Existence of Solution for Quasilinear Degenerated Elliptic Unilateral Problems
Annales mathématiques Blaise Pascal, Volume 10 (2003) no. 1, p. 1-20

An existence theorem is proved, for a quasilinear degenerated elliptic inequality involving nonlinear operators of the form Au+g(x,u,u), where A is a Leray-Lions operator from W 0 1,p (Ω,w) into its dual, while g(x,s,ξ) is a nonlinear term which has a growth condition with respect to ξ and no growth with respect to s, but it satisfies a sign condition on s, the second term belongs to W -1,p (Ω,w * ).

@article{AMBP_2003__10_1_1_0,
     author = {Akdim, Youssef and Azroul, Elhoussine and Benkirane, Abdelmoujib},
     title = {Existence of Solution for Quasilinear Degenerated Elliptic Unilateral Problems},
     journal = {Annales math\'ematiques Blaise Pascal},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {10},
     number = {1},
     year = {2003},
     pages = {1-20},
     doi = {10.5802/ambp.166},
     mrnumber = {1990009},
     zbl = {02068409},
     language = {en},
     url = {http://www.numdam.org/item/AMBP_2003__10_1_1_0}
}
Akdim, Youssef; Azroul, Elhoussine; Benkirane, Abdelmoujib. Existence of Solution for Quasilinear Degenerated Elliptic Unilateral Problems. Annales mathématiques Blaise Pascal, Volume 10 (2003) no. 1, pp. 1-20. doi : 10.5802/ambp.166. http://www.numdam.org/item/AMBP_2003__10_1_1_0/

[1] Akdim, Y.; Azroul, E.; Benkirane, A. Existence of solutions for quasilinear degenerated elliptic equations, Electronic J. Diff. Eqns., Tome 2001 (2001) no. 71, pp. 1-19 | MR 1872050 | Zbl 0988.35065

[2] Benkirane, A.; Elmahi, A. Strongly nonlinear elliptic unilateral problem having natural growth terms and L 1 data, Rendiconti di Matematica, Tome 18 (1998), pp. 289-303 | MR 1659834 | Zbl 0918.35059

[3] Bensoussan, A.; Boccardo, L.; Murat, F. On a non linear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. Henri Poincaré, Tome 5 (1988) no. 4, pp. 347-364 | Numdam | MR 963104 | Zbl 0696.35042

[4] Drabek, P.; Kufner, A.; Mustonen, V. Pseudo-monotonicity and degenerated or singular elliptic operators, Bull. Austral. Math. Soc., Tome 58 (1998), pp. 213-221 | Article | MR 1642031 | Zbl 0913.35051

[5] Drabek, P.; Kufner, A.; Nicolosi, F. Quasilinear elliptic equations with degenerations and singularities, De Gruyter Series in Nonlinear Analysis and Applications, New York (1997) | MR 1460729 | Zbl 0894.35002

[6] Drabek, P.; Nicolosi, F. Existence of Bounded Solutions for Some Degenerated Quasilinear Elliptic Equations, Annali di Mathematica pura ed applicata, Tome CLXV (1993), pp. 217-238 | Article | MR 1271420 | Zbl 0806.35047

[7] Lions, J.L. Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969) | MR 259693 | Zbl 0189.40603