@article{CTGDC_1993__34_3_239_0, author = {Trnkov\'a, V\v{e}ra}, title = {Universal concrete categories and functors}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, pages = {239--256}, publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS}, volume = {34}, number = {3}, year = {1993}, mrnumber = {1239471}, zbl = {0797.18003}, language = {en}, url = {http://www.numdam.org/item/CTGDC_1993__34_3_239_0/} }
TY - JOUR AU - Trnková, Věra TI - Universal concrete categories and functors JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 1993 SP - 239 EP - 256 VL - 34 IS - 3 PB - Dunod éditeur, publié avec le concours du CNRS UR - http://www.numdam.org/item/CTGDC_1993__34_3_239_0/ LA - en ID - CTGDC_1993__34_3_239_0 ER -
%0 Journal Article %A Trnková, Věra %T Universal concrete categories and functors %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 1993 %P 239-256 %V 34 %N 3 %I Dunod éditeur, publié avec le concours du CNRS %U http://www.numdam.org/item/CTGDC_1993__34_3_239_0/ %G en %F CTGDC_1993__34_3_239_0
Trnková, Věra. Universal concrete categories and functors. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Volume 34 (1993) no. 3, pp. 239-256. http://www.numdam.org/item/CTGDC_1993__34_3_239_0/
1 Abstract and Concrete Categories, A Wiley - hiterscience Publication, Jolm Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore, 1990. | MR | Zbl
, , ,2 De Morgan algebras are universal, Discrete Math. 66 (1987) 1-13. | MR | Zbl
, ,3 Semigroups with few endomorphisms, J. of the Australian Math. Soc. 10 (1969) 162-168. | MR | Zbl
, ,4 Homomorphisms of integral domains of characteristic zero, Trans. Amer. Math. Soc. 225 (1977) 163-182. | MR | Zbl
, ,5 Universal varieties of (0,1)-lattices, Canad. J. Math. 42 (1990) 470-490. | MR | Zbl
, ,6 Extension of structures and full embeddings of categories, Actes du Congrès Internat. des Mathematiciens 1970, tome 1, Paris 1971, 319-322. | MR | Zbl
,7 Two set-theoretical theorems in categories, Fund. Math. 53 (1963) 43-49. | MR | Zbl
,8 Each concrete category has a representation by T2-paracompact topological spaces, Comment. Math. Univ. Carolinae 15 (1974) 655-663. | MR | Zbl
,9 Universal varieties of semigroups, J. Austral. Math. Soc. Ser. A 36 (1984) 143-152. | MR | Zbl
, ,10 Universal varieties of distributive double p-algebras, Glasgow Math. J. 26 (1985) 121-131. | MR | Zbl
, ,11 Every category is a factorization of a concrete one, J. Pure Appl. Alg. 1 (1971) 373-376. | MR | Zbl
,12 Testing categories and strong universality, Canad. J. Math. 25 (1973) 370-385. | MR | Zbl
,13 Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North Holland, Amsterdam 1980. | MR | Zbl
, ,14 Universal categories, Comment. Math. Univ. Carolinae 7 (1966) 143-206. | MR | Zbl
15 Universalities, to appear. | Zbl
,16 The categories of presheaves containing any category of algebras, Dissertationes Mathematicae 124 (1975) 1-58. | MR | Zbl
,