languages over finite trees. Technical Report EDI-INF-RR-0168, School of Informatics, University of Edinburgh, Scotland, UK (2003). | MR 2047963 | Zbl 1116.03327

[17] M. Grohe and N. Schweikardt, The succinctness of first-order logic on linear orders, in Proc. of the 19th IEEE Symposium on Logic in Computer Science (LICS'04) (2004) 438-447. | Zbl 1125.03024

[18] H. Hosoya and B.C. Pierce, XDuce: A typed XML processing language (preliminary report), in International Workshop on the Web and Databases, edited by D. Suciu and G. Vossen (2000). Reprinted in The Web and Databases, Selected Papers, Springer. Lect. Notes Comput. Sci. 1997 (2001).

[19] N. Immerman, Descriptive Complexity. Springer-Verlag (1999). | MR 1732784 | Zbl 0918.68031

[20] H. Kamp, Tense Logic and the theory of linear order. Ph.D. Thesis, University of California, Los Angeles (1968).

[21] C. Koch, Efficient processing of expressive node-selecting queries on XML data in secondary storage: A tree-automata based approach, in VLDB'03: 29th Conference on Very Large Databases, Berlin, September (2003) 249-260.

[22] F. Neven, Design and Analysis of Query Languages for Structured Documents - A Formal and Logical Approach. Ph.D. Thesis, Limburgs Universitair Centrum (1999).

[23] F. Neven and T. Schwentick, Query automata over finite trees. Theor. Comput. Sci. 275 (2002) 633-674. | Zbl 1026.68081

[24] W. Thomas, Languages, automata, and logic, in Handbook of formal languages 3 (1996), edited by G. Rozenberg and A. Salomaa, Springer, New York. | MR 1470024

[25] M.Y. Vardi, Reasoning about the past with two-way automata, in 25th International Colloquium on Automata, Languages and Programming (ICALP'98), edited by K.G. Larsen, S. Skyum and G. Winskel, Springer-Verlag. Lect. Notes Comput. Sci. 1443 (1998) 628-641. | Zbl 0909.03019

[26] T. Wilke, CTL + is exponentially more succinct than CTL, in Proc. of the 19th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'99), Springer-Verlag. Lect. Notes Comput. Sci. 1738 (1999) 110-121. | Zbl 0952.03017