On graph products of automatic monoids
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 5, pp. 403-417.

The graph product is an operator mixing direct and free products. It is already known that free products and direct products of automatic monoids are automatic. The main aim of this paper is to prove that graph products of automatic monoids of finite geometric type are still automatic. A similar result for prefix-automatic monoids is established.

Classification : 20M10,  68Q68
Mots clés : automatic monoid, graph product
@article{ITA_2001__35_5_403_0,
     author = {Veloso Da Costa, A.},
     title = {On graph products of automatic monoids},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {403--417},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {5},
     year = {2001},
     zbl = {1019.20028},
     mrnumber = {1908863},
     language = {en},
     url = {http://www.numdam.org/item/ITA_2001__35_5_403_0/}
}
TY  - JOUR
AU  - Veloso Da Costa, A.
TI  - On graph products of automatic monoids
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2001
DA  - 2001///
SP  - 403
EP  - 417
VL  - 35
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/ITA_2001__35_5_403_0/
UR  - https://zbmath.org/?q=an%3A1019.20028
UR  - https://www.ams.org/mathscinet-getitem?mr=1908863
LA  - en
ID  - ITA_2001__35_5_403_0
ER  - 
Veloso Da Costa, A. On graph products of automatic monoids. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 5, pp. 403-417. http://www.numdam.org/item/ITA_2001__35_5_403_0/

[1] C.M. Campbell, E.F. Robertson, N. Ruskuc and R.M. Thomas, Automatic Semigroups. Theoret. Comput. Sci. (to appear). | MR 1795250 | Zbl 0987.20033

[2] A.J. Duncan, E.F. Robertson and N. Ruskuc, Automatic monoids and change of generators. Math. Proc. Cambridge Philos. Soc. 127 (1999) 403-409. | MR 1713118 | Zbl 0941.20065

[3] E.R. Green, Graph Products of Groups, Ph.D. Thesis. The University of Leeds (1990).

[4] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computation. Addison-Wesley (1979). | MR 645539 | Zbl 0426.68001

[5] S. Hermiller and J. Meier, Algorithms and Geometry for Graph Products of Groups. J. Algebra 171 (1995) 230-257. | MR 1314099 | Zbl 0831.20032

[6] J.M. Howie, An Introduction to Semigroup Theory. Academic Press (1976). | MR 466355 | Zbl 0355.20056

[7] P.V. Silva and B. Steinberg, A Geometric Characterization of Automatic Monoids. Universidade do Porto (preprint). | MR 2082097 | Zbl 1076.20041

[8] P.V. Silva and B. Steinberg, Extensions and Submonoids of Automatic Monoids. Universidade do Porto (preprint). | MR 1932918 | Zbl 1061.20048

[9] A. Veloso Da Costa, Graph Products of Monoids. Semigroup Forum 63 (2001) 247-277. | MR 1830687 | Zbl 0992.20042