Structure of stable solutions of a one-dimensional variational problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 721-751.

We prove the periodicity of all H 2 -local minimizers with low energy for a one-dimensional higher order variational problem. The results extend and complement an earlier work of Stefan Müller which concerns the structure of global minimizer. The energy functional studied in this work is motivated by the investigation of coherent solid phase transformations and the competition between the effects from regularization and formation of small scale structures. With a special choice of a bilinear double well potential function, we make use of explicit solution formulas to analyze the intricate interactions between the phase boundaries. Our analysis can provide insights for tackling the problem with general potential functions.

DOI : https://doi.org/10.1051/cocv:2006019
Classification : 47J20,  49K20,  34K26
Mots clés : higher order functional, local minimizer
@article{COCV_2006__12_4_721_0,
     author = {Yip, Nung Kwan},
     title = {Structure of stable solutions of a one-dimensional variational problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {721--751},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {4},
     year = {2006},
     doi = {10.1051/cocv:2006019},
     zbl = {1117.49025},
     mrnumber = {2266815},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2006__12_4_721_0/}
}
Yip, Nung Kwan. Structure of stable solutions of a one-dimensional variational problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 721-751. doi : 10.1051/cocv:2006019. http://www.numdam.org/item/COCV_2006__12_4_721_0/

[1] R.A. Abeyaratne, C. Chu and R.D. James, Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape. Philos. Mag. Ser. A 73 (1996) 457-497.

[2] G. Alberti and S. Müller, A New Approach to Variational Problems with Multiple Scales. Comm. Pure. Appl. Math. 54 (2001) 761-825. | Zbl 1021.49012

[3] J. Ball and R.D. James, Fine phase mixtures as minimizers of the energy. Arch. Rat. Mech. Anal. 100 (1987) 13-52. | Zbl 0629.49020

[4] J. Ball, R.D. James, Proposed experimental tests of a theory of fine structures and the two-well problem. Philos. Trans. R. Soc. Lond. A 338 (1992) 389-450. | Zbl 0758.73009

[5] P.W. Bates and J. Xun, Metastable Patterns for the Cahn-Hilliard Equations, Part I. J. Diff. Eq. 111 (1994) 421-457. | Zbl 0805.35046

[6] J. Carr, M.E. Gurtin and M. Slemrod, Structured Phase Transitions on a Finite Interval. Arch. Rat. Mech. Anal. 86 (1984) 317-351. | Zbl 0564.76075

[7] J. Carr and R.L. Pego, Metastable Patterns in Solutions of u t =ϵ 2 u xx -f(u). Comm. Pure Appl. Math. 42 (1989) 523-576. | Zbl 0685.35054

[8] A.G. Khachaturyan, Theory of Structural Transformations in Solids. New York, Wiley-Interscience (1983).

[9] R.V. Kohn and S. Müller, Branching of twins near a austenite/twinned-martensite interface. Philos. Mag. Ser. A 66 (1992) 697-715.

[10] R.V. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 47 (1994) 405-435. | Zbl 0803.49007

[11] R.V. Kohn and P. Sternberg, Local minimizers and singular perturbations. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 69-84. | Zbl 0676.49011

[12] S. Müller, Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. 1 (1993) 169-204. | Zbl 0821.49015

[13] X. Ren, L. Truskinovsky, Finite Scale Microstructures in Nonlocal Elasticity. J. Elasticity 59 (2000) 319-355. | Zbl 0990.74007

[14] X. Ren and J. Wei, On the multiplicity of solutions of two nonlocal variational problems. SIAM J. Math. Anal. 31 (2000) 909-924. | Zbl 0973.49007

[15] X. Ren and J. Wei, On energy minimizers of the diblock copolymer problem. Interfaces Free Bound. 5 (2003) 193-238. | Zbl 1031.49035

[16] L. Truskinovsky and G. Zanzotto, Ericksen's Bar Revisited: Energy Wiggles. J. Mech. Phys. Solids 44 (1996) 1371-1408.

[17] A. Vainchtein, T. Healey, P. Rosakis and L. Truskinovsky, The role of the spinodal region in one-dimensional martensitic phase transitions. Physica D 115 (1998) 29-48. | Zbl 0962.74530

[18] N.K. Yip, manuscript (2005).