Succession rules and deco polyominoes
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 34 (2000) no. 1, pp. 1-14.
@article{ITA_2000__34_1_1_0,
     author = {Barcucci, Elena and Brunetti, Sara and Del Ristoro, Francesco},
     title = {Succession rules and deco polyominoes},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {1--14},
     publisher = {EDP-Sciences},
     volume = {34},
     number = {1},
     year = {2000},
     mrnumber = {1771126},
     zbl = {0962.05018},
     language = {en},
     url = {http://www.numdam.org/item/ITA_2000__34_1_1_0/}
}
TY  - JOUR
AU  - Barcucci, Elena
AU  - Brunetti, Sara
AU  - Del Ristoro, Francesco
TI  - Succession rules and deco polyominoes
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2000
SP  - 1
EP  - 14
VL  - 34
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/ITA_2000__34_1_1_0/
LA  - en
ID  - ITA_2000__34_1_1_0
ER  - 
%0 Journal Article
%A Barcucci, Elena
%A Brunetti, Sara
%A Del Ristoro, Francesco
%T Succession rules and deco polyominoes
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2000
%P 1-14
%V 34
%N 1
%I EDP-Sciences
%U http://www.numdam.org/item/ITA_2000__34_1_1_0/
%G en
%F ITA_2000__34_1_1_0
Barcucci, Elena; Brunetti, Sara; Del Ristoro, Francesco. Succession rules and deco polyominoes. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 34 (2000) no. 1, pp. 1-14. http://www.numdam.org/item/ITA_2000__34_1_1_0/

[1] E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, ECO: A methodology for the Enumeration of Combinatorial Objects. J. Differ. Equations Appl. 5 (1999) 435-490. | MR | Zbl

[2] E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation. Theoret. Comput. Sci. 159 (1996) 29-42. | MR | Zbl

[3] M. Bousquet-Mélou, q-énumération de polyominos convexes. Publication du LACIM, No. 9 Montréal (1991).

[4] M. Bousquet-Mélou, A method for enumeration of various classes of column-convex polygons. Discrete Math. 151 (1996) 1-25. | MR | Zbl

[5] M. Delest, D. Gouyou-Beauchamps and B. Vauquelin, Enumeration of parallelogram polyominoes with given bound and site perimeter. Graphs Combin. 3 (1987) 325-339. | MR | Zbl

[6] M. Delest and X. G. Viennot, Algebraic languages and polyominoes enumeration. Theoret. Comput. Sci. 34 (1984) 169-206. | MR | Zbl

[7] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley (1989). | MR | Zbl

[8] F. K. Hwang and C. L. Mallows, Enumerating Nested and Consecutive Partitions. J. Combin. Theory Ser. A 70 (1995) 323-333. | MR | Zbl

[9] D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms. Addison Wesley, Reading Mass (1968). | MR

[10] G. Kreweras, Joint distributions of three descriptive parameters of bridges, edited by G. Labelle and P. Leroux, Combinatoire Énumérative, Montréal 1985. Springer, Berlin, Lecture Notes in Math. 1234 (1986) 177-191. | MR | Zbl

[11] T. W. Narayana, Sur les treillis formés par les partitions d'un entier. C.R. Acad. Sci. Paris 240 (1955) 1188-1189. | MR | Zbl

[12] N. J. A. Sloane and S. Plouffe, The encyclopedia of integer sequences. Academic Press (1995). | MR | Zbl