@article{AIHPA_1976__25_2_177_0, author = {Tahir Shah, K.}, title = {On the principle of stability of invariance of physical systems}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {177--182}, publisher = {Gauthier-Villars}, volume = {25}, number = {2}, year = {1976}, zbl = {0388.58022}, mrnumber = {424095}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1976__25_2_177_0/} }
TY - JOUR AU - Tahir Shah, K. TI - On the principle of stability of invariance of physical systems JO - Annales de l'I.H.P. Physique théorique PY - 1976 DA - 1976/// SP - 177 EP - 182 VL - 25 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1976__25_2_177_0/ UR - https://zbmath.org/?q=an%3A0388.58022 UR - https://www.ams.org/mathscinet-getitem?mr=424095 LA - en ID - AIHPA_1976__25_2_177_0 ER -
Tahir Shah, K. On the principle of stability of invariance of physical systems. Annales de l'I.H.P. Physique théorique, Tome 25 (1976) no. 2, pp. 177-182. http://www.numdam.org/item/AIHPA_1976__25_2_177_0/
[1] Les Méthodes Nouvelles de la Mécanique Céleste, Paris, 1899.
,[2] Foundation of Mechanics, Benjamin, New York, 1967.
and ,[3] We do not list papers because of extreamly large numbers of papers in this field.
[4] Stabilité Structurelle et Morphogenèse, Benjamin, 1972 and reference there in. | MR 488155 | Zbl 0294.92001
,[5] Nouvo Cim., A49, 1967, p. 306; Jour. of Math. Phys., t. 9, 1968, p. 1638 and t. 11, 1970, p. 1463. | Zbl 0144.46201
,[6] Topics in bifurcation theory, Seminar report, Clausthal, 1973.
,[7] Reports on Math. Phys., t. 6, 1974, p. 171. | MR 385018 | Zbl 0314.17011
,[8] Symmetries gained and lost, Proceedings of III GIFT Seminars in Theor. Phys., Madrid, 1972 ; see also , Geometrical aspects of symmetry breaking, same proceedings.
,[9] Jour. of Diff. Geom., t. 3, 1969, p. 289. | Zbl 0215.38603
,[10] Proceedings of Symp. on Transformation Groups, Edited by , p. 429, Springer-Verlag, 1967. | MR 244439
,[11] Topology, t. 1, 1962, p. 101, Ann. of Math., t. 87, 1968, p. 422) has shown that if the dimension of the manifold is two, then the set of structurally stable vector field or dynamical system is a dense set on the set of all vector fields on this two dimensional manifold. In the case of differentiable maps i. e. C∞-maps, one can define stability as follows. Let Mn and Np be the two C∞-manifolds and let Cr (,) be the space of all maps from Mn to Np provided with the Cr-topology. A map is called stable if all'nearby maps' k are of the same type topologically as f and the diagram is commutative, i. e. fh = h'k where h and h' are ∈-homeomorphisms of Mn and Np. For a general reference, see M. Golubitsky and Guillemin, Stable mappings and their Singularities, Springer-Verlag, 1973. | MR 142859
, ([12] Proc. Natl. Acad. Sci (USA), t. 39, 1953, p. 510. | MR 55352 | Zbl 0050.02601
and ,