Deformation of holomorphic maps onto Fano manifolds of second and fourth Betti numbers 1
Annales de l'Institut Fourier, Volume 57 (2007) no. 3, pp. 815-823.

Let X be a Fano manifold with b 2 =1 different from the projective space such that any two surfaces in X have proportional fundamental classes in H 4 (X,C). Let f:YX be a surjective holomorphic map from a projective variety Y. We show that all deformations of f with Y and X fixed, come from automorphisms of X. The proof is obtained by studying the geometry of the integral varieties of the multi-valued foliation defined by the variety of minimal rational tangents of X.

Soit X une variété de Fano avec b 2 =1 différente de l’espace projectif et telle que tout couple de surfaces dans X ont des classes fondamentales dans H 4 (X,C) proportionnelles. Soit f:YX une application surjective d’une variété projective Y dans X. Nous montrons que toute déformation de f de Y dans X (fixés), provient d’automorphismes de X. La preuve est obtenue en étudiant la géométrie des variétés intégrales du feuilletage multi-valué défini par la variété des vecteurs tangents des courbes rationnelles minimales de X.

DOI: 10.5802/aif.2278
Classification: 14J45, 32H02
Keywords: minimal rational curves, Fano manifold, deformation of holomorphic maps
Mot clés : courbes rationnelles minimales, variété de Fano, déformation des applications holomorphes
Hwang, Jun-Muk 1

1 Korea Institute for Advanced Study 207-43 Cheongryangri-dong Seoul, 130-722 (Korea)
@article{AIF_2007__57_3_815_0,
     author = {Hwang, Jun-Muk},
     title = {Deformation of holomorphic maps onto {Fano} manifolds  of second and fourth {Betti} numbers 1},
     journal = {Annales de l'Institut Fourier},
     pages = {815--823},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {3},
     year = {2007},
     doi = {10.5802/aif.2278},
     zbl = {1126.32011},
     mrnumber = {2336831},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2278/}
}
TY  - JOUR
AU  - Hwang, Jun-Muk
TI  - Deformation of holomorphic maps onto Fano manifolds  of second and fourth Betti numbers 1
JO  - Annales de l'Institut Fourier
PY  - 2007
SP  - 815
EP  - 823
VL  - 57
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2278/
DO  - 10.5802/aif.2278
LA  - en
ID  - AIF_2007__57_3_815_0
ER  - 
%0 Journal Article
%A Hwang, Jun-Muk
%T Deformation of holomorphic maps onto Fano manifolds  of second and fourth Betti numbers 1
%J Annales de l'Institut Fourier
%D 2007
%P 815-823
%V 57
%N 3
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2278/
%R 10.5802/aif.2278
%G en
%F AIF_2007__57_3_815_0
Hwang, Jun-Muk. Deformation of holomorphic maps onto Fano manifolds  of second and fourth Betti numbers 1. Annales de l'Institut Fourier, Volume 57 (2007) no. 3, pp. 815-823. doi : 10.5802/aif.2278. http://www.numdam.org/articles/10.5802/aif.2278/

[1] Amerik, E. On a problem of Noether-Lefschetz type, Compositio Mathematica, Volume 112 (1998), pp. 255-271 | DOI | MR | Zbl

[2] Araujo, C. Rational curves of minimal degree and characterization of projective spaces, Math. Annalen, Volume 335 (2006), pp. 937-951 | DOI | MR | Zbl

[3] Hwang, J.-M. Geometry of minimal rational curves on Fano manifolds, ICTP Lect. Notes, Volume 6, Abdus Salam Int. Cent. Theoret. Phys.,, Trieste, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000) (2001), pp. 335-393 | MR | Zbl

[4] Hwang, J.-M. On the degrees of Fano four-folds of Picard number 1, J. reine angew. Math., Volume 556 (2003), pp. 225-235 | DOI | MR | Zbl

[5] Hwang, J.-M.; Kebekus, S.; Peternell, T. Holomorphic maps onto varieties of non-negative Kodaira dimension, J. Alg. Geom., Volume 15 (2006), pp. 551-561 | DOI | MR | Zbl

[6] Hwang, J.-M.; Mok, N. Finite morphisms onto Fano manifolds of Picard number 1 which have rational curves with trivial normal bundles, J. Alg. Geom., Volume 12 (2003), pp. 627-651 | DOI | MR | Zbl

[7] Hwang, J.-M.; Mok, N. Birationality of the tangent map for minimal rational curves, Asian J. Math., Volume 8 (2004), pp. 51-64 (Special issue dedicated to Yum-Tong Siu) | MR | Zbl

[8] Okonek, C.; Schneider, M.; Spindler, H. Vector bundles on complex projective spaces, Birkhäuser, Boston, 1980 | MR | Zbl

Cited by Sources: