For a codimension foliation on a manifold, defines the Godbillon-Vey class. We show that itself defines a certain cohomology class, via the Cech bicomplex.
Pour un feuilletage de codimension sur une variété, définit la classe de Godbillon-Vey. On démontre que définit une certaine classe de cohomologie, via la bicomplexe de Cech.
@article{AIF_1978__28_3_217_0, author = {Kitahara, Haruo and Yorozu, Shinsuke}, title = {On the {Cech} bicomplex associated with foliated structures}, journal = {Annales de l'Institut Fourier}, pages = {217--224}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {28}, number = {3}, year = {1978}, doi = {10.5802/aif.711}, mrnumber = {80c:57016a}, zbl = {0368.57006}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.711/} }
TY - JOUR AU - Kitahara, Haruo AU - Yorozu, Shinsuke TI - On the Cech bicomplex associated with foliated structures JO - Annales de l'Institut Fourier PY - 1978 SP - 217 EP - 224 VL - 28 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.711/ DO - 10.5802/aif.711 LA - en ID - AIF_1978__28_3_217_0 ER -
%0 Journal Article %A Kitahara, Haruo %A Yorozu, Shinsuke %T On the Cech bicomplex associated with foliated structures %J Annales de l'Institut Fourier %D 1978 %P 217-224 %V 28 %N 3 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.711/ %R 10.5802/aif.711 %G en %F AIF_1978__28_3_217_0
Kitahara, Haruo; Yorozu, Shinsuke. On the Cech bicomplex associated with foliated structures. Annales de l'Institut Fourier, Volume 28 (1978) no. 3, pp. 217-224. doi : 10.5802/aif.711. http://www.numdam.org/articles/10.5802/aif.711/
[1] Lectures on characteristic classes and foliations, Lecture Notes in Math., Springer, 279 (1972), 1-94. | MR | Zbl
,[2] Un invariant des feuilletages de codimension 1, C.R. Acad. Sci., Paris, 273 (1971), A92-95. | MR | Zbl
and ,[3] Foliated bundles and characteristic classes, Lecture Notes in Math., Springer, 493 (1975). | MR | Zbl
and ,[4] Sur l'homomorphisme de Chern-Weil local et ses applications au feuilletage, C.R. Acad. Sci., Paris, 281 (1975), A703-706. | MR | Zbl
and ,[5] Sur certaines propriétés topologiques des variétés feuilletées, Hermann (1952). | MR | Zbl
,[6] On the spectral sequences associated to foliated structures, Nagoya Math. J., 38 (1970), 53-61. | Zbl
,[7] On the cohomology of bigraded forms associated with foliated structures, Bull. Soc. Math. Grèce, 15 (1974), 68-76. | MR | Zbl
,[8] Sur la multiplicativité de l'homomorphisme de Chern-Weil local, C.R. Acad. Sci., Paris, 280 (1975), A369-371. | MR | Zbl
, and ,Cited by Sources: