Bifurcation for odd nonlinear elliptic variational inequalities
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 11 (1990) no. 1, pp. 39-66.
@article{AFST_1990_5_11_1_39_0,
     author = {Degiovanni, Marco},
     title = {Bifurcation for odd nonlinear elliptic variational inequalities},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {39--66},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {Ser. 5, 11},
     number = {1},
     year = {1990},
     zbl = {0717.49010},
     mrnumber = {1191471},
     language = {en},
     url = {http://www.numdam.org/item/AFST_1990_5_11_1_39_0/}
}
Degiovanni, Marco. Bifurcation for odd nonlinear elliptic variational inequalities. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 11 (1990) no. 1, pp. 39-66. http://www.numdam.org/item/AFST_1990_5_11_1_39_0/

[1] Attouch (H.) .- Variational convergence for functions and operators, Applicable Math. Series, Pitman (Advanced Publishing Program), Boston, Mass. London, (1984) | MR 773850 | Zbl 0561.49012

[2] Benci (V.) .- Positive solutions of some eigenvalue problems in the theory of variational inequatilities, J. Math. Anal. Appl. 61 (1977) pp. 165-187 | MR 460868 | Zbl 0432.35059

[3] Benci (V.) and Micheletti (A.M.) .- Su un problema di autovalori per disequazioni variazionali, Ann. Mat. Pura Appl. (4) 107 (1975) pp. 359-371 | MR 412941 | Zbl 0324.49004

[4] Berger (M.S.) .- On von Kármán's equations and the buckling of a thin elastic plate. I the clamped plate, Comm. Pure Appl. Math. 20 (1967) pp. 687-719 | MR 221808 | Zbl 0162.56405

[5] Berger (M.S.) and Fife (P.C.) .- Von Kármán's equations and the buckling of a thin elastic plate, II plate with general edge conditions, Comm. Pure Appl. Math. 21 (1968) pp. 227-241 | MR 229978 | Zbl 0162.56501

[6] Böhme (R.) . - Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertprobleme, Math. Z. 127 (1972) pp. 105-126 | MR 312348 | Zbl 0254.47082

[7] Čobanov (G.), Marino (A.) and Scolozzi (D.) .- Evolution equation for the eigenvalue problem for the Laplace operator with respect to an obstacle, preprint, Dip. Mat. Pisa 214, Pisa (1987)

[8] Čobanov (G.), Marino (A.) and Scolozzi (D.) .- Multiplicity of eigenvalues for the Laplace operator with respect to an obstacle and non tangency conditons, Nonlinear Anal., in press | MR 1065252 | Zbl 0716.49009

[9] De Giorgi (E.), Degiovanni (M.), Marino (A.), Tosques (M.) .- Evolution equations for a class of non-linear opertors, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 75 (1983), pp. 1-8 (1984) | MR 780801 | Zbl 0597.47045

[10] De Giorgi (E.) and Franzoni (T.) .- Su un tipo di convergenza variazionale, Rend. Sem. Mat. Brescia 3 (1979) pp. 63-101

[11] Degiovanni (M.) .- Homotopical properties of a class of nonsmooth functions, Ann. Mat. Pura Appl., in press | MR 1080210 | Zbl 0722.58013

[12] Degiovanni (M.) .- Bifurcation problems for nonlinear elliptic variational inequalities, Ann. Fac. Sci. Toulouse, in press | Numdam | MR 1425487 | Zbl 0656.58030

[13] Degiovanni (M.) .- On the buckling of a thin elastic plate subjected to unilateral constraints, Nonlinear Variational Problems II (Isola d'Elba (1986)), pp. 161-180, Pitman Res. Notes in Math., 193, Longman, Harlow 1989 | MR 993805 | Zbl 0684.73022

[14] Degiovanni (M.) and Marino (A.) .- Alcuni problemi di autovalori e di biforcazione rispetto ad un ostacolo, Equazioni Differenziali e Calcolo delle Variazioni, Pisa (1985) pp. 71-93, Editrice Tecnico Scientifica, Pisa (1985)

[15] Degiovanni (M.) and Marino (A.) .- Nonsmooth variational bifurcation, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81 (1987) pp. 259-269 (1988) | MR 999818 | Zbl 0671.58029

[16] Degiovanni (M.), Marino (A.) and Tosques (M.) .- Evolution equations with lack of convexity, Nonlinear Anal. 9 (1985) pp. 1401-1443 | MR 820649 | Zbl 0545.46029

[17] Do (C.) .- Bifurcation theory for elastic plates subjected to unilateral conditions, J. Math. Anal. Appl. 60 (1977) pp. 435-448 | MR 455672 | Zbl 0364.73030

[18] Do (C.) .- Nonlinear bifurcation problem and buckling of an elastic plate subjected to unilateral conditions in its plane, Contemporary Developments in Continuun Mechanics and Partial Differential Equations. (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, (1977)) pp. 112-134, North-Holland Math. Studies, 30, North-Holland, Amsterdam, 1978 | MR 519641 | Zbl 0401.73060

[19] Fadell (E.) .- Lectures in cohomological index theories of G-spaces with applications to critical point theory, Raccolta di Seminari del Dipartimento di Matematica dell'Università degli Studi della Calabria, 6, Cosenza (1985)

[20] Fadell (E.) and Husseini (S.) .- Relative cohomological index theories, Adv. in Math. 64 (1987) pp. 1-31 | MR 879854 | Zbl 0619.58012

[21] Fadell (E.R.) and Rabinowitz (P.H.) .- Bifurcation for odd potential operators and an alternative topological index, J. Funct. Anal. 26 (1977) pp. 48-67 | MR 448409 | Zbl 0363.47029

[22] Fadell (E.R.) and Rabinowitz (P.H.) .- Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978) pp. 139-174 | MR 478189 | Zbl 0403.57001

[23] Krasnoselskii (M.A.) .- Topological methods in the theory of nonlinear integral equations, Gosudarstv. Izdat. Tehn. -Teor. Lit. Moscow (1956) The Macmillan Co., New-York (1964) | MR 96983

[24] Kučera (M.) .- A new method for obtaining eigenvalues of variational inequalities: operators with multiple eigenvalues, Czechoslovak Math. J. 32 (1982) pp. 197-207 | MR 654056 | Zbl 0621.49005

[25] Kučera (M.) .- Bifurcation points of variational inequalities, Czechoslovak Math. J. 32 (1982) pp. 208-226 | MR 654057 | Zbl 0621.49006

[26] Kučera (M.) .- A global continuation theorem for obtaining eigenvalues and bifurcation points, Czechoslovak Math. J. 38 (1988) pp. 120-137 | MR 925946 | Zbl 0665.35010

[27] Kučera (M.), Nečas (J.) and Souček (J.) .- The eigenvalue problem for variational inequalities and a new version of the Ljusternik-Schnirelmann theory, Nonlinear Analysis (Collection of papers in honor of Erich H. Rothe), Academic Press, New-York (1978) pp. 125-143 | MR 513782 | Zbl 0463.47041

[28] Marino (A.) .- La biforcazione nel caso variazionale, Confer. Sem. Mat. Univ. Bari N. 132 (1973) | MR 348570 | Zbl 0323.47046

[29] Mcleod (J.B.) and Turner (R.E.L.) .- Bifurcation for non-differentiable operators with an application to elasticity, Arch. Rational Mech. Anal. 63 (1976) pp. 1-45 | MR 473953 | Zbl 0356.47030

[30] Miersemann (E.) .- Eigenwertaufgaben für Variationsungleichungen, Math. Nachr. 100 (1981) pp. 221-228 | MR 632628 | Zbl 0474.49011

[31] Miersemann (E.) . - On higher eigenvalues of variational inequalities, Comment. Math. Univ. Carolin. 24 (1983) pp. 657-665 | MR 738561 | Zbl 0638.49020

[32] Miersemann (E.) .- Eigenvalue problems in convex sets, Mathematical Control Theory, Banach Center Publ. 14 PWN, Warsaw (1985) pp. 401-408 | MR 851239

[33] Quittner (P.) .- Spectral analysis of variational inequalities, Comment. Math. Univ. Carolin. 27 (1986) pp. 605-629 | MR 873631 | Zbl 0652.49008

[34] Quittner (P.) .- Bifurcation points and eigenvalues of inequalities of reaction-diffusion type, J. Reine Angew. Math. 380 (1987) pp. 1-13 | MR 916198 | Zbl 0617.35053

[35] Quittner (P.) . - Solvability and multiplicity results for variational inequalities, preprint (1987) | MR 1014128

[36] Rabinowitz (P.H.) .- A bifurcation theorem for potential operators, J. Funct. Anal. 25 (1977) pp. 412-424 | MR 463990 | Zbl 0369.47038

[37] Rabinowitz (P.H.) .- Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics 65 American Mathematical Society, Providence, R.I. (1986) | MR 845785 | Zbl 0609.58002

[38] Riddell (R.C.) . - Eigenvalue problems for nonlinear elliptic variational inequali ties on a cone, J. Funct. Anal. 26 (1977) pp. 333-355 | MR 460882 | Zbl 0369.47039

[39] Riddell (R.C.) - Eigenvalue problems for nonlinear elliptic variational inequalities, Nonlinear Anal. 3 (1979) pp. 1-33 | MR 520467 | Zbl 0416.49009

[40] Spanier (E.H.) .- Algebraic topology, McGraw - Hill Book Co., New-York - Toronto, Ont. London (1966) | MR 210112 | Zbl 0145.43303

[41] Szulkin (A.) .- On a class of variational inequalities involving gradient operators, J. Math. Anal. Appl. 100 (1984) pp. 486-499 | MR 743337 | Zbl 0551.49008

[42] Szulkin (A.) . - On the solvability of a class ofsemilinear variational inequalities, Rend. Mat. (7) 4 (1984) pp. 121-137 | MR 807126 | Zbl 0608.35003

[43] Szulkin (A.) .- Positive solutions of variational inequalities : a degree-theoretic approach, J. Differential Equations 57 (1985) pp. 90-111 | MR 788424 | Zbl 0535.35029