This note contains an approximation theorem that implies that every compact subset of is a good compact set in the sense of Martineau. The property in question is fundamental for the extension of analytic functionals. The approximation theorem depends on a finiteness result about certain polynomially convex hulls.
On établit un théorème d’approximation qui implique que tout sous-ensemble compact de est un bon compact au sens de Martineau. Il s’agit d’une propriété d’approximation cruciale pour l’extension des fonctionnelles analytiques. Le théorème d’approximation est fondé sur un résultat de finitude pour les enveloppes polynomiales.
@article{AIF_2000__50_2_677_0, author = {Rosay, Jean-Pierre and Stout, Edgar Lee}, title = {An approximation theorem related to good compact sets in the sense of {Martineau}}, journal = {Annales de l'Institut Fourier}, pages = {677--687}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {2}, year = {2000}, doi = {10.5802/aif.1768}, mrnumber = {2001g:32026}, zbl = {0964.32010}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1768/} }
TY - JOUR AU - Rosay, Jean-Pierre AU - Stout, Edgar Lee TI - An approximation theorem related to good compact sets in the sense of Martineau JO - Annales de l'Institut Fourier PY - 2000 SP - 677 EP - 687 VL - 50 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1768/ DO - 10.5802/aif.1768 LA - en ID - AIF_2000__50_2_677_0 ER -
%0 Journal Article %A Rosay, Jean-Pierre %A Stout, Edgar Lee %T An approximation theorem related to good compact sets in the sense of Martineau %J Annales de l'Institut Fourier %D 2000 %P 677-687 %V 50 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1768/ %R 10.5802/aif.1768 %G en %F AIF_2000__50_2_677_0
Rosay, Jean-Pierre; Stout, Edgar Lee. An approximation theorem related to good compact sets in the sense of Martineau. Annales de l'Institut Fourier, Volume 50 (2000) no. 2, pp. 677-687. doi : 10.5802/aif.1768. http://www.numdam.org/articles/10.5802/aif.1768/
[1] Holomorphic completions, analytic continuations, and the interpolation of semi-norms, Ann. Math., 78 (1963), 468-500. | Zbl
,[2] Every compact set in ℂn is a good compact set, Ann. Inst. Fourier, Grenoble, 20-1 (1970), 493-498. | Numdam | Zbl
,[3] Introduction to Holomorphic Functions of Several Complex Variables, vol. I, Wadsworth and Brooks-Cole, Belmont, 1990.
,[4] Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, 1965. | MR | Zbl
and ,[5] Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, J. Analyse Math., XI (1963), 1-164. (Also contained in the Œuvres of Martineau). | MR | Zbl
,[6] Strong boundary values, analytic functionals and nonlinear Paley-Wiener theory, to appear.
and ,[7] Algebras of analytic germs, Trans. Amer. Math. Soc., 174 (1972), 275-288. | MR | Zbl
,Cited by Sources: