Nous classifions les transformations birationnelles quadratiques de l'espace projectif complexe de dimension trois, à des isomorphismes linéaires près. Elles sont de trois sortes, selon que le degré de leur inverse est 2, 3 ou 4. Il y a en tout 30 types différents; en 1871, L. Cremona en avait déjà décrit 23.
We classify birational quadratic transformations of the three dimensional complex projective space, up to linear isomorphisms of source and target. They are of three kinds, depending on the degree of the inverse, which can be 2,3 or 4. There are 30 different types; in 1871, L. Cremona described 23 of them already.
Classification : 14E07
Mots clés : quadriques, transformations birationnelles
@article{AIF_2001__51_5_1153_0, author = {Pan, Ivan and Ronga, Felice and Vust, Thierry}, title = {Transformations birationnelles quadratiques de l'espace projectif complexe \`a trois dimensions}, journal = {Annales de l'Institut Fourier}, pages = {1153--1187}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {5}, year = {2001}, doi = {10.5802/aif.1850}, zbl = {0987.14009}, mrnumber = {1860661}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.1850/} }
TY - JOUR AU - Pan, Ivan AU - Ronga, Felice AU - Vust, Thierry TI - Transformations birationnelles quadratiques de l'espace projectif complexe à trois dimensions JO - Annales de l'Institut Fourier PY - 2001 DA - 2001/// SP - 1153 EP - 1187 VL - 51 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1850/ UR - https://zbmath.org/?q=an%3A0987.14009 UR - https://www.ams.org/mathscinet-getitem?mr=1860661 UR - https://doi.org/10.5802/aif.1850 DO - 10.5802/aif.1850 LA - fr ID - AIF_2001__51_5_1153_0 ER -
Pan, Ivan; Ronga, Felice; Vust, Thierry. Transformations birationnelles quadratiques de l'espace projectif complexe à trois dimensions. Annales de l'Institut Fourier, Tome 51 (2001) no. 5, pp. 1153-1187. doi : 10.5802/aif.1850. http://www.numdam.org/articles/10.5802/aif.1850/
[1] Algebraische Transformationen und Korrespondenzen, Enzyclopädie der mathematischen Wissenschaften, dritter Band: Geometrie, 2.2.B, Teubner, 1932 | JFM 59.1291.01
[2] Le superficie razionali, Zanichelli, Bologna, 1939 | JFM 65.0714.03 | Zbl 0021.05306
[3] Sulle transformazioni razionali nello spazio, Annali di Mat. ser. II, V (1871-1873), pp. 131-162 | JFM 04.0418.02
[4] On varieties of minimal degree, Algebraic Geometry, Bowdoin 1985 (Proc. Pure Math.), Volume 46 (1987), pp. 3-13 | Zbl 0646.14036
[5] Classification of Degree 2 Polynomial Automorphisms of , Publ. Mat., Volume 42 (1998), pp. 195-210 | EuDML 41327 | MR 1628170 | Zbl 0923.58006
[6] Algebraic Geometry, Springer Verlag, 1992 | MR 1182558 | Zbl 0779.14001
[7] Algebraic Geometry, Springer Verlag, 1979 | MR 463157 | Zbl 0367.14001
[8] Cremona transformation in Plane and Space, University Press, Cambridge, 1927 | JFM 53.0595.01
[9] Sur le multidegré des transformations de Cremona, C.R. Acad. Sci. Paris, Série I, Volume 330 (2000), pp. 297-300 | MR 1753297 | Zbl 1011.14003
[10] Introduction to Algebraic Geometry, Claredon Press, Oxford, 1949 | MR 34048 | Zbl 0041.27903
[11] Selected Topics in Algebraic Geometry, Nat. Research Council, Chelsea Pub. Company, Washington, 1970 | MR 290927 | Zbl 0213.47101
Cité par Sources :