Annihilators of minus class groups of imaginary abelian fields
[Annulateurs pour la partie moins du groupe des classes d’un corps abélien imaginaire]
Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1623-1653.

Pour certains corps imaginaires abéliens, on trouve des annulateurs pour la partie moins du groupe des classes en dehors de l’idéal de Stickelberger. En fonction du cadre précis, on emploie des méthodes différentes. Les résultats théoriques sont accompagnés de calculs numériques, ayant trait à quelques cas extrêmes.

For certain imaginary abelian fields we find annihilators of the minus part of the class group outside the Stickelberger ideal. Depending on the exact situation, we use different techniques to do this. Our theoretical results are complemented by numerical calculations concerning borderline cases.

DOI : https://doi.org/10.5802/aif.2309
Classification : 11R20,  11R29
Mots clés : corps de nombres abéliens imaginaires, partie moins du groupe des classes, annulateurs, idéal de Stickelberger, idéaux de Fitting
@article{AIF_2007__57_5_1623_0,
     author = {Greither, Cornelius and Ku\v{c}era, Radan},
     title = {Annihilators of minus class groups of imaginary abelian fields},
     journal = {Annales de l'Institut Fourier},
     pages = {1623--1653},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {5},
     year = {2007},
     doi = {10.5802/aif.2309},
     mrnumber = {2364145},
     zbl = {1128.11050},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2309/}
}
Greither, Cornelius; Kučera, Radan. Annihilators of minus class groups of imaginary abelian fields. Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1623-1653. doi : 10.5802/aif.2309. http://www.numdam.org/articles/10.5802/aif.2309/

[1] Cornacchia, P.; Greither, C. Fitting ideals of class groups of real fields with prime power conductor, J. Number Theory, Volume 73 (1998) no. 2, pp. 459-471 | Article | MR 1658000 | Zbl 0926.11085

[2] Darmon, H. Thaine’s method for circular units and a conjecture of Gross, Canad. J. Math., Volume 47 (1995) no. 2, pp. 302-317 | Article | Zbl 0844.11071

[3] Greither, C. Über relativ-invariante Kreiseinheiten und Stickelberger-Elemente, Manuscripta Math., Volume 80 (1993) no. 1, pp. 27-43 | Article | MR 1226595 | Zbl 0801.11044

[4] Greither, Cornelius Some cases of Brumer’s conjecture for abelian CM extensions of totally real fields, Math. Z., Volume 233 (2000) no. 3, pp. 515-534 | Article | Zbl 0965.11047

[5] Greither, Cornelius; Kučera, Radan Annihilators for the class group of a cyclic field of prime power degree. II, Canad. J. Math, Volume 58 (2006) no. 3, pp. 580-599 | Article | MR 2223457 | Zbl 05042543

[6] Hayward, A. A class number formula for higher derivatives of abelian L-functions, Compos. Math., Volume 140 (2004) no. 1, pp. 99-129 | Article | MR 1984423 | Zbl 1060.11075

[7] Kaplansky, I. Commutative rings, Polygonal Publishing House, Washington, NJ, 1994

[8] Kurihara, M. Iwasawa theory and Fitting ideals, J. Reine Angew. Math., Volume 561 (2003), pp. 39-86 | Article | MR 1998607 | Zbl 1056.11063

[9] Lang, Serge Cyclotomic fields I and II, Graduate Texts in Mathematics, 121, Springer-Verlag, New York, 1990 | MR 1029028 | Zbl 0395.12005

[10] Sinnott, W. On the Stickelberger ideal and the circular units of an abelian field, Invent. Math., Volume 62 (1980/81) no. 2, pp. 181-234 | Article | EuDML 142770 | MR 595586 | Zbl 0465.12001

[11] Washington, Lawrence C. Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1982 | MR 718674 | Zbl 0484.12001