A generalization of Pascal’s triangle using powers of base numbers
Annales Mathématiques Blaise Pascal, Tome 13 (2006) no. 1, pp. 1-15.

In this paper we generalize the Pascal triangle and examine the connections among the generalized triangles and powering integers respectively polynomials. We emphasize the relationship between the new triangles and the Pascal pyramids, moreover we present connections with the binomial and multinomial theorems.

@article{AMBP_2006__13_1_1_0,
     author = {Kall\'os, G\'abor},
     title = {A generalization of {Pascal{\textquoteright}s} triangle using powers of base numbers},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {1--15},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {13},
     number = {1},
     year = {2006},
     doi = {10.5802/ambp.211},
     mrnumber = {2233009},
     zbl = {1172.11302},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.211/}
}
TY  - JOUR
AU  - Kallós, Gábor
TI  - A generalization of Pascal’s triangle using powers of base numbers
JO  - Annales Mathématiques Blaise Pascal
PY  - 2006
DA  - 2006///
SP  - 1
EP  - 15
VL  - 13
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.211/
UR  - https://www.ams.org/mathscinet-getitem?mr=2233009
UR  - https://zbmath.org/?q=an%3A1172.11302
UR  - https://doi.org/10.5802/ambp.211
DO  - 10.5802/ambp.211
LA  - en
ID  - AMBP_2006__13_1_1_0
ER  - 
Kallós, Gábor. A generalization of Pascal’s triangle using powers of base numbers. Annales Mathématiques Blaise Pascal, Tome 13 (2006) no. 1, pp. 1-15. doi : 10.5802/ambp.211. http://www.numdam.org/articles/10.5802/ambp.211/

[1] Basil, Mary Pascal’s pyramid, Math. Teacher, Volume 61 (1968), pp. 19-21

[2] Bollinger, Richard C. A note on Pascal-T triangles, multinomial coefficients, and Pascal pyramids, The Fibonacci Quarterly, Volume 24.2 (1986), pp. 140-144 | MR 843962 | Zbl 0598.05011

[3] Bondarenko, Boris A. Generalized Pascal triangles and pyramids, their fractals, graphs and applications, The Fibonacci Association, Santa Clara, 1993 (Translated from russian by Richard C. Bollinger) | Zbl 0792.05001

[4] Cyvin, Sven J.; Brunvoll, Jon; Cyvin, Bjørg N. Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, Volume 34 (1996), pp. 109-121 | Zbl 0863.05006

[5] Freund, John E. Restricted occupancy theory – a generalization of Pascal’s triangle, Amer. Math. Monthly, Volume 63 (1956), pp. 20-27 | Article | MR 74356 | Zbl 0070.01201

[6] Kallós, Gábor Generalizations of Pascal’s triangle (1993) Master thesis (in Hungarian), Eötvös Loránd University, Budapest

[7] Kallós, Gábor The generalization of Pascal’s triangle from algebraic point of view, Acta Acad. Paed. Agriensis, Volume XXIV (1997), pp. 11-18 | Zbl 0886.05003

[8] Morton, Robert L. Pascal’s triangle and powers of 11, Math. Teacher, Volume 57 (1964), pp. 392-394

[9] Sloane, Neil J. A. On-line encyclopedia of integer sequences, 1044.11108 http://www.research.att.com/~njas/sequences/ (Internet Database) | Zbl 1044.11108

Cité par Sources :