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Winter Braids Lecture Notes
Vol. 1 (2014) 1-19
Course no I

The Rasmussen invariant and the Milnor conjecture

BENJAMIN AUDOUX

Abstract

These notes were written for a series of lectures on the Rasmussen invariant and the
Milnor conjecture, given at Winter Braids IV in February 2014.

Introduction

A torus knot is a knot in R3 which can be drawn without crossings on the surface of a trivially
embedded solid torus. Up to mirror image, non trivial torus knots are classified by pairs {p, q}
of coprime non negative integers. By convention, the knot Tp,q corresponds to the line with
slope p

q on the torus seen as R2 modulo the action of the integer lattice. In other words, Tp,q
winds p times around a circle which bounds a disc inside the solid torus and q times around
a circle which bounds a disc outside the solid torus. As shown in Figure 1, Tp,q can also be
described as the braid closure of q strands twisted p times. Torus knots were intensively
studied since they arise naturally in algebraic geometry as the intersection of a complex
plane curve with the boundary of a sphere centered at some isolated singularity.

∼=
gluing edges
−−−−−−−−−→

T3,4 on the torus T3,4 as a braid closure

Figure 1: Torus knots descriptions

In [17], John Milnor conjectured that the unknotting number — that is the minimum number
of times a knot has to cross itself to unknot — of Tp,q is np,q :=

(p−1)(q−1)
2 . As noted in

the introduction of [28], np,q crossing changes are sufficient to transform the closed braid
diagram of Tp,q into a decreasing, and hence trivial, diagram.1 On the other hand, it is known
that the slice genus — that is the minimal genus of a surface in B4 which bounds the knot
seen as in R3 ⊂ S3 = ∂B4 — is a lower bound for the unknotting number [18, Th. 10.2].
Indeed, as shown in Figure 2, a crossing change can be realized in B4 with two saddles and
two Reidemeister I moves. After capping off the final unknot, an unknotting sequence of

1see [4] for another argument based on the topology of some associated complex singularity
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−→ saddle−−−−→ Reid. I−−−−→ Reid. I−−−−→ saddle−−−−→ −→

Figure 2: 4–dimensional realization of a crossing change

length  produces hence a surface in B4 with Euler characteristic 1 − 2, that is genus ,
which bounds the knot. To prove the Milnor conjecture, it is hence sufficient to prove that the
slice genus of Tp,q is np,q. The first proof of that was given by Peter Kronheimer and Tomasz
Mrowka in [13], but it relied on some involved Gauge theory.

Jacob Rasmussen gave in [24] an alternative combinatorial proof. It uses Khovanov homol-
ogy, a graded link invariant of homological nature which categorifies the Jones polynomial.
Unlike some other known knot invariant categorifications, such as knot Floer homology, its
construction is combinatorial. Rasmussen’s proof relies more exactly on a variation due to
Eun Soo Lee which is not graded but filtred. For knots, this variation is always 2–dimensional
and located in homological degree 0. Moreover, Lee gave an explicit description of the gen-
erators. At first sight, this may look a little bit disapointing for an invariant, but J. Rasmussen
showed that looking at the filtration on this homology leads to a numerical knot invariant
which enables a control of the slice genus. Indeed, for any (decomposition of) cobordism
between two knots, Rasmussen defined an isomorphism between the Lee homologies of the
knots whose behavior with regard to the filtration depends only on the genus of the cobor-
dism.

These notes have been written on the occasion of a mini-course given by the author at
WinterBraids IV, a winterschool organized in Dijon in February 2014. They aim at giving the
most elementary proof of the Milnor conjecture. However, some digressions are made on the
way, so it can be read as a gentle introduction to Khovanov homology theory. For instance, we
shall address Khovanov’s original graded construction, whereas only the filtred Lee version
is actually needed to prove the Milnor conjecture.

The notes are organized in three parts, one for each lecture.
The first lecture recalls some standard material of homological algebra. It emphasizes the
algebraic definition, without referring to their topological origins. No proof is given there but
most of them are elementary. However, the interested reader may refer, for instance, to [31]
for further details. It ends with a definition and some examples of categorification.
The second lecture deals with Khovanov homology. Besides the construction, the outlines
of its invariance under Reidemeister moves are sketched and the fact that it categorifies
the unnormalized Jones polynomial is proved. The approach adopted there is rather close to
Viro’s reformulation in [29]. Of course, the interested reader can refer to Khovanov seminal
paper [12]. Another fruitful point of view is given in [2]. For a more detailled overview, the
author also recommands Paul Turner’s notes [26] and [27].
The third lecture begins with the modifications needed to define Lee’s variation and with the
explicit description of its generators. On this basis, we address Rasmussen’s invariant. We
omit some details which can be found in [24]. Then, to any cobordism between two knots, we
associate a filtred isomorphism between the Lee homologies of these knots. The proof of the
Milnor conjecture follows then by considering the variation of filtration level. All the material
of this section comes from [15] and [24].

Acknowledgments. The author is grateful to Vincent Florens, Paolo Bellingeri, Jean-Baptiste
Meilhan and Emmanuel Wagner for organizing Winter Braids IV, and to the winterschool audi-
ence as well as to the anonymous referee for their comments and feedbacks on the lectures.
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Course no I— The Rasmussen invariant and the Milnor conjecture

1. First lecture: Categorification

The lectures assume some familiarity of the audience with knot theory. However, in order to
clarify notation, we briefly recall that a link is, up to ambient isotopy, a smooth embedding
in S3 of a finite number of disjoint circles. It can be described as a diagram, that is, up to
Reidemeister moves, a disjoint union of crossings in R2 connected by arcs. A crossing can be
positive or negative, depending on whether the basis of R2 made of the tangent vectors of
the highest and lowest strands, in this order, at a the double points is positive or negative.
We will frequently represent only pieces of diagrams; it should be understood then that they
stand for a whole diagram with a non represented part which is identical for all diagrams
involved in the considered equality. A knot is a link with a single connected component.

1.1. Polynomial invariants

Definition 1.1. A polynomial invariant of links is a map λ :
�

links
	

−→ A, where A is some
Laurent polynomial ring, which satisfies a skein relation, that is the equality, for some given
, b, c ∈ A:

λ
� �

+ bλ
� �

= cλ
� �

.

Remark 1.2. The map λ is often defined for some combinatorial description of a link, such as
diagrams, and proved to be invariant under the relevant moves, Reidemeister moves in the
case of diagrams. This motivates the terminology “invariant”.

Remark 1.3. If c divides + b, then if follows from cλ
� �

= λ
� �

+ bλ
� �

that

λ(L t U) =
+ b

c
λ(L),

where U is the unknot. Moreover, if  and b are furthermore invertible, then the skein relation
and the value on the unknot determine the whole invariant λ since they give an algorithmical
computation based on an unknotting process. For instance:

λ
� �

=
c


λ
� �

−
b


λ
� �

=
c


λ(U)−

(+ b)b

c
λ(U) =

c2 − b− b2

c
λ(U).

Examples 1.4.

1. Δ
� �

− Δ
� �

= (t
1
2 − t−

1
2 )Δ

� �

and Δ(U) = 1 defines the Alexander polynomial

Δ(L) ∈ Z[t±
1
2 ];

2. t−1V
� �

− tV
� �

= (t
1
2 − t−

1
2 )V

� �

and V(U) = 1 defines the normalized Jones

polynomial V(L) ∈ Z[t±
1
2 ];

3. t−1 eV
� �

− t eV
� �

= (t
1
2 − t−

1
2 ) eV

� �

and eV(U) = −t
1
2 − t−

1
2 defines the unnormal-

ized Jones polynomial eV(L) ∈ Z[t±
1
2 ]. Note that eV(L) = (−t

1
2 − t−

1
2 )V(L);

4. ℓ−1P
� �

− ℓP
� �

= mP
� �

and P(U) = 1 defines the HOMFLY–PT polynomial

P(L) ∈ Z[ℓ±1,m±1]. Note that evaluating P(L) at ℓ = 1 and m = t
1
2 − t−

1
2 gives Δ(L) and

evaluating it at ℓ = t and m = t
1
2 − t−

1
2 gives V(L).
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1.2. Some homological algebra

1.2.1. Chain complexes & their homologies

Definition 1.5. A (ascending) chain complex C is a sequence (C)∈Z of Q–vector spaces
together with linear boundary maps (∂ : C → C+1)∈Z s.t. ∂ ◦ ∂−1 = 0, that is Im(∂−1) ⊂
Ker(∂), for all  ∈ Z.
The homology H∗(C) of C is defined as the sequence

�

H(C)
�

∈Z :=
�

Ker(∂)
�

Im(∂−1)
�

∈Z.
For any  ∈ Ker(∂), we denote by [] its image in H∗(C).

Definition 1.6. A decreasing chain complex D is a sequence (D)∈Z of Q–vector spaces
together with linear boundary maps (∂ : D → D−1)∈Z s.t. ∂−1 ◦ ∂ = 0, that is Im(∂) ⊂
Ker(∂−1), for all  ∈ Z.
To any chain complex C, one can associate a dual decreasing chain complex C∨ := (C∨ )∈Z
defined by C∨ := Hom(C,Q) and ∂∨ (ƒ ) := ƒ ◦ ∂−1.

The cohomology H∗(C) of C is defined as the sequence
�

H(C)
�

∈Z :=
�

Ker(∂∨ )
�

Im(∂∨+1)
�

∈Z
.

Remark 1.7. In the litterature, decreasing chain complexes are often called chain complexes,
and ascending ones cochain complexes. This is inherited from the seminal example of chain
complexes coming from cellular decompositions of topological spaces, which are naturally
descending whereas their duals are ascending. See also Remark 1.31. But since Khovanov’s
construction is historically ascending without being cofunctorial, we adopt the present non
standard terminology.

Since we are working over Q which is a field, the following result holds:

Proposition 1.8. For every chain complex C with finite total rank, H∗(C∨) ∼= H∗(C).

Remark 1.9. This proposition is not a Poincaré duality-like result but a general fact coming
from

• the fact that, over a field, homology groups are determined by their ranks;

• the fact that, if (e1, · · · , en ) is a basis of Im(∂−1) completed into a basis of C, then
e∨j ∈ Ker(∂∨−1) iff e /∈ Im(∂−1), where e∨j ∈ C

∨
 is the dual map of ej;

• the rank–nullity theorem.

Notation 1.10. A chain complex C can be represented as · · ·
∂−1

// C
∂ // C+1

∂+1
// · · · .

Remark 1.11. For any chain complex C, H∗(C) and H∗(C) can be seen as chain complexes
with trivial boundary maps.

Definition 1.12. An exact sequence is a chain complex with homology equal to zero, i.e.
with Im(∂−1) = Ker(∂) for all  ∈ Z. We also say that the chain complex is acyclic.

Example 1.13. 0 // C0
ƒ

// C1 // 0 is exact ⇔ ƒ : C0 → C1 is an isomorphism.

Definition 1.14. For a chain complex C whose total rank
∑

∈Z
rk(C) is finite, the Euler charac-

teristic is defined as χ(C) :=
∑

∈Z
(−1)rk(C).

The following is a direct consequence of the rank–nullity theorem:

Proposition 1.15. For any chain complex C, χ
�

H∗(C)
�

= χ(C).

Notation 1.16. For any chain complex C and any integer k ∈ Z, we define C[k] :=
�

∂[k] :
C[k] → C[k]+1

�

∈Z by C[k] := C−k and ∂[k] := (−1)k∂−k, that is the chain complex ob-
tained by shifting downward the homological grading of C by k and, when k is even, adding a
minus sign to the boundary map. The same notation is used for decreasing chain complexes.
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Course no I— The Rasmussen invariant and the Milnor conjecture

Lemma 1.17. For any chain complex C and any integer k ∈ Z, χ
�

C[k]
�

= (−1)kχ(C).

Notation 1.18. For any chain complex C, we define C† :=
�

∂†  : C†  → C† −1
�

∈Z by C†  := C−
and ∂†  := ∂−, that is the decreasing chain complex obtained by reversing the homological
grading of C.

Remark 1.19. For any chain complex C and any integer k ∈ Z, C†[k] = C[−k]† is the de-
creasing chain complex obtained by reversing the homological grading of C around k, that is
C†[k] = Ck−.

1.2.2. Gradings, filtrations & their spectral sequences

Definition 1.20.
An internal grading on a chain complex C is a decomposition C = ⊕

j∈Z
Cj for each  ∈ Z.

Moreover,
• C is said graded iff, for every , j ∈ Z, ∂ : C

j
 → Cj+1 ;

• C is said (ascendingly) filtred iff, for every , j ∈ Z, ∂ : C
j
 → ⊕

j′≥j
Cj
′

+1.

For each j ∈ Z, we denote by Cj = ⊕∈ZC
j
 the subspace spanned by elements with internal

grading j. Note that if C is graded, the boundary maps endows Cj with a chain complex
structure C j; then C splits into ⊕j∈ZC j.

Definition 1.21. If C is a graded chain complex with finite total rank, then the graded Euler
characteristic is defined as χgr(C) :=

∑

j∈Z
χ(C j)qj =

∑

,j∈Z
(−1)rk(Cj)q

j ∈ Z[q±1].

Notation 1.22. For any chain complex C given with an internal grading and for any integer
k ∈ Z, we set C{k} := ⊕

j∈Z
C{k}j the internal grading on C defined by C{k}j := Cj−k, that is by

shifting downward the internal grading of C by k.

Lemma 1.23. For any graded chain complex C with finite total rank and any integer k ∈ Z,
χgr
�

C{k}
�

= qkχ(C).

Notation 1.24. For any graded chain complex C, we define C† := ⊕j∈ZC
j
† by C j† := C−j, that

is the graded chain complex obtained by reversing the internal grading of C. By C‡, we de-
note (C†)† the decreasing chain complex obtained by reversing both the homological and the
internal gradings.

Remark 1.25. For any chain complex C and any integer k ∈ Z, C‡[k]{k} = C[−k]{−k}‡ is
the decreasing chain complex obtained by reversing both the homological and the internal
grading of C around k, that is C‡[k]{k}

j
 = Ck−jk− .

If C is only filtred, then we have to deal with sums of elements in different gradings. We
can however extend the grading to such sums.

Definition 1.26. For an element  of a filtred chain complex, we define j() := mx{j ∈
Z| ∈ ⊕j′≥jCj

′
} if  6= 0 and j(0) = +∞.

The following won’t be used in our context, but for the sake of completeness, it is worth-
while mentioning it. See [16] or [7] for the definition of a spectral sequence.

Proposition 1.27. If C is a filtred chain complex, then C := (∂ : C → C+1)∈Z defined, for
each , j ∈ Z, by

∂ : C
j


∂−−→ ⊕
j′≥j

Cj
′

+1
π−→ Cj+1,

that is by composing ∂|Cj with the projection to Cj, is a graded chain complex.

Theorem 1.28. If C is a filtred chain complex with finite total rank, then there is a spectral
sequence which starts at H∗(C) and converges to H∗(C).
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1.2.3. Chain maps & their cones

Definition 1.29. A chain map ƒ : C1 → C2 between two chain complexes C1 := (∂1 : C
1
 →

C1+1)∈Z and C2 := (∂2 : C
2
 → C2+1)∈Z is a sequence of maps (ƒ : C1 → C2 )∈Z s.t. ƒ+1 ◦ ∂1 =

∂2 ◦ ƒ for every  ∈ Z, i.e.

C1
∂1 //

ƒ
��

�

C1+1

ƒ+1
��

C2 ∂2

// C2+1

.

It is graded if C1 and C2 are graded and ƒ : C
1,j
 → C2,j for every , j ∈ Z.

It is filtred if C1 and C2 are filtred and j
�

ƒ ()
�

≥ j() for every  ∈ C1.

Proposition 1.30. A chain map ƒ : C1 → C2 induces a well defined chain map ƒ∗ : H∗(C1)→
H∗(C2) at the level of homologies.

Remark 1.31. Chain complexes and chain maps form a category, and the operation which
takes a chain complex to its homology and a chain map to its induced map is a functor
to the category of graded abelian groups. A chain map also induces a map at the level of
cohomologies, but the operation is then a cofunctor.

Definition 1.32. If ƒ : C1 → C2 is a (graded, filtred) chain map, then Cone(ƒ ) is the (graded,
filtred) chain complex defined as C1 ⊕ C2[1] with boundary maps

∂ :

C1
∂1 //

ƒ

))RRRRRRRRRRRRRR
⊕

C1+1
⊕

C2−1 −∂2−1

// C2

for every  ∈ Z.

Lemma 1.33. For any chain map ƒ : C1 → C2, χ(gr)
�

Cone(ƒ )
�

= χ(gr)(C1)− χ(gr)(C2).

Proposition 1.34. For any chain map ƒ : C1 → C2, there is an exact sequence

· · · // H−1(C2)
ι∗ // H

�

Cone(ƒ )
� π∗ // H(C1)

ƒ∗
// H(C2) // · · ·

where ι∗, π∗ and ƒ∗ are the maps induced in homology by the chain injection ι : C2 → Cone(ƒ ),
the chain surjection π : Cone(ƒ )→ C1 and the chain map ƒ .

Corollary 1.35. The map ƒ∗ : H∗(C1) → H∗(C2) is an isomorphism if and only if Cone(ƒ ) is
acyclic.

Example 1.36. If ƒ is already an isomorphism at the level of chain complexes, then it induces
an isomorphism at the level of homologies and Cone(ƒ ) is acyclic.

1.3. Categorification

Categorifying a polynomial invariant λ means associating a graded chain complex C(D) to
any link diagram D (or any combinatorial representation of a link) s.t.

1. each H
�

C j(D)
�

is invariant under Reidemeister moves;

2. χgr
�

C(D)
�

= λ, at least up to some change of variable.
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Examples 1.37.

• Heegaard–Floer homology ÓHF categorifies the Alexander polynomial Δ [22, 23];

• Khovanov homology Kh categorifies the unnormalized Jones polynomial eV [12].

Categorifying is worthwhile since

1. It detects more knots:

• ÓHF(K11n34) 6=ÓHF(K11n42) while Δ(K11n34) = Δ(K11n42) [1];

• Kh(10132) 6= Kh(51) while V(10132) = V(51) [2].

However, there are some distincts knots with same Heegaard–Floer or Khovanov [30]
homology.

2. It is stronger at detecting geometrical properties:

• Δ gives a lower bound for the genus of knots;

−→ ÓHF detects the genus of knots [21]

• Δ gives a necessary condition for a knot to be fibered;

−→ ÓHF gives a necessary and sufficient condition [9, 19, 20]

• ÓHF [21] and Kh [14] detects the unknot, while Δ doesn’t and it is still an open
question to know whether the normalized Jones polynomial V does.

3. It is (expectedly) functorial:

links can be seen as the objects of the Cob category whose morphisms are ori-
ented surfaces bordered by the source and the target links; the Comp category
has chain complexes as objects and chain maps as morphisms. One can hope to
associate chain maps to surfaces such that the whole picture is functorial:

Obj(Cob) 3 L1

Mor(Cob)3

��

// C(L1)

ƒ∈Mor(Comp)

��

∈ Obj(Comp)

//

L2 // C(L2)

2. Second lecture: Khovanov homology

2.1. Definitions

Let D be a link diagram, we want to associate a graded chain complex

bC(D) :=
�

∂D : C
j
(D)→ Cj+1(D)

�

∈Z.
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//

ϕ
1

0

0

1
//

σ

X

1

X

D Dφ Dσ
φ

Figure 2.1: Example of enhanced resolution

2.1.1. Generators

A crossing can be considered as a singularity, and there are two ways to smooth it:

: 0–smoothing44jjjjjjjjjjjj

**TTTTTTTTTTTT

: 1–smoothing

.

A resolution of D is a map φ :
�

crossings of D
	

→ {0,1}. It specifies a smoothing for each
crossing, so it corresponds to a diagram Dφ where all crossings have been resolved. See
Figure 2.1 for an example. It is hence a disjoint union of closed curves, called circles. Note that
these resolved diagrams are not considered up to isotopy, in particular φ1 6= φ2 ⇒ Dφ1 6= Dφ2 .

Example 2.1. For any oriented diagram, the Seifert resolution is the unique resolution which
respects the orientation. This means that it sends both crossings and to . In the
case of knots, both choices of orientation lead to the same Seifert resolution so it is even
defined for unoriented diagrams.

Now, a resolution φ of D is said enhanced if it is given a labelling map σ : {circles of Dφ}→
{1, X}. Such an enhanced resolution of D will be denoted by Dσ

φ. It shall be convenient to see

the set {1, X} as a subset of Q[X]
�

X2.

Definition 2.2. For every , j ∈ Z, Cj(D) is spanned over Q by
�

Dσ
φ

�

� #φ−1(1) = ,#σ−1(1) −
#σ−1(X) = j− 

	

.

Note that, as a Q–vector space, bC(D) is spanned by all enhanced resolutions of D.

Notation 2.3. The  and the j–gradings are respectively called the homological and the
Khovanov gradings. In the forthcoming chain complex, they will respectively play the role of
the homological and internal gradings.

2.1.2. Boundary map

Let Dσ
φ be a generator of bC(D) and c a crossing of D such that φ(c) = 0. Then Dφ and Dφ+δc ,

where δc is the Kronecker map which is 1 for c and 0 for anything else, differ from the
merging of two circles or the splitting of one circle. So Dφ+δc inherits an enhancing σc from σ
everywhere except on the (one or two) circles involved. On these circles, we determine σc as
shown in Figure 2.2, using the multiplication in Q[X]

�

X2. In these pictures, we assume multi-
linearity of the enhancing. In particular, a 0–label just means no contribution. As a matter of
fact, in the second rule, the case α = 1 leads to two summands, with exchanged labels 1 and

I–8
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α β −→ αβ

α

−→

α

X

+

αX

1

Dσ
φ Dσc

φ+δc

Figure 2.2: Enhancing rules

c1

c2

Dσφ

yysssssssssssssss

0

0

X1 ∂D // +
0

X

1

+ X

0

1

∂D // − X

1

1

X + X

1

1

X = 0

Figure 2.3: Illustration of the boundary map

X, whereas the case α = X leads to a single summand, with two labels X. See also Figure 3.1.
We set ∂c(Dσ

φ) := D
σc
φ+δc .

To continue, we need a global order c1 < c2 < · · · < cn on the crossings of D. For every
E ⊂ {c1, · · · , cn} and every crossing c, we denote by o(c, E) := #{c′ ∈ E|c′ < c} the number
of crossing in E which are lower than c.

Definition 2.4. For any generator Dσ
φ ∈ bC(D), ∂D(D

σ
φ) :=

∑

c∈φ−1(0)

(−1)o(c,φ
−1(1))∂c(Dσ

φ).

Proposition 2.5. For every , j ∈ Z,

• ∂D : C
j
(D)→ Cj+1(D);

• ∂2D : C
j
(D)→ Cj+2(D) is the zero map.

Proof. The first assertion states that the boundary map ∂D increases the homological grading
and preserves the Khovanov grading. It is quite immediate by definition of the maps ∂c.

The second assertion states that ∂D is a boundary map and hence that bC(D) is a chain
complex. It is a consequence of the equality ∂c1 ◦ ∂c2 = ∂c2 ◦ ∂c1 , where c1 and c2 are two
distinct crossings, which can be checked by hand through a case by case process on the
generator it is evaluated on. Each case depends on how c1 and c2 connect circles and the
labels of these circles. Then, one can notice that ∂c1 ◦ ∂c2 and ∂c2 ◦ ∂c1 arise with opposite
signs in ∂2D. See Figure 2.3 for an example. �

The mirror image of a diagram, that is the diagram obtained by reversing the sign of each
crossing, is a natural operation on diagrams. Khovanov homology has a controlled behavior
with respect to it.
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D1 :
bC(D1)

// Q

* +

D2 :
bC(D2)

// Q

*

0

0

+

⊕

Q

*

0

1

+

⊕

Q

*

0

1

+

⊕

Q

*

1

1

+

^^

eƒII

��

Figure 2.4: Sketch of invariance under Reidemeister move II

Proposition 2.6. For every diagram D, bC(D!) ∼= bC(D)∨‡ [n]{n} where D! is the mirror image
of D and n is the number of crossings in D.

Proof. Any resolution D!φ of D! can be seen as the resolution D1−φ of D. We then define the
one-to-one map φm : bC(D!) → bC(D)∨‡ [n]{n} by φm(D!σφ) := D−σ1−φ where, compared to σ, −σ
switches the labels 1 and X. It can be checked by hand that both homological and Khovanov
gradings are preserved and that, for every crossing c of D and every generator Dσ

φ of bC(D!),
φm ◦ ∂c(Dσ

φ) = ∂c ◦ φm(D
σ
φ). It follows that φm is a graded chain isomorphism. �

2.2. Invariance

For each Reidemeister move, we define an explicit chain map between the chain complexes
associated to the diagrams on each side of the move and prove that it induces an isomor-
phism at the level of homologies. We shall consider the case of Reidemeister move II only,
the others being similar. So let’s consider two diagrams D1 and D2 which differ from a Reide-
meister move II only. They are represented in Figure 2.4, together with their associated chain
complexes — omitting the boundary map — and an obvious one-to-one correspondance eƒII
between generators of bC(D1) and a subset of the generators of bC(D2).

We fix an order c1 < · · · < cn on the crossings of D2 such that c1 and c2 are respectively
the bottom and top crossings represented in Figure 2.4. It induces an order c3 < · · · < cn on
the crossings of D1.

Problem 1: The map eƒII is not graded. Indeed, if Dσ
φ is a generator of bC(D1) with ho-

mological degree  and Khovanov degree j, then eƒII(Dσ
φ) is a generator of bC(D1) which

has one 1–smoothed crossing more than Dσ
φ. It follows that it has homological degree

+ 1 and Khovanov degree j+ 1. For eƒII to be graded, its source should be shifted into
bC(D1)[1]{1}.

Problem 2: The map eƒII is not a chain map since the partial boundary map ∂cn+1 may
produce terms in ∂D2 ◦ eƒII which are not in eƒII ◦ ∂D1 . This can be fixed by deforming eƒII
into ƒII defined by ƒII() = eƒII() +M

�

∂c1 ()
�

where M is the map which switches back
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to 0 the smoothing of c2 and label by 1 the circle which appears then. Graphically,

ƒII







βα






= βα + 1

δ

γ

,

where γ and δ are labels in Q[X]
�

X2 which depend on α, β and how the two pieces of
circle are connected outside the represented part.

Proposition 2.7. Cone(ƒII) is acyclic.

Proof. The cone of ƒII is combinatorially equal to the cone of the chain map

g :























































βα 7→ ƒII

 

βα

!

= βα + something

β

α

7→ −∂c1

 

β

α

!

− ∂c2

 

β

α

!

= − X

β

α

+ something

1

β

α

7→ ∂c2

 

1

β

α

!

=
β

α

+ something

where the boundary map on each side is the signed sum over the 0–smoothed crossings
among c3, · · · , cn, obtained by just ignoring c1 and c2, and with an extra minus sign for the
first two lines (but not for the third). Since g is easily seen to be an isomorphism, its cone is
acyclic and so is the one of ƒII. �

Corollary 2.8. H∗

 

bC
� �

!

∼= H∗

 

bC
� �

[1]{1}

!

.

Similarly, one can define maps ƒI+ , ƒI− and ƒIII whose cones are acyclic and prove

Corollary 2.9.

• H∗

 

bC
� �

!

∼= H∗

 

bC
� �

{−1}

!

;

• H∗

 

bC
� �

!

∼= H∗

 

bC
� �

[1]{2}

!

;

• H∗

 

bC
� �

!

∼= H∗

 

bC
� �

!

.

Definition 2.10. For every diagram D, we define

C(D) := bC(D)[−# ]{# − 2.# },

where # and # denote, respectively, the number of positive and negative crossings in
D.

Contrary to bC(D), the gradings on C(D) do depend on the choice of an orientation when D
has more than one connected component.

Theorem 2.11. The isomorphism class of H∗
�

C(D)
�

, as a bigraded abelian group, is invariant
under Reidemeister moves and under the choice of order on the crossings.

Proof. The first assertion is a corollary of Corollaries 2.8 and 2.9. To prove the second, it is
sufficient to deal with the swap of two adjacent crossings c1 and c2. In this case, the map
which sends Dσ

φ to (−1)φ(c1)φ(c2)Dσ
φ is a grading-preserving isomorphism which is a chain

map. �
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Definition 2.12. For any link L, we define Kh(L), the Khovanov homology of L, as the graded
homology of C(D), with D any diagram of L.

Proposition 2.13. For every link L, Kh(L!) ∼= Kh(L)‡ where L! is the mirror image of L.

Proof. Let D be a diagram for L. We denote by, respectively, n+ and n− the number of positive
and negative crossings in D and by n := n+ + n− the total number of crossings. The diagram
D! has hence n− positive and n+ negative crossings. Using Proposition 2.6 and the definition
of C(D) and C(D!), we obtain

C(D!) = bC(D!)[−n+]{n− − 2n+}
∼= bC(D)∨‡ [−n+ + n]{n− − 2n+ + n}

= bC(D)∨‡ [−n+ + n+ + n−]{n− − 2n+ + n+ + n−}

= bC(D)∨‡ [n−]{2n− − n+}

= bC(D)∨[−n−]{n+ − 2n−}‡ = C(D)∨‡ .

The result follows then from Proposition 1.8. �

2.3. Categorification of the Jones polynomial

Let D be a diagram given with an order on its crossings, c its lowest crossing and Dσ
φ any

generator of bC(D). We denote by D0 and D1 the diagrams obtained by, respectively, 0 and
1–smoothing c in D. If φ(c) = 1, then Dσ

φ can be seen as a generator of bC(D1)[1]{1} and

since c is not anymore considered in ∂D but when counting o( . , φ−1(1)), we have ∂D(Dσ
φ) =

−∂D1 (Dσ
φ). On the opposite, if φ(c) = 0, then Dσ

φ can be seen as a generator of bC(D0) and
∂D(Dσ

φ) = ∂D0 (D
σ
φ) + ∂c(D

σ
φ). As a consequence:

Proposition 2.14. bC(D) ∼= Cone
�

∂c : bC(D0)→ bC(D1){1}
�

.

Proof. It is left as an exercise for the reader to check that all degrees and signs coincide. �

Corollary 2.15. χgr

�

bC
� �

�

= χgr

�

bC
� �

�

− qχgr

�

bC
� �

�

.

Corollary 2.16. q−2χgr

�

C
� �

�

− q2χgr

�

C
� �

�

= (q−1 − q)χgr

�

C
� �

�

.

Proof. Let , and be three oriented diagrams which are identical except inside a small
disk where they each correspond to their picture. Let , , and the corresponding
non oriented diagrams. Now we denote by, respectively, m and ℓ the numbers of positive
and negative crossings in . Then has respectively m + 1 and ℓ positive and negative
crossings and has m and ℓ + 1 positive and negative crossings. Applying several times
Corollary 2.15, we obtain:

1. χgr

�

C
� �

�

= (−1)−ℓqm+1−2ℓχgr

�

bC
� �

�

= (−1)−ℓqm+1−2ℓχgr

�

bC
� �

�

+ (−1)−ℓ−1qm+2−2ℓχgr

�

bC
� �

�

= qχgr

�

C
� �

�

+ (−1)−ℓ−1qm+2−2ℓχgr

�

bC
� �

�

2. χgr

�

C
� �

�

= (−1)−ℓ−1qm−2ℓ−2χgr

�

bC
� �

�

= (−1)−ℓ−1qm−2ℓ−2χgr

�

bC
� �

�

+ (−1)−ℓqm−2ℓ−1χgr

�

bC
� �

�

= (−1)−ℓ−1qm−2ℓ−2χgr

�

bC
� �

�

+ q−1χgr

�

C
� �

�

.
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Then, by substracting q−2(1)-q2(2), we obtain

q−2χgr

�

C
� �

�

− q2χgr

�

C
� �

�

= (q−1 − q)χgr

�

C
� �

�

�

Up to the change of variable q = −t
1
2 , the graded Euler characteristic of Khovanov ho-

mology satisfies hence the skein relation of the Jones polynomial. Since it can be directly

computed that χgr
�

C(U)
�

= q+ q−1 = −t
1
2 − t−

1
2 , it follows that:

Theorem 2.17. Kh(L) is a categorification of the unnormalized Jones polynomial of L.

Remark 2.18. In the case of knots, there is a reduced version of Khovanov homology which
categorifies the normalized Jones polynomial. The categorification also holds for links, but
then it depends on the choice of a connected component.

Example 2.19 (Computation for the Khovanov homology of the positive trefoil).
Diagram of the positive trefoil:

c1 c3c2

Generators for C
� �

:











































































D000αβ :=
β

α

D100α :=
α

D010α :=
α

D001α :=
α

D011αβ := β

α

D101αβ := β

α

D110αβ := β

α

D111αβγ :=
γβ

α

Gradings on C
� �

:

j


0 1 2 3

9 D111111

7 D01111 D10111 D11011 D11111X D
111
1X1 D

111
X11

5 D00011 D0011 D0101 D1001 D0111X D011X1 D1011X D101X1 D1101X D110X1 D1111XX D
111
X1X D

111
XX1

3 D0001X D000X1 D001X D010X D100X D011XX D101XX D110XX D111XXX

1 D000XX
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Boundary map on C
� �

:



























































































∂ (D111111) = 0;

∂ (D01111 ) = D
111
1X1 +D

111
X11; ∂ (D10111 ) = −D

111
11X −D

111
1X1; ∂ (D11011 ) = D

111
11X +D

111
X11;

∂ (D00011 ) = D
001
1 +D0101 +D1001 ;

∂ (D0011 ) = D0111X +D
011
X1 +D

101
1X +D

101
X1 ; ∂ (D0101 ) = D1101X +D

110
X1 −D

011
1X −D

011
X1 ;

∂ (D011X1 ) = D
111
XX1; ∂ (D1011X ) = −D

111
1XX; ∂ (D110X1 ) = D

111
X1X; ∂ (D0111X +D

101
1X −D

110
X1 ) = 0;

∂ (D0001X ) = ∂ (D
000
X1 ) = D

001
X +D010X +D100X ;

∂ (D001X ) = D011XX +D
101
XX ; ∂ (D010X ) = D110XX −D

011
XX ;

∂ (D011XX ) = D
111
XXX;

∂ (D000XX ) = 0.

; Kh
� �

:

j


0 1 2 3

9 Q

7
5 Q

3 Q

1 Q

3. Third lecture: Milnor conjecture

3.1. Lee variant and Rasmussen invariant

Actually, the Rasmussen invariant is not extracted from usual Khovanov homology Kh but
a variant Kh′ introduced by E. S. Lee. Basically, this variant is defined by replacing all oc-
curences of Q[X]

�

X2 in the last lecture by Q[X]
�

X2 − 1. Essentially, this modifies the partial
boundary map ∂c into a map ∂′c which satisfies the same enhancing rules presented in Figure
2.2. Differences between ∂c and ∂′c are given in Figure 3.1.

The chain complex is then not anymore graded but filtred since, for any diagram D, the
new boundary map ∂′D satisfies ∂′D : C

j
(D)→ Cj+1(D)⊕ C

j+4
+1. One can moreover note that the

graded part ∂
′
D of ∂′D is exactly ∂D.

Proposition 3.1. For every diagram D, there is a spectral sequence which starts at Kh(D)
and converges to Kh′(D).

Theorem 3.2 (Lee). For every knot K, the homology Kh′(K) is generated by two elements
which are both signed sums of ±Dσ

φSei
over all labelling maps σ on φSei, the Seifert resolution.

Proof. We won’t give a complete proof but sketch the outlines. The result of E. S. Lee is
actually stated for any link and the generators are in one-to-one correspondence with all the
possible orientations for this link. The description is explicit in the sense that a combinatorial
rule is given for determining the sign affected to each Dσ

φSei
. The result is obvious for unlinks

and then the proof proceeds by induction on the number of crossings. Indeed, for any link
diagram D and a crossing c of D, one can compute the dimension of Kh′(D) by chasing in the
long exact sequence associated to Proposition 2.14 and then see each generator of Kh′(D) as
the image or the preimage under an explicit map of a generator (which is explicitely known
by the induction hypothesis) of a diagram with one crossing less. �
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1 −→ 1 X + X 1 1 −→ 1 X + X 1

X −→ X X 1 −→ X X + 1 1

1 1 −→ 1 1 1 −→ 1

1 X −→ X 1 X −→ X

X X −→ zero X X −→ 1

∂c ∂′c

Figure 3.1: Differences between ∂c and ∂′c

Corollary 3.3. For every knot K, Kh′(K) is zero but in homological degree 0.

Proof. In the Seifert resolution of knot diagram D, every positive crossing is 0–smoothed and
every negative crossing 1–smoothed. It follows that the generators described above are in
degree # in bC′(D), and hence of degree 0 in C′(D). �

Definition 3.4. For a knot K, we define

• smx(K) :=mx
�

j(α)
�

�[α] ∈ Kh′(K) \ {0}
	

;

• smin(K) :=min
�

j(α)
�

�[α] ∈ Kh′(K) \ {0}
	

;

that is, respectively, the maximum and the minimum degree (induced by the filtration, see
Definition 1.26) for a representative of a non trivial class in Kh′(K). It also corresponds to the
degrees for which a class in Kh(K) survives the spectral sequence associated to the filtration.

Theorem 3.5 (Rasmussen). For any knot K, smx(K) = smin(K) + 2.

Even though elementary, the proof needs a few intermediate results. Rather than copying
it in extenso, we refer the reader to the original proof in [24, Sec. 3.1].

Definition 3.6 (Rasmussen’s invariant). For every knot K, we define s(K) = smx(K)+smin(K)
2 .

Example 3.7. For the unknot, we have C(U) = Q
�

1
�

⊕Q
�

X
�

and ∂U = ∂′U ≡ 0, so s(U) = 0.

Proposition 3.8. For any knots K and K ′,

• s(K!) = −s(K);

• s(K#K ′) = s(K) + s(K ′) where # denotes the connected sum.

Only the first statement is necessary to prove the Milnor conjecture and it is a consequence
of Proposition 2.13.
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3.2. Cobordisms

Definition 3.9. A cobordism between two links L1 and L2, possibly empty, is an embedded
surface S ⊂ R3 × [0,1] such that ∂S = L1 t L2 with L1 seen in R3 × {0} and L2 in R3 × {1}.

Definition 3.10. The slice genus g∗(K) of a knot K is the minimum genus of a cobordism
between K and ∅, that is the minimum genus of a surface embedded in B4 which bounds K
seen in R3 ⊂ S3 = ∂B4.

This can be compared with the genus g(K) of K, that is the minimum genus of a surface
embedded in R3 which bounds K. Obviously, g∗(K) ≤ g(K).

Theorem 3.11. [25]+[11, Lemma 2.5] Any cobordism S can be continuously deformed so
that each slice S ∩

�

R3 × {t}
�

, with t ∈ [0,1], projects to a classical link diagram, except for
a finite number of times when the slice either

1. projects to a diagram with

(a) an auto-tangency point: ;

(b) a tangency point: ;

(c) a triple point: ;

2. or contains

(a) an isolated point: ;

(b) two transverse strands: .

Corollary 3.12. [6, Thm. 5.2] Up to isotopy, every cobordism can be decomposed into a
finite product of the following elementary cobordisms:

1. Reidemeister moves I, II or III performed through a time parameter;

2. Morse moves:

(a) death of a circle: ;

(b) birth of a circle: ;

(c) saddle: .

One can note that, since they are isotopic to the product of the considered link with [0,1],
elementary cobordisms corresponding to Reidemeister moves have Euler characteristic equal
to 0. For their part, death and birth of circles have Euler characteristic equal to 1 and saddles
equal to −1.
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3.3. (almost) Functoriality

To a cobordism S between two link diagrams D1 and D2, we want to associate a chain map
ƒS : C′(D1)→ C′(D2). By Corollary 3.12, it is sufficient to deal with elementary cobordisms:

1. there are already maps ƒI+ , ƒI− , ƒII and ƒIII defined for Reidemeister moves;

2. (a) we define a death map ƒdeath by ƒdeath(Dσ
φ t 1 ) := 0 and ƒdeath(Dσ

φ t X ) := Dσ
φ;

(b) we define a birth map ƒbirth by ƒbirth(Dσ
φ) := D

σ
φ t 1 ;

(c) we define a saddle map ƒsaddle by adding an extra crossing c between the merging
strands and setting ƒsaddle := ∂c

We already know that ƒI+ , ƒI− , ƒII and ƒIII preserve both homological and Khovanov gradings.
Since death, birth and saddle cobordisms preserve the number of positive and negative
crossings, the associated maps obviously preserve the homological grading, and it is di-
rectly checked that ƒdeath and ƒbirth rise the Khovanov grading by one, while ƒsaddle reduces
the associated filtration2 by 1.

By composition, we obtain hence a filtred3 map ƒS : C′(D1) → C′(D2)
�

− χ(S)
	

where S
denotes a given decomposition of S and χ(S) is the Euler characteristic of S.

In [10], M. Jacobson proved that, for two decompositions S and S′ of a same cobordism, the
induced graded maps ƒ∗S , ƒ

∗
S′ : Kh(D1)→ Kh(D2)

�

−χ(S)
	

are either equal or opposite. A similar
result is most likely to hold in the filtred Lee case. Moreover, the sign issue can be fixed at the
cost of a more involved construction; see [8, 5, 3]. But anyway, this (up to sign) invariance of
the induced maps is not necessary to prove the Milnor conjecture. On the contrary, we shall
need the following fact which is proved by using the explicit description of the generators on
both sides together with the explicit description of the elementary cobordism maps:

Proposition 3.13 (Rasmussen). If S is a decomposition for a connected cobordism S be-
tween two knots K1 and K2, then ƒ∗S : Kh′(K1)→ Kh′(K2)

�

− χ(S)
	

is an isomorphism.

Corollary 3.14. For every knot K, |s(K)| ≤ 2g∗(K).

Proof. Let S be a cobordism from K to ∅ with minimal genus g∗(K). By removing a disk from
it, we obtain a cobordism S′ from K to the unknot with Euler characteristic 2 − 2g∗(K) −
2 = −2g∗(K). Considering a decomposition S′ of S′, we obtain an isomorphism ƒ∗S′ between
Kh′(K) and Kh′(U)

�

2g∗(K)
	

. Now, we consider D a diagram for K and α ∈ Ker(∂′D) ⊂ C′(D) such
that [α] 6= 0 and j(α) = smx(K) is maximal. The map ƒ∗S′ is filtred so j

�

ƒS′ (α)
�

≥ j(α) = s(K)+1.
On the other hand, ƒ∗S′ is an isomorphism, so

�

ƒS′ (α)
�

= ƒ∗S′
�

[α]
�

∈ Kh′(U)
�

2g∗(K)
	

is non
trivial and hence j

�

ƒS′ (α)
�

≤ s(U) + 1+ 2g∗(K) = 1+ 2g∗(K). It follows that s(K) ≤ 2g∗(K).
Applying the same reasoning to K! leads to s(K!) ≤ 2g∗(K!), which becomes s(K) ≥

−2g∗(K) by Proposition 3.8. Finally, −2g∗(K) ≤ s(K) ≤ 2g∗(K), that is |s(K)| ≤ 2g∗(K). �

This has the following consequence. It won’t be used for our purpose but it is an important
feature about the Rasmussen invariant.

Corollary 3.15. The Rasmussen invariant is a concordance invariant, that is if there is a
genus zero cobordism between two knots K1 and K2, then s(K1) = s(K2).

Proof. A genus zero cobordism between K1 and K2 can be bended and punched into a
genus zero cobordism between K1#(K2!) and the unknot. It follows that |s(K1) − s(K2)| =
|s
�

K1#(K2!)
�

| ≤ 2g∗
�

K1#(K2!)
�

= 0. �

2in the original graded Khovanov construction, “filtration” should be replaced by “grading”
3in the original graded Khovanov construction, “filtred” should be replaced by “graded”
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«
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→ →

diagram Seifert resolution (superposed) Seifert disks

Figure 3.2: Computing the genus of T3,4

3.4. Milnor conjecture

The Rasmussen invariant is difficult to compute for a generic diagram D. Indeed, although
Theorem 3.2 gives an explicit description of two independant generators α+ and α−, generic
elements of Ker(∂′D) are of the form k+α+ + k−α− + ∂′D(β) where k+, k− ∈ Q and β is any
generator in homological degree −1; the last term introduces an uncertainty which makes, in
general, Khovanov degree hard to compute. However, under certain conditions, this difficulty
can be avoided.

Proposition 3.16. If a knot K has a diagram with no negative crossing, then s(K) = 2g∗(K) =
2g(K).

Proof. Let us consider D a diagram for K with positive crossings only. In this case, all genera-
tors in C′(D) have positive homological degrees. It follows that there is no non trivial element
of the form ∂′D(β) in homological degree zero, so that elements which survive in Kh′(K) are of
the form k+α++k−α−. Using the description of ± given in Theorem 3.2, it is easily seen that
smin corresponds to the Khovanov grading of the Seifert resolution enhanced with X–labels
for all circles, that is n − r circles, where n is the number of (positive) crossings in D and r
the number of circles in the Seifert resolution of D. By Corollary 3.14, it follows then that
g∗(K) ≥ 1

2s(K) =
smin(K)+1

2 = 1−r+n
2 .

On the other hand, since a disc has Euler characteristic 1 and a band with two open sides
has Euler characteristic −1, the Seifert algorithm on D — that is considering the Seifert
resolution of D, pasting a disc on each circle and adding a twisted band for each crossing —
provides an oriented surface S bounded by D with Euler characteristic r − n = 1− 2g(S), that
is g(S) = 1−r+n

2 . It follows that g∗(K) ≤ g(K) ≤ g(S) = 1−r+n
2 . �

A corollary of the proof is that, if D is a diagram for a knot K with no negative crossing,
then the genus and the slice genus of K are computed by the Seifert algorithm.

Corollary 3.17 (modified Milnor conjecture). For every coprime integers p, q ∈ N∗, g∗(Tp,q) =
g(Tp,q) =

(p−1)(q−1)
2 .

Proof. The knot Tp,q can be seen as the braid closure D of q strands on which one has
performed p times the operation which takes an extremal strand and pulls it to the other
side. Since the moving strand crosses all the other strands, each operation produces q − 1
positive crossings. The diagram D has hence p(q−1) positive crossings. Moreover, the Seifert
resolution is nothing but the q parallel strands, which close into q circles. The associated
Seifert surface S has hence Euler characteristic q − p(q − 1) = p + q − pq = 1 − 2g(S) and
genus g(S) = pq−p−q+1

2 = (p−1)(q−1)
2 . See Figure 3.2 for illustrations. �
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