@article{BSMF_1958__86__41_0, author = {Pt\'ak, Vlastimil}, title = {Completeness and the open mapping theorem}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {41--74}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {86}, year = {1958}, doi = {10.24033/bsmf.1498}, mrnumber = {21 #4345}, zbl = {0082.32502}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.1498/} }
TY - JOUR AU - Pták, Vlastimil TI - Completeness and the open mapping theorem JO - Bulletin de la Société Mathématique de France PY - 1958 SP - 41 EP - 74 VL - 86 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.1498/ DO - 10.24033/bsmf.1498 LA - en ID - BSMF_1958__86__41_0 ER -
Pták, Vlastimil. Completeness and the open mapping theorem. Bulletin de la Société Mathématique de France, Volume 86 (1958), pp. 41-74. doi : 10.24033/bsmf.1498. http://www.numdam.org/articles/10.24033/bsmf.1498/
[1] Théorie des opérations linéaires, Warszawa, 1932 (Monografje Matematyczne, Tom 1). | JFM | Zbl
. -[2] Completeness and compactness in linear topological spaces (Trans. Amer. math. Soc., t. 79, 1955, p. 256-280). | MR | Zbl
. -[3] Sur la complétion du dual d'un espace vectoriel localement convexe (C. R. Acad. Sc., t. 230, 1950, p. 605-606). | Zbl
. -[4] Sur les espaces (F) et (DF) (Summa Bras. Math., t. 3, 1954, p. 57-123). | MR | Zbl
. -[5] Cartesian products of reals (Amer. J. Math., t. 74, 1952, p. 936-654). | MR | Zbl
. -[6] Die Quotientenräume eines linearen vollkommenen Raumes (Math. Z., t. 5, 1949, p. 17-35). | Zbl
. -[7] On regularly convex sets in the space conjugate to a Banach space (Annals of Math., Series 2, t. 41, 1940, p. 556-583). | JFM | MR | Zbl
and . -[8] On complete topological linear spaces (Czechoslovak Math. J., t. 3, (78), 1953, p. 301-364). | MR | Zbl
. -[9] Compact subsets of convex topological linear spaces (Czechoslovak Math. J., t. 4, (79), 1954, p. 51-74). | MR | Zbl
. -[10] On the closed graph theorem (Proc. Glasgow Math. Ass., t. 3, 1956, p. 9-12). | MR | Zbl
and . -Cited by Sources: