What separable Fröbenius monoïdal functors preserve?
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 1, p. 29-50
@article{CTGDC_2010__51_1_29_0,
     author = {McCurdy, Micah and Street, Ross},
     title = {What separable Fr\"obenius mono\"\i dal functors preserve?},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     publisher = {Andr\'ee CHARLES EHRESMANN},
     volume = {51},
     number = {1},
     year = {2010},
     pages = {29-50},
     zbl = {1214.18008},
     mrnumber = {2650578},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_2010__51_1_29_0}
}
McCurdy, Micah; Street, Ross. What separable Fröbenius monoïdal functors preserve?. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 1, pp. 29-50. http://www.numdam.org/item/CTGDC_2010__51_1_29_0/

[1] M. Aguiar and S. Mahajan, Monoidal functors, species and Hopf algebras, preliminary copy available at http://www.math.tamu.edu/\~maguiar/a.pdf | MR 2724388 | Zbl 1209.18002

[2] J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, Weak Hopf algebras and weak Yang-Baxter operators, Journal of Algebra 320 (2008), 2101-2143. | MR 2437645 | Zbl 1163.16024

[3] J. M. Beck, Distributive laws, Lecture Notes in Mathematics (Springer, Berlin) 80 (1969), 119-140. www.tac.mta.ca/tac/reprints/articles/18/tr18abs.html

[4] J. R. Cockett and R. A. Seely, Linearly distributive functors, Journal of Pure and Applied Algebra 143 (1999), 155-203. | MR 1731041 | Zbl 0946.18005

[5] B. J. Day and C. A. Pastro, Note on Frobenius monoidal functors, New York Journal of Mathematics 14 (2008), 733-742. http://arxiv.org/pdf/0801.4107v2 | MR 2465800 | Zbl 1178.18006

[6] A. Fleury and C. Retoré, The mix rule, Mathematical Structures in Computer Science 4 (1994), 273-285. | MR 1281761 | Zbl 0810.03004

[7] J.Y. Girard, Linear Logic, Theoretical Computer Science 50 (1987), 1-102. | MR 899269 | Zbl 0625.03037

[8] A. Joyal and R. Street, Braided tensor categories, Advances in Mathematics 102 (1993), 20-78. MR 94m: 18008 | MR 1250465 | Zbl 0817.18007

[9] A. Joyal and R. Street, The geometry of tensor calculus I, Advances in Mathematics 88 (1991), 55-112. | MR 1113284 | Zbl 0738.18005

[10] Kock J. Frobenius algebras and 2D topological quantum field theories. CUP, (2004) | MR 2037238 | Zbl 1046.57001

[11] A. Lauda, Frobenius algebras and planar open string topological field theories, (2005) http://arXiv.org/pdf/math/0508349

[12] C. Pastro and R. Street, Weak Hopf monoids in braided monoidal categories, Algebra and Number Theory 3 (2009), 149-207. http://pj m.math.berkeley.edu/ant/2009/3-2/index.xhtml | MR 2491942 | Zbl 1185.16035

[13] R. Street. Weak distributive laws, Theory and Applications of Categories 22(12) (2009), 313-320. http://www.tac.mta.ca/tac/volumes/22/12/22-12.pdf | MR 2520974 | Zbl 1201.18004

[14] K. Szlachányi, Finite quantum groupoids and inclusions of finite type, Fields Institute Communications 30 (2001), 393-407. | MR 1867570 | Zbl 1022.18007

[15] K. Szlachányi, Adjointable monoidal functors and quantum groupoids, Lecture Notes in Pure and Applied Mathematics 239 (2005), 291-307. http://arXiv.org/pdf/math/0301253 | MR 2106937 | Zbl 1064.18008