A justification of heterogeneous membrane models as zero-thickness limits of a cylindral three-dimensional heterogeneous nonlinear hyperelastic body is proposed in the spirit of Le Dret (1995). Specific characterizations of the 2D elastic energy are produced. As a generalization of Bouchitté et al. (2002), the case where external loads induce a density of bending moment that produces a Cosserat vector field is also investigated. Throughout, the 3D-2D dimensional reduction is viewed as a problem of -convergence of the elastic energy, as the thickness tends to zero.
Classification : 49J45, 74B20, 74G65, 74K15, 74K35
Mots clés : dimension reduction, -convergence, equi-integrability, quasiconvexity, relaxation
@article{COCV_2005__11_1_139_0, author = {Babadjian, Jean-Fran\c{c}ois and Francfort, Gilles A.}, title = {Spatial heterogeneity in {3D-2D} dimensional reduction}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {139--160}, publisher = {EDP-Sciences}, volume = {11}, number = {1}, year = {2005}, doi = {10.1051/cocv:2004031}, zbl = {1085.49015}, mrnumber = {2110618}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2004031/} }
TY - JOUR AU - Babadjian, Jean-François AU - Francfort, Gilles A. TI - Spatial heterogeneity in 3D-2D dimensional reduction JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 DA - 2005/// SP - 139 EP - 160 VL - 11 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2004031/ UR - https://zbmath.org/?q=an%3A1085.49015 UR - https://www.ams.org/mathscinet-getitem?mr=2110618 UR - https://doi.org/10.1051/cocv:2004031 DO - 10.1051/cocv:2004031 LA - en ID - COCV_2005__11_1_139_0 ER -
Babadjian, Jean-François; Francfort, Gilles A. Spatial heterogeneity in 3D-2D dimensional reduction. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 139-160. doi : 10.1051/cocv:2004031. http://www.numdam.org/articles/10.1051/cocv:2004031/
[1] Semicontinuity results in the calculus of variations. Arch. Rat. Mech. Anal. 86 (1984) 125-145. | Zbl 0565.49010
and ,[2] Equi-integrability results for 3D-2D dimension reduction problems. ESAIM: COCV 7 (2002) 443-470. | Numdam | Zbl 1044.49010
and ,[3] Bending moment in membrane theory. J. Elasticity 73 (2003) 75-99. | Zbl 1059.74034
, and ,[4]
, personal communication.[5] Homogenization of multiple integrals. Oxford lectures Ser. Math. Appl. Clarendon Press, Oxford (1998). | MR 1684713 | Zbl 0911.49010
and ,[6] Zbl 0987.35020
, and , 3D-2D asymptotic analysis for inhomogeneous thin films. Indiana Univ. Math. J. 49 (2000) 1367-1404. |[7] Direct methods in the calculus of variations. Springer-Verlag, Berlin (1988). | MR 2361288 | Zbl 0703.49001
,[8] An introduction to -convergence. Birkhaüser, Boston (1993). | MR 1201152 | Zbl 0816.49001
,[9] Analyse convexe et problèmes variationnels. Dunod, Gauthiers-Villars, Paris (1974). | MR 463993 | Zbl 0281.49001
and ,[10] Measure theory and fine properties of functions, Boca Raton, CRC Press (1992). | MR 1158660 | Zbl 0804.28001
and ,[11] A justification of nonlinear properly invariant plate theories. Arch. Rat. Mech. Anal. 25 (1992) 157-199. | Zbl 0789.73039
, and ,[12] Rigorous derivation of nonlinear plate theory and geometric rigidity. C.R. Acad. Sci. Paris, Série I 334 (2001) 173-178. | Zbl 1012.74043
, and ,[13] A Theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461-1506. | Zbl 1021.74024
, and ,[14] The Föppl-von Kármán plate theory as a low energy -limit of nonlinear elasticity. C.R. Acad. Sci. Paris, Série I 335 (2002) 201-206. | Zbl 1041.74043
, and ,[15] The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549-578. | Zbl 0847.73025
and ,Cité par Sources :