Combinatorial realization of the Thom-Smale complex via discrete Morse theory
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 9 (2010) no. 2, pp. 229-252.

In the case of smooth manifolds, we use Forman’s discrete Morse theory to realize combinatorially any Thom-Smale complex coming from a smooth Morse function by a pair triangulation-discrete Morse function. As an application, we prove that any class of homologous vector fields on a smooth oriented closed 3-manifold can be realized by a perfect matching on the Hasse diagram of a triangulation of the manifold.

Classification: 57R25, 57R05
Gallais, Étienne 1

1 Laboratoire de Mathématiques et Applications des Mathématiques (LMAM), Université de Bretagne Sud, Campus de Tohannic – BP 573, 56017 Vannes, France
@article{ASNSP_2010_5_9_2_229_0,
     author = {Gallais, \'Etienne},
     title = {Combinatorial realization of the {Thom-Smale} complex via discrete {Morse} theory},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {229--252},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 9},
     number = {2},
     year = {2010},
     mrnumber = {2731156},
     zbl = {1201.57026},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2010_5_9_2_229_0/}
}
TY  - JOUR
AU  - Gallais, Étienne
TI  - Combinatorial realization of the Thom-Smale complex via discrete Morse theory
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2010
SP  - 229
EP  - 252
VL  - 9
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2010_5_9_2_229_0/
LA  - en
ID  - ASNSP_2010_5_9_2_229_0
ER  - 
%0 Journal Article
%A Gallais, Étienne
%T Combinatorial realization of the Thom-Smale complex via discrete Morse theory
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2010
%P 229-252
%V 9
%N 2
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2010_5_9_2_229_0/
%G en
%F ASNSP_2010_5_9_2_229_0
Gallais, Étienne. Combinatorial realization of the Thom-Smale complex via discrete Morse theory. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 9 (2010) no. 2, pp. 229-252. http://www.numdam.org/item/ASNSP_2010_5_9_2_229_0/

[1] D. Bar-Natan, Fast Khovanov homology computations, J. Knot Theory Ramifications 16 (2007), 243–255. | MR | Zbl

[2] M. K. Chari, On discrete Morse functions and combinatorial decompositions, Formal power series and algebraic combinatorics (Vienna, 1997), Discrete Math. 217 (2000), 101–113. | MR | Zbl

[3] D. Farley and L. Sabalka, Discrete Morse theory and graph braid groups, Algebr. Geom. Topol. 5 (2005), 1075–1109. | EuDML | MR | Zbl

[4] R. Forman, Combinatorial vector fields and dynamical systems, Math. Z. 228 (1998), 629–681. | MR | Zbl

[5] R. Forman, Morse theory for cell complexes, Adv. Math. 134 (1998), 90–145. | MR | Zbl

[6] R. Forman, Witten-Morse theory for cell complexes, Topology 37 (1998), 945–979. | MR | Zbl

[7] R. E. Gompf and A. I. Stipsicz, 4-Manifolds and Kirby Calculus”, Graduate Studies in Mathematics, Vol. 20, American Mathematical Society, Providence, RI, 1999. | MR | Zbl

[8] M. Joswig and M. E. Pfetsch, Computing optimal Morse matchings, SIAM J. Discrete Math. 20 (2006), 11–25. | MR | Zbl

[9] T. Lewiner, H. Lopes and G. Tavares, Optimal discrete Morse functions for 2-manifolds, Comput. Geom. 26 (2003), 221–233. | MR | Zbl

[10] T. Lewiner, H. Lopes and G. Tavares, Applications of Forman’s discrete Morse theory to topology visualization and mesh compression, Transactions on Visualization and Computer Graphics 10 (2004), 499–508.

[11] A. T. Lundell and S. Weingram, “The Topology of cw Complexes”, Van Nostrand Reinhold Co., New York, 1969. | Zbl

[12] J. Milnor, “Morse Theory”, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. | MR

[13] J. Milnor, “Lectures on the h-Cobordism Theorem”, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. | MR

[14] P. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants, Adv. Math 1 (2004), 58–116. | MR | Zbl

[15] P. Ozsváth and Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), 1027–1158. | MR | Zbl

[16] A. V. Pajitnov, On the Novikov complex for rational Morse forms, Ann. Fac. Sci. Toulouse Math. (6) 4 (1995), 297–338. | EuDML | Numdam | MR

[17] C. P. Rourke and B. J. Sanderson, “Introduction to Piecewise-Linear Topology”, Springer-Verlag, New York, 1972. | MR | Zbl

[18] M. Salvetti and S. Settepanella, Combinatorial Morse theory and minimality of hyperplane arrangements, Geom. Topol. 11 (2007), 1733–1766. | MR | Zbl

[19] Emil Sköldberg, Morse theory from an algebraic viewpoint, Trans. Amer. Math. Soc. 358 (2006), 115–129 (electronic). | MR | Zbl

[20] V. G. Turaev, Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 607–643, 672. | MR

[21] J. H. C. Whitehead, On C 1 -complexes, Ann. of Math. (2) 41 (1940), 809–824. | JFM | MR

[22] H. Whitney, “Geometric Integration Theory”, Princeton University Press, Princeton, New Jersey, 1957. | MR | Zbl