Homogenization of evolution problems for a composite medium with very small and heavy inclusions
ESAIM: Control, Optimisation and Calculus of Variations, Volume 11 (2005) no. 2, p. 266-284

We study the homogenization of parabolic or hyperbolic equations like ρ ε n u ε t n - div (a ε u ε )=finΩ×(0,T)+boundaryconditions,n{1,2}, when the coefficients ρ ε , a ε (defined in Ø) take possibly high values on a ε-periodic set of grain-like inclusions of vanishing measure. Memory effects arise in the limit problem.

DOI : https://doi.org/10.1051/cocv:2005007
Classification:  35K05,  35L05,  73B27
Keywords: homogenization, memory effects, grain-like inclusions
@article{COCV_2005__11_2_266_0,
     author = {Bellieud, Michel},
     title = {Homogenization of evolution problems for a composite medium with very small and heavy inclusions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {11},
     number = {2},
     year = {2005},
     pages = {266-284},
     doi = {10.1051/cocv:2005007},
     zbl = {1091.35011},
     mrnumber = {2141890},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2005__11_2_266_0}
}
Bellieud, Michel. Homogenization of evolution problems for a composite medium with very small and heavy inclusions. ESAIM: Control, Optimisation and Calculus of Variations, Volume 11 (2005) no. 2, pp. 266-284. doi : 10.1051/cocv:2005007. http://www.numdam.org/item/COCV_2005__11_2_266_0/

[1] M. Bellieud, Homogenization of evolution problems in a fiber reinforced structure. J. Convex Anal. 11 (2004) 363-385. | Zbl 1071.35011

[2] M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Non local effects. Ann. Scuola Norm. Sup. Cl. Sci. IV 26 (1998) 407-436. | Numdam | Zbl 0919.35014

[3] M. Bellieud and I. Gruais, Homogénéisation d'une structure élastique renforcée de fibres très rigides. Effets non locaux. C. R. Math., Problèmes mathématiques de la mécanique 337 (2003) 493-498. | Zbl 1027.35011

[4] M. Bellieud and I. Gruais, Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects. J. Math. Pures Appl. 84 (2005) 55-96. | Zbl 1079.74052

[5] H. Brezis, Analyse fonctionnelle. Masson, Paris (1983). | MR 697382 | Zbl 0511.46001

[6] G. Dal Maso, An introduction to Γ-Convergence. Progress Nonlinear Differential Equations Appl., Birkhäuser, Boston (1993). | MR 1201152 | Zbl 0816.49001

[7] E.Y. Khruslov, Homogenized models of composite media. Progress Nonlinear Differential Equations Appl., Birkhäuser (1991). | MR 1145750 | Zbl 0737.73009

[8] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, Paris 1 (1968). | Zbl 0165.10801

[9] U. Mosco, Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123 (1994) 368-421. | Zbl 0808.46042

[10] G. Panasenko, Multicomponent homogenization of the vibration problem for incompressible media with heavy and rigid inclusions. C. R. Acad. Sci. Paris I 321 (1995) 1109-1114. | Zbl 0840.73005