@article{COCV_2007__13_2_265_0, author = {M\"unch, Arnaud and Pazoto, Ademir Fernando}, title = {Uniform stabilization of a viscous numerical approximation for a locally damped wave equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {13}, number = {2}, year = {2007}, pages = {265-293}, doi = {10.1051/cocv:2007009}, zbl = {1120.65101}, mrnumber = {2306636}, language = {en}, url = {http://www.numdam.org/item/COCV_2007__13_2_265_0} }
Münch, Arnaud; Pazoto, Ademir Fernando. Uniform stabilization of a viscous numerical approximation for a locally damped wave equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 2, pp. 265-293. doi : 10.1051/cocv:2007009. http://www.numdam.org/item/COCV_2007__13_2_265_0/
[1] The spectrum of the damped wave operator for geometrically complex domain in . Experimental Math. 12 (2003) 227-241. | MR 2016708 | Zbl 1061.35064
and ,[2] Exponentially stable approximations of weakly damped wave equations. Ser. Num. Math. 100 Birkhäuser (1990) 1-33. | MR 1155634 | Zbl 0850.93719
, and ,[3] Sharp sufficient conditions for the observation, control and stabilization from the boundary. SIAM J. Control Opt. 30 (1992) 1024-1065. | MR 1178650 | Zbl 0786.93009
, and ,[4] On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52 (1975) 189-219. | MR 385666 | Zbl 0317.49005
,[5] Higher-order Numerical Methods for Transient Wave Equations. Scientific Computation, Springer (2002). | MR 1870851 | Zbl 0985.65096
,[6] On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Rational Mech. Anal. 29 (1968) 241-271. | MR 233539 | Zbl 0183.37701
,[7] A numerical approach to the exact boundary controllability of the wave equation (I). Dirichlet Controls: Description of the numerical methods. Japan. J. Appl. Math. 7 (1990) 1-76. | MR 1039237 | Zbl 0699.65055
, and ,[8] Stabilization of trajectories for some weakly damped hyperbolic equations. J. Differential Equations 59 (1985) 145-154. | MR 804885 | Zbl 0535.35006
,[9] Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portug. Math. 46 (1989) 245-258. | MR 1021188 | Zbl 0679.93063
,[10] Continuity with respect to the domain for the Laplacian: a survey. Control Cybernetics 23 (1994) 427-443. | Zbl 0822.35029
,[11] Boundary observability for the space-discretizations of the 1-D wave equation. ESAIM: M2AN 33 (1999) 407-438. | Numdam | Zbl 0947.65101
and ,[12] Exact Controllability and Stabilization - The Multiplier Method. J. Wiley and Masson (1994). | MR 1359765 | Zbl 0937.93003
,[13] Dispersion-corrected explicit integration of the wave equation. Comput. Methods Appl. Mech. Engrg. 191 (2001) 975-987. | Zbl 1009.76054
,[14] Control of wave processes with distributed control supported on a subregion. SIAM J. Control Opt. 21 (1983) 68-85. | Zbl 0512.93014
,[15] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier-Villars, Paris (1969). | MR 259693 | Zbl 0189.40603
,[16] Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968). | MR 247243 | Zbl 0165.10801
and ,[17] A uniformly controllable and implicit scheme for the 1-D wave equation. ESAIM: M2AN 39 (2005) 377-418. | Numdam | Zbl 1130.93016
,[18] Decay of solutions of the wave equation with a local degenerate dissipation. Israel J. Math. 95 (1996) 25-42. | Zbl 0860.35072
,[19] Discrete Ingham inequalities and applications. C.R. Acad. Sci. Paris 338 (2004) 281-286. | Zbl 1040.93030
and ,[20] Optimal shape design for elliptic systems. New York, Springer (1984). | MR 725856 | Zbl 0534.49001
,[21] Uniformly exponentially stable approximations for a class of second order evolution equations: Application to the optimal controle of flexible structures. Technical report, Prépublications de l'Institut Elie Cartan 27 (2003).
, and ,[22] Weak asymptotic decay via a “Relaxed Invariance Principle” for a wave equation with nonlinear, nonmonotone damping. Proc. Royal Soc. Edinburgh 113 (1989) 87-97. | Zbl 0699.35023
,[23] Stabilization of the wave equation with localized nonlinear damping. J. Differential Equations 145 (1998) 502-524. | Zbl 0916.35069
,[24] Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity. Numer. Math. 95 (2003) 563-598. | Zbl 1033.65080
and ,[25] Exponential decay for the semilinear wave equation with locally distributed damping. Comm. Partial Differential Equation 15 (1990) 205-235. | Zbl 0716.35010
,[26] Boundary observability for finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures Appl. 78 (1999) 523-563. | Zbl 0939.93016
,[27] Optimal and approximate control of finite-difference approximation schemes for the 1-D wave equation. Rendiconti di Matematica, Serie VIII 24 (2004) 201-237. | Zbl 1085.49041
,[28] Propagation, observation, control and numerical approximation of waves. SIAM Rev. 47 (2005) 197-243. | Zbl 1077.65095
,