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Winter Braids Lecture Notes
Vol. 2 (2015) 1-35
Course no IV

Introduction to twisted Alexander polynomials and related topics

TERUAKI KITANO

Abstract

This article is based on the lectures in the Winter Braids V (Pau, February 2015). We
introduce some studies of twisted Alexander polynomials to non-experts through many
concrete examples. In this article we follow the definition of the twisted Alexander poly-
nomial by Wada, which can be defined for a finitely presented group with an epimorphism
onto a free abelian group. The main tool is FoxÕs free calculus. In the last two sections we
discuss some applications on the fiberedness of a knot and the existence of epimorphisms
between knot groups.

1. Introduction

This article is based on the lectures in the Winter Braids V (Pau, February 2015). One pur-
pose of these lectures was to explain how to compute twisted Alexander polynomials for
non-experts. For this purpose we treated only twisted Alexander polynomials for knots and
discussed many concrete examples. It is also keeping in this article. The author intended to
write concrete computations in this article to be self-contained.

There are two good survey papers [18, 44] on this subjects. Since this article is more
elementary, then we recommend to read them for more advanced topics.

First we recall there are many definitions (many faces) of the classical Alexander polyno-
mial:

• Seifert form on a Seifert surface.

• Fox’s free differentials to a presentation of a knot group.

• an order of the Alexander module (an infinite cyclic covering).

• Reidemeister torsion.

• Burau representation of the braid group.

• Obstruction to deform an abelian representation into non commutative direction.

• Skein relation.

• Euler characteristic of the knot Floer homology.

We can generalize some of them to twisted Alexander polynomials.

• Lin defined twisted Alexander polynomial for a knot by using a Seifert surface.

• Wada also defined it for a finitely presentable group by using Fox’s free differential.

• Jang and Wang generalized Lin’s idea to other invariants.
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• Kirk and Livingston organized each of these perspectives, in particular, an order of the
Alexander module. This is also related with an infinite cyclic covering.

• Twisted Alexander polynomial of a knot can be described as the Reidemeister torsion
of its knot exterior.

From each position of these studies we have slightly different invariants, but essentially
the same one, which are called twisted Alexander polynomials. In this lecture note, we mainly
follow the definition of the twisted Alexander polynomial by Wada. Twisted Alexander polyno-
mial (Wada’s invariant) can be defined for a finitely presentable group with an epimorphism
onto a free abelian group. For simplicity, we discuss this invariant only for a knot group with
the abelianization.

Acknowledgements: The author was partially supported by JSPS KAKENHI 25400101. He
would like to express his sincere gratitude to the organizers of Winter braid V; Paolo
Bellingeri, Vincent Florens, Jean-Baptiste Meilhan, Emmanuel Wagner.
The author stayed in Aix-Marseille University when this article was writen up. He also thanks
friends of this university for their hospitality.

2. Fox’s free differentials

To define the Alexander polynomial we need one algebraic tool. It is the Fox’s free
differentials. See [14, 10] as a reference.

Definition 2.1. An integral group ring of a group G is a ring given by

ZG = {a finite formal sum
∑

g∈G
ngg | ng ∈ Z}

as a set. Here finite means the number of ng 6= 0 is finite. The two operations of a group ring
are defined by the following;

• sum:
∑

g∈G
ngg +

∑

g∈G
mgg =

∑

g∈G
(ng +mg)g.

• multiplication:
∑

g∈G
ngg ·

∑

g∈G
mgg =

∑

g∈G

�

∑

h∈G
nh ·mh−1g

�

g.

Remark 2.2.

• The unit of ZG as a group ring is 1 = 1(∈ Z) × 1(∈ G).

• We can define a group ring of G over Q,R,C, and write respectively QG, RG and CG
for them.

Example 2.3. Z = 〈t〉
For any element of ZZ = Z〈t〉, it is of the form

∑

k∈Z
nkt

k. This can be considered as a Laurent

polynomial of t. From now we always identify the group ring ZZ = Z〈t〉 with the Laurent
polynomial ring Z[t, t−1].

Let Fn = 〈1, · · · , n〉 be the free group generated by {1, · · · , n}. Fox’s free differentials are
algebraic derivations on ZFn.

Definition 2.4. Fox’s free differentials are maps

∂

∂1
, · · · ,

∂

∂n
: ZFn → ZFn

satisfying the following conditions:
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1. They are linear over Z.

2. For any , j,
∂

∂j
() = δj =

(

1 ( = j),

0 ( 6= j).

3. For any g, g′ ∈ Fn,
∂

∂j
(gg′) =

∂

∂j
(g) + g

∂

∂j
(g′).

Lemma 2.5. The followings hold;

•
∂

∂j
(1) = 0.

•
∂

∂j
(g−1) = −g−1

∂

∂j
(g) for any g ∈ Fn.

•
∂

∂j
(k

j
) =

(

1 + j + · · · + k−1j (k > 0),

−(−1j + · · · + k
j
) (k < 0).

• For any g ∈ Fn,
∂

∂j
(gk) =



















gk − 1

g − 1

∂

∂j
(g) (k > 0),

−
gk − 1

g − 1

∂

∂j
(g) (k < 0).

For simplicity, we frequently write
∂

∂
for

∂

∂
() for any  ∈ ZFn.

The following formula is the algebraic version of a linear approximation in the group ring of
a free group.

Proposition 2.6 (Fundamental formula of free differentials). For any  ∈ ZFn, it holds that

 − 1 =
n
∑

j=1

∂

∂j
(j − 1).

Proof. We prove this formula by induction on the word length () of  ∈ Fn.

For the case of () = 0, that is,  = 1, it is clear that  − 1 = 0 and
n
∑

j=1

∂

∂j
(j − 1) = 0.

Assume it is true for any word  with () = k. Take any  ∈ Fn with () = k + 1. We may
assume  =k

±1
 with (k) = k. If  =k, then one has

n
∑

j=1

∂

∂j
(j − 1) =

n
∑

j=1

∂(k)

∂j
(j − 1)

=
n
∑

j=1

�

∂k

∂j
+ kδ,j

�

(j − 1)

=
n
∑

j=1

∂k

∂j
(j − 1) + k( − 1).

By the assumption on the induction,

n
∑

j=1

∂k

∂j
(j − 1) =k − 1.
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Hence we obtain
n
∑

j=1

∂

∂j
(j − 1) =

n
∑

j=1

∂k

∂j
(j − 1) + k( − 1)

=k − 1 + k( − 1)

=k − 1

= − 1.

Similarly it can be proved for the case of  =k
−1
 .

Further it can be done for any  ∈ ZFn by using the linearity of free differentials.
This completes the proof. �

3. Alexander polynomials

In this section we apply the Fox’s free differentials to get a knot invariant as follows. We put
[5, 48] for terminologies and definitions of knot theory as references.

3.1. Definition

Let K ⊂ S3 a knot in S3 and G(K) = π1(S3 − K) the knot group of K. We take and fix a
presentation of G(K) as

G(K) = 〈1, . . . , n | r1, . . . , rn−d〉.

Now we do not assume it is a Wirtinger presentation.
For simplicity we explain first how to define the invariant for the case of d = 1. Here the
number d is called the deficiency of a finite presented group, which is defined by the
number of generators minus the number of relators.
Let us take a presentation of deficiency one as

G(K) = 〈1, . . . , n | r1, . . . , rn−1〉.

By using the above fixed presentation, an epimorphism

Fn 3  7→  ∈ G(K)

is naturally defined. Further we consider a ring homomorphism

ZFn → ZG(K)

induced from this epimorphism Fn → G(K).
The abelianization of G(K) is given as

α : G(K)→ G(K)/[G(K), G(K)] ∼= Z = 〈t〉

and the induced map on group rings as

α∗ : ZG(K)→ Z〈t〉 = Z[t, t−1].

Definition 3.1. The (n − 1) × n-matrix A defined by

A =
�

α∗

�

∂r

∂j

��

∈ M
�

(n − 1) × n;Z[t, t−1]
�

(1 ≤  ≤ n − 1, 1 ≤ j ≤ n)

is called the Alexander matrix of G(K) = 〈1, . . . , n | r1, . . . , rn−1〉.

Let Ak be the (n − 1) × (n − 1)-matrix obtained by removing the k-th column from A.

Lemma 3.2. There exists an integer k ∈ {1, · · · , n} such that α∗(k) − 1 6= 0 ∈ Z[t, t−1].

Proof. If α(k) = 1 for any k, then clearly α : G(K)→ Z is the trivial homomorphism, not an
epimorphism. It contradicts that α is an epimorphism. �
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Lemma 3.3. For any k,  ∈ {1, · · · , n},

(α∗ () − 1)detAk = ± (α∗ (k) − 1)detA.

Proof. We may assume k = 1,  = 2 without loss of generality.
For any relator r = 1 ∈ ZG(K), by applying the fundamental formula and projection on
ZG(K), it is seen that

0 = r − 1 =
n
∑

j=1

∂r

∂j
(j − 1).

By applying α∗ to both sides, we obtain

n
∑

j=1

α∗

�

∂r

∂j

�

(α∗(j) − 1) = 0.

Hence one obtains

(α∗(1) − 1)α∗
�

∂r

∂1

�

= −
n
∑

j=2

α∗

�

∂r

∂j

�

(α∗(j) − 1).

Here let A2 be the matrix obtained by removing the second column from A and Ã2 be the

one obtained by replacing the first column α∗
�

∂r
∂1

�

by (α∗(1) − 1)α∗
�

∂r
∂1

�

in A2.
Take the determinant

det Ã2 =

�

�

�

�

�

�

�

�

(α∗ (1) − 1)α∗
�

∂r1
∂1

�

α∗
�

∂r1
∂3

�

. . . α∗
�

∂r1
∂n

�

...
... . . .

...

(α∗ (1) − 1)α∗
�

∂rn−1
∂1

�

α∗
�

∂rn−1
∂3

�

. . . α∗
�

∂rn−1
∂n

�

�

�

�

�

�

�

�

�

= (α∗ (1) − 1)detA2.

On the other hand, replace (α∗ (1) − 1)α∗
�

∂r
∂1

�

by −
n
∑

j=2

α∗

�

∂r

∂j

�

(α∗(j) − 1), the same

determinant is given by

det Ã2 =

�

�

�

�

�

�

�

�

�

�

�

�

�

−
n
∑

j=2

α∗

�

∂r1

∂j

�

(α∗(j) − 1) . . . α∗
�

∂r1
∂n

�

... . . .
...

−
n
∑

j=2

α∗

�

∂rn−1

∂j

�

(α∗(j) − 1) . . . α∗
�

∂rn−1
∂n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= −
n
∑

j=2

(α∗(j) − 1)

�

�

�

�

�

�

�

�

�

α∗
�

∂r1
∂j

�

α∗
�

∂r1
∂3

�

. . . α∗
�

∂r1
∂n

�

... . . . . . . . . . . . . . . .
...

α∗
�

∂rn−1
∂j

�

α∗
�

∂rn−1
∂3

�

. . . α∗
�

∂rn−1
∂n

�

�

�

�

�

�

�

�

�

�

= −(α∗(2) − 1)

�

�

�

�

�

�

�

�

α∗
�

∂r1
∂2

�

α∗
�

∂r1
∂3

�

. . . α∗
�

∂r1
∂n

�

... . . . . . . . . . . . . . . .
...

α∗
�

∂rn−1
∂2

�

α∗
�

∂rn−1
∂3

�

. . . α∗
�

∂rn−1
∂n

�

�

�

�

�

�

�

�

�

= −(α∗(2) − 1)detA1.

Therefore it holds that

(α∗ (1) − 1)detA2 = −(α∗(2) − 1)detA1.

�
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From these two lemmas, we can consider

detAk

α∗(k) − 1

as an invariant of G(K) with a presentation with deficiency one.
Now we supposed that the deficiency of a presentation is one. To prove that this invariant is
independent of choices of a presentation, up to ±ts (s ∈ Z), we define it for the case of
higher deficiencies and apply the Tietze transformations to them.
We take and fix a presentation of G(K) as

G(K) = 〈1, . . . , n | r1, . . . , rn−d〉

where 1 ≤ d ≤ n − 1.
The Alexander matrix associated to the above presentation is similarly defined by

A =
�

α∗

�

∂r

∂j

��

∈ M
�

(n − d) × n;Z[t, t−1]
�

(1 ≤  ≤ n − d, 1 ≤ j ≤ n).

Let Ak be the (n − d) × (n − 1)-matrix obtained by removing the k-th column from A. This is
not a square matrix if d ≥ 2.
Let A

k
be the (n − d) × (n − d)-matrix consisting of the columns whose indices belong to

 = (1, . . . , n−d) (1 ≤ 1 < · · · < n−d ≤ n).
By similar arguments as for the deficiency one case, we can also prove the following lemma.

Lemma 3.4. For any k,  ∈ {1, · · · , n} and any choice of  such that k,  /∈ ,

(α∗ () − 1)detAk = ± (α∗ (k) − 1)detA


.

Furthermore it is similarly seen that there exists an integer k ∈ {1, · · · , n} such that
α∗(k)− 1 6= 0 ∈ Z[t, t−1]. Now we put Qk to be the greatest common divisor of detA

k
for all

indices . From the above, we can consider

Qk

α∗(k) − 1

as an invariant of G(K).

Remark 3.5. For the case of d = 1, we can chose the index set  as
 = (1, . . . , k − 1, k + 1, . . . , n). Hence the above definition gives the same one as in the case
of deficiency one presentations.

Now we recall Tietze transformations as follows. See [37] for example.

Theorem 3.6 (Tietze). Any presentation G = 〈1, · · · , k | r1, · · · , r〉 can be transformed to
any other presentation of G by an application of a finite sequence of the following two type
operations and their inverses:

(I) To add a consequence r of the relators r1, · · · , r to the set of relators. The resulting
presentation is given by 〈1, · · · , k | r1, · · · , r, r〉.

(II) To add a new generator  and a new relator −1 where  is any word in 1, · · · , k. The
resulting presentation is given by 〈1, · · · , k ,  | r1, · · · , r, −1〉.

We can prove the following.

Proposition 3.7. Up to ±ts (s ∈ Z), the rational expression

Qk

α∗(k) − 1

is independent of the choice of a presentation of G(K). Namely it is an invariant of the group
G(K) up to ±ts (s ∈ Z).
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Proof. Take presentations as

P = 〈1, . . . , n | r1, . . . , rn−d〉

and
P′ = 〈1, . . . , n | r1, . . . , rn−d, r〉

by applying the Tietze transformation (I). Now assume r has a form as

r =
p
∏

k=1

kr
εk
k
−1
k
.

where 1 ≤ k ≤ n − d,k ∈ Fn and εk = ±1 for 1 ≤ k ≤ p. By applying Fox’s free differentials,
one has

∂r

∂j
=

p
∑

k=1

 

k−1
∏

=1

r
ε

−1


!

�

∂k

∂j
+ k

∂rk

∂j
− kr

εk
k
−1
k

∂k

∂j

�

=
p
∑

k=1

 

k−1
∏

=1

r
ε

−1


!

�

(1 − kr
εk
k
−1
k
)
∂k

∂j
+ k

∂rk

∂j

�

.

Here

k =

(

k (εk = 1),

−kr
−1
k
(εk = −1).

Because α∗(r) = 1 ∈ Z[t, t−1], one obtains

α∗

�

∂r

∂j

�

=
p
∑

k=1

α∗(k)α∗

�

∂rk

∂j

�

=
p
∑

k=1

εkα∗(k)α∗

�

∂rk

∂j

�

.

This shows that the last row of the Alexander matrix A′ associated to P′ is a linear
combination of p rows of the Alexander matrix A associated to P. It is clear that the first
n− d rows of A′ associated to P′ are exactly same with the first n− d rows of A associated to

P. Therefore it is shown that the invariant
detA′ 

k

α∗(k) − 1
is the same as the one computed by A.

Next take a presentation

P′′ = 〈1, . . . , n, (= n+1) | r1, . . . , rn−d, −1〉

obtained from P by applying the Tietze transformation (II). By direct computations, we see
that the Alexander matrix A′′ associated to P′′ has the form of

A′′ =
�

A 0
∗ 1

�

where the last row is
�

−α∗()α∗()α∗
�

∂

∂1

�

, . . . ,−α∗()α∗()α∗
�

∂

∂n

�

,1

�

=
�

−α∗()α∗()α∗
�

∂n+1

∂1

�

, . . . ,−α∗()α∗()α∗
�

∂n+1

∂n

�

,1

�

=(0, . . . ,0,1) .

Here suppose α∗(k) − 1 6= 0. Then the determinant of A′′
J
k for an index set

J = (j1, . . . , jn−d+1) can be non-zero if and only if J has the form J = (j1, . . . , jn−d, n + 1). Then
for J = (j1, . . . , jn−d, n + 1) and  = (j1, . . . , jn−d), it is seen that

detA′′ J
k
= detA

k
.

Hence we have
Qk(A′′)

α(k) − 1
=

Qk(A)

α(k) − 1
.
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This completes the proof. �

For any knot K, we can take some special presentation of G(K), which is a Wirtinger
presentation derived from a regular diagram on the plane. In this case, we may assume that
α(1) = · · · = α(n) = t. Hence the denominator is always t − 1. Therefore the numerator
itself is an invariant of G(K) up to ±ts.

Definition 3.8. This is called the Alexander polynomial ΔK (t) = detAk of K.

Remark 3.9. It is clear that the Alexander polynomial is well-defined up to ±ts.

3.2. Examples

Example 3.10. We consider the trefoil knot 31 = T(2,3) first.

31 = T(2,3)

Fix the following presentation

G(31) = 〈, y | r = y(yy)−1〉.

By applying the abelianization α, the relator r = y(yy)−1 goes to

α(r) = α()α(y)α()α(y)−1α()−1α(y)−1

= α()α(y)−1 ∈ G(31)/[G(31), G(31)].

Because α(r) = 1, then we get

α()α(y)−1 = 1 ∈ G(31)/[G(31), G(31)].

Hence the abelianization can be given by

α : G(31) 3 , y 7→ t ∈ 〈t〉.

By applying
∂

∂
to r and mapping it on ZG(31), we have

∂

∂
(r) =

∂

∂
(y(yy)−1)

=
∂

∂
(y) − y(yy)−1

∂

∂
(yy)

=
∂

∂
(y) − r

∂

∂
(yy)

=
∂

∂
(y) −

∂

∂
(yy)

=
∂

∂
(y − yy) .
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Here we used the property r = 1 in ZG(31). Therefore we can compute free differentials for
y − yy instead of r = y(yy)−1.
Accordingly we compute

∂

∂
(y − yy) =

∂

∂
(y) −

∂

∂
(yy)

= 1 + y − y
α∗7→ t2 − t + 1 ∈ Z[t, t−1].

Similarly

∂

∂y
(y − yy) =

∂

∂y
(y) −

∂

∂y
yy

=  − 1 − y
α∗7→ −(t2 − t + 1) ∈ Z[t, t−1].

Hence one has

A =
�

(t2 − t + 1) −(t2 − t + 1)
�

,

and

detA2

t − 1
= −

detA1

t − 1

=
t2 − t + 1

t − 1
.

By changing this presentation to 〈, y, z | y(yy)−1, yz−1〉, the Alexander matrix is
changed to

A =
�

(t2 − t + 1) −(t2 − t + 1) 0
1 t −1

�

.

In this case the abelianization α is given by

α() = α(y) = t, α(z) = t2.

From this Alexander matrix, we obtain

detA1

t − 1
=
t2 − t + 1

t − 1
,

detA2

t − 1
= −

t2 − t + 1

t − 1
,

detA3

t2 − 1
=
t(t2 − t + 1) + (t2 − t + 1)

t2 − 1
=
t2 − t + 1

t − 1
.

Therefore the Alexander polynomial of the trefoil knot is given by

Δ31 (t) = t
2 − t + 1

up to ±ts.

Example 3.11. Let us now consider the Figure-eight knot 41.
Take a presentation of G(41) as

G(41) = 〈, y | −1 = y〉

where  = −1yy−1.
Using this presentation, the abelianization α : G(41)→ 〈t〉 is given by α() = α(y) = t.

IV–9
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41

Then one has

∂

∂
(−1y−1) =

∂

∂
+ 

∂

∂
− −1

∂

∂

= (1 − y)
∂

∂
+ 

α∗7→ (1 − t)α∗
�

∂

∂

�

+ 1

and

α∗

�

∂

∂

�

= α∗

�

∂

∂
(−1yy−1)

�

= α∗(−−1 + −1y)

= −t−1 + 1.

Consequently it is seen that

α∗

�

∂

∂
(−1y−1)

�

= (1 − t)(−t−1 + 1) + 1

= −t−1 + 1 + 1 − t(−t−1 + 1)

= −t−1 + 1 + 1 + 1 − t

= −t−1 + 3 − t.

Similarly one has

α∗

�

∂

∂y
(−1y−1)

�

= α∗

�

(1 − y)
∂

∂
− 1

�

= (1 − t)(t−1 − 1) − 1

= t−1 − 3 + t.

Hence we obtain

A =
�

−t−1 + 3 − t t−1 − 3 + t
�

and

detA1

α∗(1) − 1
=
t−1 − 3 + t

t − 1

= −
1

t

(−t2 + 3t − 1)

t − 1
,
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detA2

α∗(2) − 1
= −

t−1 − 3 + t

t − 1

=
1

t

(−t2 + 3t − 1)

t − 1
.

Finally, the Alexander polynomial of the figure-eight knot is given by

Δ41 (t) = −t
2 + 3t − 1

up to ±ts.

4. Reidemeister torsion

In this section we explain the theory of the Reidemeister torsion, which is an invariant of a
compact CW-complex with a linear representation of the fundamental group.
Let K be a knot in S3 and G(K) the knot group of K. We take an open tubular neighborhood
N(K) ⊂ S3 of K and the exterior E(K) = S3 \N(K) of K. The knot exterior E(K) is a compact
3-manifold with a torus boundary. Note that π1(E(K)) is isomorphic to G(K) by natural
inclusion E(K)→ S3 \ K.
Here we consider the abelianization α : G(K)→ T = 〈t〉 ⊂ GL(1;Q(t)) as a 1-dimensional
representation over Q(t). Here Q(t) denotes the one variable rational function field over Q.
Now we can define Reidemeister torsion

τα(E(K)) ∈ Q(t)

of E(K) for α. We mention the following well-known theorem by Milnor [39] before giving the
definition of Reidemeister torsion.

Theorem 4.1 (Milnor).
ΔK (t)

t − 1
= τα(E(K)).

Remark 4.2. Both the left and right hand sides are well defined up to ±ts.

4.1. Algebraic definitions

Recall the definition of Reidemeister torsion.
Let C∗ be a chain complex over a field F as

0 −→ Cm
∂m−→ Cm−1

∂m−1−→ Cm−2 −→ . . .
∂2−→ C1

∂1−→ C0 −→ 0.

Because 0 −→ Zq(= Ker∂q) −→ Cq
∂q
−→ Bq−1(= Im∂q) −→ 0 is exact, then we have an

isomorphism
Cq ∼= Zq ⊕ Bq−1,

which is not canonical. Note that a pair of bases of Zq and Bq−1 gives a basis of Cq.

Definition 4.3. A chain complex C∗ is called acyclic if Bq = Zq for q = 0,1, · · · ,m, that is, if
all homology groups H∗(C∗) = 0 .

From here we assume that C∗ is acyclic and further that a basis cq of Cq is given for any q.
That is, C∗ is a based acyclic chain complex of finite dimensional vector spaces over F.
Here take a basis bq on Bq for any q.
On the above exact sequence

0 −→ Zq −→ Cq
∂q
−→ Bq−1 −→ 0,

take a lift b̃q−1 of bq−1. Now a pair (bq, b̃q−1) gives a basis on Cq. The two bases cq and

(bq, b̃q−1) givean isomorphism
Cq ∼= Bq ⊕ Bq−1.
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For any two bases b = {b1, · · · , bn},c = {c1, · · · , cn} of a vector space V over F, there exists

a non-singular matrix P = (pj) ∈ GL(n;F) such that bj =
n
∑

=1

pjc.

Definition 4.4. P is called the transformation matrix from c to b.

Under this definition, we simply write
�

bq, b̃q−1/cq
�

for the transformation matrix from cq to

(bq, b̃q−1) and
�

bq, b̃q−1/cq
�

for the determinant det
�

bq, b̃q−1/cq
�

.

Lemma 4.5. The determinant [bq, b̃q−1/cq] is independent on choices of a lift b̃q−1. Hence
we can simply write [bq,bq−1/cq] for it.

Proof. Take another lift b̂q−1 of bq−1 on Cq. For example, one vector  in b̃q−1 is replaced by

another vector ′ in b̂q−1. But ,′ map to the same vector in Bq−1. Here

0 −→ Zq −→ Cq −→ Bq−1 −→ 0

is an exact sequence, so the difference  − ′ belongs to Zq = Bq. Hence  − ′ can be
expressed as a linear combination of the vectors of bq. Then by the definition of the
determinant, it can be seen that

�

bq, b̃q−1/cq
�

=
�

bq, b̂q−1/cq
�

.

Therefore the determinant is not changed. �

Definition 4.6. The torsion τ(C∗) of a based chain complex (C∗,{cq}) is defined by

τ(C∗) =

∏

q:odd[bq,bq−1/cq]
∏

q:een[bq,bq−1/cq]
∈ F \ {0}.

Lemma 4.7. The torsion τ(C∗) is independent of choices of b0, · · · ,bm.

Proof. Assume b′
q

is another basis of Bq.

In the definition of τ(C∗), the difference when using b′
q

instead of bq is only in the two

terms
�

b′
q
,bq−1/cq

�

and
�

bq+1,b
′
q
/cq+1

�

. By standard arguments of linear algebra,

�

b′
q
,bq−1/cq

�

=
�

bq,bq−1/cq
�

�

b′
q
/bq

�

,

�

bq+1,b
′
q
/cq+1

�

=
�

bq+1,bq/cq+1
�

�

b′
q
/bq

�

.

Since
�

b′
q
/bq

�

appears in both the denominator and the numerator of the definition, they

can be cancelled. �

Example 4.8. Put m = 4. Now consider

C∗ : 0→ C4 → C3 → C2 → C1 → C0 → 0.

As b4 and b−1 are zero, then by the definition, one has

τ(C∗) =
[b4,b3/c4][b2,b1/c2][b0,b−1/c0]

[b3,b2/c3][b1,b0/c1]

=
[b3/c4][b2,b1/c2][b0/c0]

[b3,b2/c3][b1,b0/c1]
.

In this case, the number of factors in the denominator and the number of factors in the
numerator are not same. However it can be seen that τ(C∗) is independent of choices of
b0,b1,b2,b3.
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Example 4.9. Next we put m = 3. Here

C∗ : 0→ C3 → C2 → C1 → C0 → 0.

As b3 and b−1 are zero, then one has

τ(C∗) =
[b2,b1/c2][b0,b−1/c0]

[b3,b2/c3][b1,b0/c1]

=
[b2,b1/c2][b0/c0]

[b2/c3][b1,b0/c1]
.

In this case the numbers of factors are same. Similarly it can be seen that τ(C∗) is
independent of choices of b0,b1,b2,b3

The following lemma is well-known as Mayer-Vietoris argument for a torsion invariant. See
[40] for the proof.

Lemma 4.10. Let 0→ C′
∗
→ C∗ → C′′

∗
→ 0 be a short exact sequence of based chain

complexes. Assume that the bases of C∗ are given as pairs of (c′
∗
,c′′

∗
) where {c′

∗
},{c′′

∗
}

are bases of C′
∗
, C′′

∗
. If two of C′

∗
, C∗, C′′∗ are acyclic, then the third one is also acyclic and

τ(C∗) = ±τ(C′∗)τ(C
′′
∗
).

Remark 4.11. The reason why the signs ± appear in the right hand side is the following. To
define the torsions we use the following isomorphisms

• C′
∗
∼= Z′∗ ⊕ B

′
∗

, C∗ ∼= Z∗ ⊕ B∗, C′′
∗
∼= Z′′∗ ⊕ B

′′
∗

.

On the other hand, to get this formula, we use

• C∗ ∼= C′∗ ⊕ C
′′
∗
∼= Z′∗ ⊕ B

′
∗
⊕ Z′′

∗
⊕ B′′

∗
.

Here the signs appear as we need to change orders of vectors in general.

4.2. Geometric settings

Now we apply this torsion invariant of chain complexes to the following geometric situation.
Let X be a finite CW-complex and X̃ the universal covering of X. We lift a CW-complex
structure of X on X̃. The fundamental group π1X acts on X̃ from the right-hand side as deck
transformations. By applying the cellular approximation theorem, we may assume that this
action is free and cellular under taking subdivisions if it is needed. Then the chain complex
C∗(X̃;Z) has the structure of a chain complex of free Z[π1X]-modules.
Let ρ : π1X→ GL(V) be an n-dimensional linear representation over a field F. Using the
representation ρ, V admits a structure of a Z[π1X]-module, which is denoted by Vρ. Define
the chain complex C∗(X;Vρ) by C∗(X̃;Z) ⊗Z[π1X] Vρ. Here we choose a preferred basis of
C(X;Vρ) for any  as

(̃1 ⊗ e1, . . . , ̃1 ⊗ en, . . . , ̃d ⊗ e1, . . . , ̃d ⊗ en)

where {e1, . . . ,en} is a basis of V, {1, . . . , d} are the -cells giving a basis of C(X;Z) and
{̃1, . . . , ̃d} are lifts of them in C(X̃;Z).
Now we suppose that C∗(X;Vρ) is acyclic, namely all homology groups H∗(X;Vρ) are
vanishing. In this case we call ρ an acyclic representation.

Definition 4.12. Reidemeister torsion of X for a representation ρ is defined by

τρ(X) = τ(C∗(X;Vρ)) ∈ F \ {0}.

Remark 4.13. Reidemeister torsion τρ(X) does not depend on the choices up to ±ƒ , where
ƒ ∈ m{det ◦ρ : π1(X)→ F \ {0}}. See [40] for the proof.
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We apply the Reidemeister torsion for a knot K in S3 as follows. Fix a CW-complex structure
on E(K). We take its universal cover

Ẽ(K)→ E(K)

and also a lift of the CW-complex structure of E(K) to Ẽ(K). By applying the cellular
approximation theorem, we may assume that G(K) acts freely and cellularly on Ẽ(K) from
the right as deck transformations.
Now we can consider the abelianization α : G(K)→ 〈t〉 ⊂ GL(1;Q(t)) as a 1-dimensional
representation of G(K) over the rational function field Q(t).
Hence the chain complex of E(K) with Q(t)α-coefficients is defined by

C∗(E(K);Q(t)α) = C∗(Ẽ(K);Z) ⊗ZG(K) Q(t)α.

Here we take bases c for C(E(K);Q(t)α) as

(̃1 ⊗ 1, . . . , ̃d ⊗ 1)

by using lifts of -cells {1, . . . , d} in E(K) and a basis 1 for the 1-dimensional vector space
Q(t) over itself as we explained.
Reidemeister torsion of E(K) can be defined as

τα(E(K)) = τ(C∗(E(K);Q(t)α)) ∈ Q(t) \ {0}

up to ±ts.
From Milnor’s theorem, some properties of Reidemeister torsion induce properties of
Alexander polynomial. For example, recall one of the well known properties, which was first
proved by Seifert. This can proved by using properties of Reidemeister torsion.

Theorem 4.14 (Seifert [50], Milnor [39]). For any knot K, it holds

ΔK (t−1) = ΔK (t)

up to ±ts.

We also have the following fact on the Alexander polynomial for a slice knot. A slice knot is
defined as follows. Now we consider S3 = ∂B4.

Definition 4.15. A knot K ⊂ S3 is called a slice knot if there exists an embedded disk
D ⊂ B4 such that ∂D = K ⊂ S3 = ∂B4.

The next theorem is a well-known and classical theorem. It can be proved by using
Reidemeister torsion.

Theorem 4.16 (Fox-Milnor [15]). If K is a slice knot, then the Alexander polynomial ΔK (t)
has a form of ΔK (t) = ±tsƒ (t)ƒ (t−1) where ƒ (t) ∈ Z[t].

5. Order and obstruction

Here we would like to mention two more things related with the Alexander polynomial;

• an order of H1(E(K);Q[t, t−1]α).

• an obstruction to deform an abelian representation.

It is seen that H1(E(K);Q[t, t−1]α) ∼= H1(E(K)∞;Q) as a Q[t, t−1]-module where
E(K)∞ → E(K) is the Z-covering corresponding to the abelianization epimorphism
α : G(K) = π1(E(K))→ Z = 〈t〉.
The order of a finitely generated module over a principal ideal domain is defined as follows.
This is a generalization of the order of an abelian group.
Let M be a finitely generated Q[t, t−1]-module without free parts. From the structure
theorem of a finitely generated module over a principal ideal domain, one has

M ∼= Q[t, t−1]/(p1) ⊕ · · · ⊕ Q[t, t−1]/(pk)
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where p1, · · · , pk ∈ Q[t, t−1] such that

Q[t, t−1] (p1) ⊃ (p2) ⊃ · · · ⊃ (pk) 6= (0).

Definition 5.1. The order ideal ord(M) of M is defined by

ord(M) = (p1 · · ·pk) ⊂ Q[t, t−1].

In the case of H∗(E(K);Q[t, t−1]α), the following proposition holds.

Proposition 5.2.

• ord(H1(E(K);Q[t, t−1]α)) = (ΔK (t)).

• ord(H0(E(K);Q[t, t−1]α)) = (t − 1).

See [41] as a reference.
Next we mention that the Alexander polynomial is an obstruction to deform a 1-dimensional
abelian representation

α : G(K)→ C∗ = C \ {0} ⊂ CoC∗ ⊂ GL(2;C).

Let G(K) = 〈1, · · · , n | r1, · · · , rn−1〉 be a Wirtinger presentation of G(K). By putting
t =  6= 0, one has a 1-dimensional abelian representation

α = α|t= : G(K) 3  7→  ∈ C.

We put ρ() =
�

 b
0 1

�

∈ GL(2;C) for the image of . Now a map

ρ : {1, . . . , n}→ GL(2;C)

is given. If all b1, · · · , bn = 0, then clearly ρ gives a representation

ρ : G(K) 3  7→
�

 0
0 1

�

∈ GL(2;C).

However it is also an abelian representation. Assume b 6= 0 for some . Here we consider the
following problem.

Problem 5.3. When can ρ be extended as a non abelian representation ?

The answer is given by the next theorem.

Theorem 5.4 (de Rham [11]). A map ρ gives a representation if and only if ΔK () = 0.

Remark 5.5. One motivation for Wada to define twisted Alexander polynomial is to
generalize such an obstruction for a higher dimensional representations.

6. Twisted Alexander polynomial

Historically, the first two studies to give a generalization of the Alexander polynomial are
due to Lin [36] and Wada [55]. In this paper we follow the definition due to Wada, because it
is most computable by using free differentials and it can be related to Reidemeister torsion
of E(K) directly.
Recall K is a knot in S3 and G(K) is the knot group. For simplicity we consider a
representation of G(K) in a 2-dimensional unimodular group over a field F. From this
assumption the twisted Alexander polynomial is well-defined up to t2s (s ∈ Z)

Remark 6.1. Wada defined the twisted Alexander polynomial for any finite presentable
group with an epimorphism onto a free abelian group and a GL(;R)-representation over a
Euclidean domain R.
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Fix a presentation as
G(K) = 〈1, . . . , n | r1, . . . , rn−1〉

with deficiency one. Let ρ : G(K)→ SL(2;F) be a representation. Let M(2;F) be the matrix
algebra of 2 × 2 matrices over F. We write

ρ∗ : ZG(K)→ ZSL(2;F) ∼= M(2;F)

for a ring homomorphism induced by ρ and

α∗ : ZG(K)→ ZZ = Z〈t〉 ∼= Z[t, t−1]

for a ring homomorphism induced by α. By taking the tensor product of them, we obtain an
induced ring homomorphism

ρ∗ ⊗ α∗ : ZG(K)→ M(2;F) ⊗ Z[t, t−1] ∼= M
�

2;F[t, t−1]
�

and
 : ZFn → M

�

2;F[t, t−1]
�

the composite of ZFn → ZG(K) induced by the presentation and

ρ∗ ⊗ α∗ : ZG(K)→ M
�

2;F[t, t−1]
�

.

Definition 6.2. The (n − 1) × n matrix Aρ whose (, j) component is the 2 × 2 matrix



�

∂r

∂j

�

∈ M
�

2;F[t, t−1]
�

,

is called the twisted Alexander matrix of a knot group G(K) = 〈1, . . . , n | r1, . . . , rn−1〉
associated to ρ.

Remark 6.3. This matrix Aρ can be considered as

Aρ ∈ M
�

(n − 1) × n;M
�

2;F[t, t−1]
��

= M
�

2(n − 1) × 2n;F[t, t−1]
�

.

Let Aρ,k be the (n − 1) × (n − 1) matrix obtained from Aρ by removing the k-th column. Then
one has

Aρ,k ∈ M
�

(n − 1) × (n − 1);M
�

2;F[t, t−1]
��

= M
�

2(n − 1) × 2(n − 1);F[t, t−1]
�

.

By similar arguments as for Alexander polynomials, the following two lemmas can be seen.

Lemma 6.4. There exists k such that det(k − 1) 6= 0.

Lemma 6.5. (detAρ,k)(det(j − 1)) = (detAρ,j)(det(k − 1)) for any j, k.

Remark 6.6. The signs ± do not appear in the case of even dimensional unimodular
representations.

From the above two lemmas, we can define the twisted Alexander polynomial of G(K)
associated to ρ : G(K)→ SL(2;F) to be a rational expression as follows.

Definition 6.7. The twisted Alexander polynomial of K for ρ is defined by

ΔK,ρ(t) =
detAρ,k

det(k − 1)
for any k such that det(k − 1) 6= 0.

This gives an invariant of K with ρ. The following proposition can be proved by using similar
arguments as in the case of the Alexander polynomial.

Proposition 6.8.

Up to ct2s (c ∈ F, s ∈ Z), ΔK,ρ(t) is an invariant of (G(K), ρ). Namely, it does not depend on
choices of a presentation.
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Now we assume that we always take a Wirtinger presentation of G(K). Hence we assume
the deficiency is always one. In this case one has a more strict invariant as follows. However
the deficiency is changed by the Tietze transformation ().
Now we introduce the strong Tietze transformations for a presentation of a group.
(): Replace a relator r by its inverse r−1 .

(b): Replace a relator r by its conjugate r−1.
(c): Replace a relator r by rrk( 6= k).

Remark 6.9. The deficiency is not changed by (), (b), (c), () or their inverses.

One can prove the following. See [55] for a proof.

Proposition 6.10. Any Wirtinger presentation of G(K) can be transformed to any other
Wirtinger presentation of G(K) by an application of a finite sequence of the Tietze
transformations (), (b), (c), () and their inverses.

By applying the above proposition and the same arguments as in section 3, one has the
following.

Proposition 6.11. For any K, the polynomial ΔK,ρ(t) defined by a Wirtinger presentation of
G(K) is an invariant of (G(K), ρ) up to t2s (s ∈ Z).

Remark 6.12.

• The above holds up to ±ts for an -dimensional representation.

• On the other hand, by using only the theory of Reidemeister torsion, without the
arguments of Tietze transformations, we can see ΔK,ρ(t) is well-defined up to
t2s (s ∈ Z).

In general the twisted Alexander polynomial ΔK,ρ(t) depends on a representation ρ.
However the following proposition can be proved easily.

Definition 6.13. Two representations ρ, ρ′ : G(K)→ SL(2;F) are called conjugate if there
exists P ∈ SL(2;F) such that ρ() = Pρ′()P−1 for any  ∈ G(K).

Proposition 6.14. If two representations ρ and ρ′ are conjugate, then ΔK,ρ(t) = ΔK,ρ′ (t) up
to ts.

Example 6.15. If K is the trivial knot, we can take the presentation as G(K) = 〈〉 and the
abelianization α : 〈〉 3  7→ t ∈ 〈t〉. In this case, any representation ρ : G(K)→ SL(2;C) is
given by just one matrix X = ρ() ∈ SL(2;C). By definition, one has

ΔK,ρ(t) =
1

det(tρ() − )

=
1

(λ1t − 1)(λ2t − 1)

where  =
�

1 0
0 1

�

is the identity matrix, and λ1, λ2 are the eigenvalues of ρ().

Example 6.16. Let ρ = 1 : G(K) 3  7→
�

1 0
0 1

�

∈ SL(2;C) be a 2 dimensional trivial

representation. Then

1 ⊗ α = α ⊕ α : G(K) 3  7→
�

α() 0
0 α()

�

∈ GL(2;C(t)).

Hence it can be seen that

ΔK,1(t) =
ΔK (t)

t − 1
·
ΔK (t)

t − 1

=
�

ΔK (t)

t − 1

�2
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Example 6.17. Let ρ : G(K) 3  7→
�

 0
0 −1

�

∈ SL(2;C)( ∈ C \ {0}) be an abelian

representation. By direct computation, one has

ΔK,ρ (t) =
ΔK (t)

t − 1
·
ΔK (−1t)

−1t − 1

=
�

ΔK (t)

t − 

�

�

ΔK (−1t)

t − −1

�

.

Therefore we obtain

lim
→1

ΔK,ρ (t) = ΔK,1(t)

=
�

ΔK (t)

t − 1

�2

.

From these above examples, the twisted Alexander polynomial is not a polynomial in
general.
However, under a mild assumption on ρ, the twisted Alexander polynomial is a Laurent
polynomial.

Proposition 6.18 (Kitano-Morifuji [29]). If ρ : G(K)→ SL(2;F) is not an abelian
representation, then ΔK,ρ(t) is a Laurent polynomial with coefficients in F.

6.1. Figure-eight knot

Let us see the figure-eight knot 41 again. The knot group G(41) has a presentation as

G(41) = 〈, y |  = y〉 ( = −1yy−1).

Remark 6.19. Here the generators  and y are conjugate by . This is the point to treat
SL(2;C)-representations for a 2-bridge knot.

For simplicity, we write X to denote ρ() for  ∈ G(K). The next lemma can be seen by
elementary arguments of linear algebra.

Lemma 6.20. Let X, Y ∈ SL(2,C). If X and Y are conjugate and XY 6= YX, then there exists
P ∈ SL(2;C) such that

PXP−1 =
�

s 1
0 1/s

�

, PYP−1 =
�

s 0
 1/s

�

.

For any irreducible representation ρ, we may assume that its representative of the
conjugacy class which contains ρ is given by

ρs, : G(41)→ SL(2;C)

such that

ρs,() = X =
�

s 1
0 1/s

�

,

ρs,(y) = Y =
�

s 0
 1/s

�

where s,  ∈ C \ {0} .

Remark 6.21. Because

tr(X) = s +
1

s
, tr(X−1Y) = 2 − ,

it is seen that the space of conjugacy classes of irreducible representations can be
parametrized by the traces of X,X−1Y.
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We compute the matrix

R =WX − YW = ρ()ρ() − ρ(y)ρ()

to get the defining equations of the space of conjugacy classes of irreducible
representations.
One has each entry of R = (Rj):

• R11 = R22 = 0,

• R12 = 3 − 1
s2
− s2 − 3 + 

s2
+ s2 + 2,

• R21 = −3 + 
s2
+ s2 + 32 − 2

s2
− s22 − 3 = −R12.

Hence R12 = 0 is the equation of the space of conjugacy classes of irreducible
representations.
This equation

3 −
1

s2
− s2 − 3 +



s2
+ s2 + 2 = 0

can be solved in :

 =
−1 + 3s2 − s4 ±

p

1 − 2s2 − s4 − 2s6 + s8

2s2
.

By applying
∂

∂y
to  − y, one has

∂( − y)

∂y
=
∂

∂y
− 1 − y

∂

∂y

= (1 − y)
∂

∂y
− 1

= (1 − y)
∂

∂y
(−1yy−1) − 1

= (1 − y)(−1 − ) − 1.

Therefore we obtain

Aρ,1 = 
�

∂( − y)

∂y

�

= ((1) − (y))((−1) − ()()) − (1)

= ( − tY)(t−1X−1 − tWX) − .

Note that () =W because α() = 1.
Substituting

 =
−1 + 3s2 − s4 ±

p

1 − 2s2 − s4 − 2s6 + s8

2s2

to each entry and doing direct computations, the numerator is given as

detAρ,1 =
1

t2
−
3

st
−
3s

t
+ 6 +

2

s2
+ 2s2 −

3t

s
− 3st + t2

Remark that it does not depend on two choices of .
On the other hand, one has

det(tX − ) = t2 −
�

s +
1

s

�

t + 1.
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Finally we obtain

Δ41,ρs, (t) =
detAρ,1

det(tX − )

=
1

t2
−
2
�

1 + s2
�

st
+ 1

=
1

t2

�

t2 − 2
�

s +
1

s

�

t + 1
�

=
1

t2
(t2 − 2(tr(X))t + 1).

Remark 6.22. We mention two things. The reason for the second one is explained in section
7.

• Δ41,ρs, (t) is a Laurent polynomial because ρs, is not abelian.

• Δ41,ρs, (t) is monic (explain later) because 41 is fibered.

6.2. Torus knots

We can consider that ΔK,ρ(t) is a Laurent polynomial (up to some powers of t) valued
function on the space of conjugacy classes of SL(2;C)-irreducible representations. In
general a twisted Alexander polynomial is not constant on this space. For example, in the
case of the figure-eight knot as we discussed above, it is depending on the trace of the
image of the meridian.
On the other hand, the following holds for a (p, q)-torus knot T(p, q) ⊂ S3.

Theorem 6.23 (Kitano-Morifuji [30]). For any (p, q)-torus knot T(p, q), ΔT(p,q),ρ(t) is a
locally constant function on each connected component of the space of conjugacy classes of
SL(2;C)-irreducible representations.

Let G(p, q) = 〈, y | p = yq〉 be the knot group of T(p, q). Let m ∈ G(p, q) be the meridian
given by −rys where ps − qr = 1 and z = p = yq a center element of the infinite order. Now
let ρ : G(p, q)→ SL(2;C) be an irreducible representation.
Recall that the center of SL(2;C) is {±}. Hence one has Z = ρ(z) = ± by the irreducibility
of ρ. Then this implies

Xp = ±, Yq = ±.
Here we may choice the eigenvalues of X and Y as

• λ±1 = e±
p
−1π/p such that 0 <  < p,

• μ±1 = e±
p
−1πb/q such that 0 < b < q.

Now we get

tr(X) = 2cos
π

p
, tr(Y) = 2cos

πb

q
,

and further
Xp = (−), Yq = (−)b.

Remark 6.24. In any case one has X2p = Y2q = .

Proposition 6.25 (Johnson [25]). Any conjugacy class of irreducible representations is
uniquely determined for a given triple of traces

(tr(X), tr(Y), tr(M))

such that

• tr(X) = 2cos π
p ,
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• tr(Y) = 2cos πb
q ,

• Z = (−),

• tr(M) 6= 2cosπ( rp ±
sb
q ),

• 0 <  < p, 0 < b < q,  ≡ b mod 2,

• r, s ∈ Z such that pq − rs = 1.

Corollary 6.26.

• A pair of (, b) determines a connected component of conjugacy classes.

• Each connected component of the conjugacy classes can be parametrized by

tr(M) ∈ C \
¦

2cosπ
�

r
p ±

sb
q

�©

under fixing (, b).

Here we give a proof that twisted Alexander polynomial is constant on each connected
component.

Proof. We use this parametrization to compute twisted Alexander polynomials. By applying
Fox’s differential to r = py−q, one has

∂r

∂
= 1 +  + · · · + p−1.

Remark that α : G(K)→ 〈t〉 is defined by α() = tq, α(y) = tp, and α(m) = t.
By the definition, we obtain

ΔT(p,q),ρ(t) =
( ∂r∂ )

(y − 1)

=
det( + tqX · · · + t(p−1)qXp−1)

det(tpY − )

=
(1 + λtq + · · · + λp−1t(p−1)q)(1 + λ−1tq + · · · + λ−(p−1)t−(p−1)q)

1 − (μ + μ−1)tp + t2p
.

Hence it can be seen that ΔT(p,q),ρ(t) is determined by (p, q) and eigenvalues

(λ, μ) = (e
p
−1π/p, e

p
−1πb/q) such that 0 <  < p,0 < b < q. This means that it cannot be

varied locally. �

Now we consider the case of (2, q)-torus knot for simplicity. Here the connected components
consists of q−1

2 components parametrized by odd integer b with 0 < b < q.

Theorem 6.27 (Kitano-Morifuji [30]). The Twisted Alexander polynomial of T(2, q) is given
by

ΔT(2,q),ρb (t) =
�

t2 + 1
�

∏

0<k<q, k:odd, k 6=b

�

t2 − ξk
� �

t2 − ξ̄k
�

,

where ξk = exp
�p
−1πk/q

�

.

Example 6.28. In particular, for the trefoil knot 31 = T(2,3), there is just one connected
component. For any irreducible representation ρ, we have

ΔK,ρ(t) =
t6 + 1

t4 − t2 + 1
= t2 + 1.
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6.3. Reidemeister torsion, orders, and an obstruction

Here we mention the relation of the twisted Alexander polynomial with Reidemeister
torsion, an order ideal and an obstruction of a representation.
For simplicity, we treat a representation over C. By taking a tensor product of

ᾱ : G(K) ∼= π1(E(K)) 3  7→ α()−1 ∈ 〈t〉 ⊂ GL(1;Z[t, t−1])

and

ρ : G(K) ∼= π1(E(K))→ SL(2;C),

we have

ρ ⊗ ᾱ : G(K) ∼= π1(E(K))→ GL(2;C[t, t−1]) ⊂ GL(2;C(t)).

Further we can define a chain complex C∗(E(K);C(t)2ρ⊗ᾱ) by ρ ⊗ ᾱ. We assume that this

chain complex is acyclic, namely, all homology groups H∗(E(K);C(t)2ρ⊗ᾱ) = 0. Here we can

define Reidemeister torsion

τρ⊗ᾱ(E(K)) ∈ C(t).

Under the acyclicity condition, we have the following.

Theorem 6.29 (Kitano [28]). Up to t2s (s ∈ Z), it holds that

ΔK,ρ(t) = τρ⊗ᾱ(E(K)).

More generally by considering a twisted homology H∗(E(K);C[t, t−1] ρ⊗α), we can consider

the order of H∗(E(K);C[t, t−1] ρ⊗α), which is a generalization of the Alexander polynomial as

a generator of an order ideal. This is corresponding to the numerator of ΔK,ρ(t) for a
Wirtinger presentation.
Here we do not mention the details on the relation between twisted Alexander polynomials
and order ideals. Please see [35].
In the last part of this section, we explain how the twisted Alexander polynomial is related to
an obstruction to deform an representation.
Here assume G(K) = 〈1, · · · , n | r1, · · · , rn−1〉 is a Wirtinger presentation. Let
ρ : G(K)→ SL(2;C) be a representation with X = ρ(). Put another matrix

X̃ =
�

X b

0 1

�

∈ GL(3;C) where  ∈ C \ {0} and b ∈ C2.

Now we consider the next problem.

Problem 6.30. When does the map ρ̃ : {1, . . . , n} 3  7→ X̃ give a representation
ρ̃ : G(K)→ GL(3;C) ?

As a generalization of the theorem by de Rham (Theorem 5.4), one has the following.

Theorem 6.31 (Wada, unpublished). Assume  is not an eigenvalue of X1. Then
ρ̃ : G(K)→ GL(3;C) is a representation if and only if the numerator of ΔK,ρ() is vanishing.

Hence we can say that the twisted Alexander polynomial is an obstruction to deform a
GL(2;C)-representation G(K) 3  7→ X ∈ GL(2;C) in GL(2;C)nC2 ⊂ GL(3;C).

7. Fibered knot

A twisted Alexander polynomial is an invariant for G(K) with a representation. In general it is
not easy to find a linear representation of G(K).
There are two directions to do it by using a computer.

• a finite quotient (an epimorphism onto a finite group).

• a linear representation over a finite field.
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7.1. A finite quotient

Suppose we have a finite quotient, which is an epimorphism onto a finite group G

γ : G(K)→ G.

Here G acts naturally on G and its group rings ZG, QG. Then by using γ, G(K) also acts on G,
ZG and QG.
Note that dimQ(QG) = |G| where |G| is the order of G. Then this gives a |G|-dimensional
linear representation

γ̃ : G(K)→ GL(|G|;Q).

Further mγ̃ ⊂ GL(|G|;Z) and m(det ◦γ̃) = {±1} ∈ Z because G(K) acts on ZG. Hence the
twisted Alexander polynomial ΔK,γ̃(t) of K is well defined up to ±ts.
If K is the trivial knot, then a twisted Alexander polynomial has a form of

ΔK,ρ =
1

(λ1t − 1) · · · (λt − 1)
for any -dimensional representation ρ. Here λ1, · · · , λ are eigenvalues of the image of a
generator of E(K) ∼= Z.
Now the following holds.

Theorem 7.1 (Silver-Williams [53]). If K is not trivial, then there exists a finite quotient

γ : G(K)→ G such that ΔK,γ̃(t) 6=
1

(λ1t − 1) · · · (λt − 1)
. That is, twisted Alexander

polynomials distinguish the trivial knot.

7.2. Fibered knot

Recall the definition of a fibered knot.

Definition 7.2. A knot K is called a fibered knot of genus g if E(K) admits a structure of a
fiber bundle

E(K) = S × [0,1]/(,1) ∼ (φ(),0)

over S1 where S is a compact connected oriented surface S of genus g and φ : S→ S is an
orientation preserving diffeomorphism.

The following classical result is well known.

Theorem 7.3 (Stallings [54], Neuwirth [46]). A knot K is a fibered knot of genus g if and
only if the commutator subgroup [G(K), G(K)] is a free group of rank 2g.

In general it is not easy to check this condition on [G(K), G(K)]. The next proposition and its
corollary are well known and useful to detect fiberedness. Now we fix a symplectic basis of
H1(S;Z).

Proposition 7.4. If K is a fibered knot with a fiber surface S of genus g, then Alexander
polynomial ΔK (t) is given by

ΔK (t) = det(tφ∗ −  : H1(S;Z)→ H1(S;Z))

where φ∗ is the induced isomorphism on H1(S;Z) by φ and  is the identity matrix of rank
2g.

Corollary 7.5. If K is a fibered knot of genus g, then ΔK (t) is monic and its degree is 2g.

In general we define the monicness for a Laurent polynomial over a commutative ring R as
follows.

Definition 7.6. A Laurent polynomial ƒ (t) over R is monic if its coefficient of highest
degree is a unit in R.

IV–23



Teruaki Kitano

Now we are considering twisted Alexander polynomials of K for SL(;F)-representations over
a field. Since any non zero element in a field is always a unit, then the above definition of
the monicness does not make sense. However for any SL(n;F)-representation, twisted
Alexander polynomial is well-defined as a rational expression up ±ts. Hence we can define
the monicness of ΔK,ρ(t) as follows.

Definition 7.7. A twisted Alexander polynomial ΔK,ρ is monic if the highest degree
coefficients of the denominator and the numerator are ±1.

Generalization to the twisted case is given as follows.

Theorem 7.8 (Cha [6], Goda-Morifuji-Kitano [20].). If K is fibered, then ΔK,ρ is monic for
any SL(,F)-representation ρ.

If K is fibered, then G(K) has the deficiency one presentation defined by its fiber bundle
structure. By using this, it is clear that ΔK,ρ(t) is monic. However it is not clear this
presentation can be transformed by strong Tietze transformations. In [20] the above claim
was proved for the Reidemeister torsion.
To make refinement of the above results, we need the notion of Thurston norm. Here the
abelianization α : G(K)→ Z can be considered as an integral 1-cocylce on G(K). Hence it can
be consider as [α] ∈ H1(G(K);Z) = H1(E(K);Z). Now as one has

H1(E(K);Z) ∼= H2(E(K), ∂E(K);Z)

by Poincaré duality, there exists a properly embedded surface S = S1 ∪ · · · ∪ Sk whose
homology class [S] is dual to [α]. This surface S may be not connected in general.
Now Thurston norm ||α||T is defined by the following.

Definition 7.9.

||α||T = min
S⊂E(K)

{ χ−(S) | [S] = [S] is dual to [α]}

where

χ−(S) =
k
∑

=1

mx{−χ(S),0}

=
∑

:χ(S)<0

−χ(S).

Example 7.10. If K is a fibered knot of genus g, then the fiber surface S gives a homology
class which is dual to [α]. Here the euler characteristic χ(S) = 2 − 2g − 1 = 1 − 2g.
Hence one has

• ||α||T = 2g − 1,

• deg(ΔK (t)) = 2g.

Therefore we can see that

||α||T = deg(ΔK (t)) − 1

= deg(τα(E(K))

where the degree of τα(E(K)) is defined by deg(ΔK (t)) − deg(t − 1).

This can be generalized for the twisted Alexander polynomial. The next result was a turning
point to detect the fiberedness of a 3-manifold.

Theorem 7.11 (Friedl-Kim [16]). Let K be a fibered knot. For any representation
ρ : G(K)→ SL(;F), it holds that

• ΔK,ρ(t) is monic,

• ||α||T = deg(ΔK,ρ(t)).
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Furthermore the converse is true.

Theorem 7.12 (Friedl-Vidussi [17]). If the following two conditions hold

• ΔK,γ̃(t) is monic,

• |G| · ||α||T = deg(ΔK,γ̃(t)),

for any representation γ̃ : G(K)→ GL(|G|;Q) induced by a finite quotient γ : G(K)→ G, then
K is a fibered knot and the genus of K is given by

g =
deg(ΔK,γ̃(t)) + |G|

2|G|
.

Proof. Here we explain only an outline of the proof of the theorem by Friedl-Vidussi.
Take a Seifert surface S ⊂ E(K) such that [S] is dual to [α], and its open neighborhood

N(S) = S × (−1,1) ⊂ S × [−1,1] ⊂ E(K).

Here we consider a submanifold
M = E(K) \N(K),

which is called a sutured manifold.
Take a natural inclusion

ι : S→ S × {1} ⊂ M.
From the condition on twisted Alexander polynomials, we can see that ι∗ : H∗(S) ∼= H∗(M)
for any twisted coefficient.
This implies that the natural inclusion induces an isomorphism

ι∗ : π1S ∼= π1M.

Therefore we can prove that S ×  ∼= M and M admits a trivial fiber bundle structure over an
interval. Finally E(K) admits a structure of a fiber bundle over a circle. �

To detect fiberedness, it seems we need to compute Thurston norm ||α||T . In general it is
difficult. However we do not need to. For a non-fibered knot, we can see the vanishing of a
twisted Alexander polynomial.

Theorem 7.13 (Friedl-Vidussi [19]). If K is not fibered, then there exists a representation ρ
such that ΔK,ρ(t) = 0.

7.3. DFJ-conjecture

In this subsection we assume that K is a hyperbolic knot.

Definition 7.14. A knot K is a hyperbolic knot if S3 \ K admits a complete Riemannian
metric of constant sectional curvature -1. In other words, S3 \ K is the quotient of the
three-dimensional hyperbolic space H3 by a subgroup of hyperbolic isometries som+(H3)
acting freely and properly discontinuously.

Remark 7.15. It is well known that som+(H3) ∼= PSL(2;C).

Let K be a hyperbolic knot. Then there exists a holonomy representation

ρ̄0 : G(K)→ PSL(2;C)

and a lift
ρ0 : G(K)→ SL(2;C)

with tr(ρ0(m)) = 2. Here m ∈ G(K) is a meridian.
If K is a fibered knot of genus g, then the twisted Alexander polynomial ΔK,ρ0 (t) is monic
polynomial of degree 4g − 2.
Dunfield, Friedl and Jackson claim that it is enough to consider the monicness of ΔK,ρ0 (t) for
only ρ0 to detect the fiberedness of a hyperbolic knot.
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Conjecture 7.16 (Dunfield-Friedl-Jackson [13]).

• ΔK,ρ0 (t) detects Thurston norm of α, that is, the genus of K can be described by the
degree of ΔK,ρ0 (t).

• A hyperbolic knot K is fibered if and only if ΔK,ρ0 (t) is a monic polynomial.

Theorem 7.17 (Dunfield-Friedl-Jackson [13]). The DFJ-conjecture is true for all 313,209
hyperbolic knots with at most 15 crossings.

Further it holds for any twist knot.

Theorem 7.18 (Morifuji [43]). The DFJ-conjecture is true for any twist knot.

Remark 7.19.

• Morifuji and Tran [45] treated twisted Alexander polynomials of a 2-bridge knot for
parabolic representations in connection with the DFJ-conjecture. Here a
representation ρ is called a parabolic representation if tr(ρ(m)) = 2.

• Recently Agol and Dunfield [1] showed that we can detect the Thurston norm of K by
from ΔK,ρ0 (t) in a large class of hyperbolic knots.

8. Epimorphism between knot groups

For the rest of this paper, as one application of the twisted Alexander polynomial, we treat
some topics on epimorphisms between knot groups.

Definition 8.1. For two knots K1, K2, we write K1 ≥ K2 if there exists an epimorphism
φ : G(K1)→ G(K2) which maps a meridian of K1 to a meridian of K2.

Let us start from a simple example: 85 ≥ 31.

31

Example 8.2. The two knots 85 and 31 have the following presentations:

G(85) = 〈y1, y2, y3, y4, y5, y6, y7, y8 | y7y2y−17 y−1
1
, y8y3y

−1
8
y−1
2
, y6y4y

−1
6
y−1
3
,

y1y5y
−1
1
y−1
4
, y3y6y

−1
3
y−1
5
, y4y7y

−1
4
y−1
6
,

y2y8y
−1
2
y−1
7
〉.

and

G(31) = 〈1, 2, 3 | 31−13 −1
2
, 12

−1
1
−1
3
〉.
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85

If generators of G(85) are mapped to the following generators of G(31) as

y1 7→ 3, y2 7→ 2, y3 7→ 1, y4 7→ 3,

y5 7→ 3, y6 7→ 2, y7 7→ 1, y8 7→ 3,

any relator in G(85) goes to the trivial element in G(31). For example, it can be seen that

y7y2y
−1
7
y−1
1
7→ 12

−1
1
−1
3
= 1,

y8y3y
−1
8
y−1
2
7→ 31

−1
3
−1
2
= 1.

Hence this gives an epimorphism from G(85) onto G(31), which maps a meridian to a
meridian. Therefore, we can write

85 ≥ 31.

The geometric reason why there exists an epimorphism from G(85) to G(31) is

• 85 has a period 2, namely, it is invariant under some π-rotation of S3,

• 31 is the quotient knot of 85 by this π-rotation.

Here we define a period of a knot as follows.

Definition 8.3. A knot K in S3 has a period q > 1 if there exists an orientation preserving
periodic diffeomorphism ƒ : (S3, K)→ (S3, K) of order q such that the set of fixed points
Fix(ƒ ) is homeomorphic to S1 in S3 which is disjoint from K.

Remark 8.4. By the positive answer for the Smith conjecture, we can see that the fixed
point set is the unknot. See [42] for the Smith conjecture.

If K is a periodic knot of order q, this means that there exists an action of Z/qZ on (S3, K).
Now the quotient space of S3 by this action is topologically S3 and the image of K by the
quotient map is a knot in S3 again.
The following problem is a fundamental problem.

Problem 8.5. When and how does there exists an epimorphism between two given knot
groups ?

There are some geometric situations for the existence of a epimorphism as follows.

• To the trivial knot© from any knot K, there exists an epimorphism

α : G(K)→ G(©) = Z.

This is just the abelianization

G(K)→ G(K)/[G(K), G(K)] ∼= Z.

This map can always be realized as a collapse map between knot exteriors with
degree one.
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• There exist two epimorphisms from any composite knot to each factor knot

G(K1♯K2)→ G(K1), G(K2).

They are also just induced by collapse maps with degree one.

• In general a degree one map between knot exteriors induces an epimorphism, as we
shall explain precisely later.

• Let K be a knot with a period q. Its quotient map (S3, K)→ (S3, K ′) = (S3, K)/∼ induces
an epimorphism

G(K)→ G(K ′).

• For any knot K, we take the composite knot K♯K̄ where K̄ is the mirror image of K.
The mirror image of K is defined as the image of K by a reflection of K along R2. Here
we put a knot

K ⊂ R2 × (−∞,0)

⊂ R3 ⊂ S3 = R3 ∪ {∞}.

This reflection can be naturally extended to S3. Then there exist epimorphisms

G(K♯K̄)→ G(K)

between them. This epimorphism is induced from a quotient map

(S3, K♯K̄)→ (S3, K)

of a reflection (S3, K♯K̄), whose degree is zero.

• There is the Ohtsuki-Riley-Sakuma construction for epimorphisms between 2-bridge
links. Please see [47] for details.

First we recall the definition of the mapping degree.
Take any proper map

φ : (E(K1), ∂E(K1))→ (E(K2), ∂E(K2))
between two knot exteriors. This map φ induces a homomorphism

φ∗ : H3(E(K1), ∂E(K1);Z)→ H3(E(K2), ∂E(K2);Z).

Definition 8.6. The degree of φ is defined to be the integer d satisfying

φ∗[E(K1), ∂E(K1)] = d[E(K2), ∂E(K2)]

where [E(K), ∂E(K)] is a generator of H3(E(K), ∂E(K);Z) ∼= Z under the induced orientation
from S3 for  = 1,2.

Proposition 8.7. If φ∗ : G(K1)→ G(K2) is induced from a degree d map, then this degree d
can be divisible by the index n = [G(K2) : φ∗(G(K1))]. Namely d/n is an integer.

In particular if d = 1, then the index n should be 1 and hence φ∗(G(K1)) = G(K2). Therefore
we obtain the following.

Corollary 8.8. If there exists a degree one map

φ : (E(K1), ∂E(K1))→ (E(K2), ∂E(K2)),

then φ induces an epimorphism

φ∗ : G(K1)→ G(K2).

Remark 8.9. As explained later, there exist epimorphisms induced from

• a non zero degree map, but not degree one map,

• a degree zero map.
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8.1. Determination on a partial order

For the set of isomorphism classes of knots, Definition 8.1 provides a partial order by using
epimorphisms.

Proposition 8.10. The relation K ≥ K ′ gives a partial order on the set of the prime knots.
Namely this relation ≥ satisfies the followings;

1. K ≥ K.

2. K ≥ K ′, K ′ ≥ K ⇒ K = K ′.

3. K ≥ K ′, K ′ ≥ K ′′ ⇒ K ≥ K ′′.

Proof. The only non trivial claim is the second one,

K ≥ K ′, K ′ ≥ K ⇒ K = K ′.

Here are two facts that we need to prove.

• Any knot group G(K) is Hopfian, namely any epimorphism G(K)→ G(K) is an
isomorphism. See [22] as a reference for example.

• The knot group G(K) determines the knot type for a prime knot K [21].

Now we assume K ≥ K ′, K ′ ≥ K. Then there exist two epimorphisms
φ1 : G(K)→ G(K ′), φ2 : G(K ′)→ G(K). Here the composition of two epimorphisms
φ2 ◦ φ1 : G(K)→ G(K) is an isomorphism because G(K) is Hopfian.
Similarly the other φ1 ◦ φ2 : G(K ′)→ G(K ′) is an isomorphism, too. Hence G(K) is isomorphic
to G(K ′). Because K and K ′ are prime knots, then K = K ′. �

Remark 8.11.

• To say facts, here we do not use the assumption that an epimorphim preserves a
meridian. However we need this assumption to determine the partial order.

• Cha and Suzuki [8] proved that there exist pairs of knots only with an epimorphism
which does not preserve a meridian. Namely they admit an epimorphism, but never
do an meridian preserving epimorphism.

To determine partial orders, fundamental tools are

• Alexander polynomial,

• Twisted Alexander polynomial.

The following fact on the Alexander polynomial is well known. As a reference, see [10] for
example.

Proposition 8.12. If K1 ≥ K2, then ΔK1 (t) can be divisible by ΔK2 (t).

This can be generalized to the twisted Alexander polynomial as follows.

Theorem 8.13 (Kitano-Suzuki-Wada [34]). If K1 ≥ K2 realized by an epimorpshim
φ : G(K1)→ G(K2), then ΔK1,ρ2◦φ(t) can be divisible by ΔK2,ρ2 (t) for any representation
ρ2 : G(K2)→ SL(;F).

By using these criterion for SL(2;Z/pZ)-representations over a finite prime field Z/pZ, we
can check the non-existence. For the rest, we find epimorphisms between knot groups by
using a computer and obtain the following list.
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Theorem 8.14 (Kitano-Suzuki [31], Horie-Kitano-Matsumoto-Suzuki [23]).

85,810,815,818,819,820,821,91,96,916,923,924,928,940,
105,109,1032,1040,1061,1062,1063,1064,1065,1066,1076,1077,
1078,1082,1084,1085,1087,1098,1099,10103,10106,10112,10114,
10139,10140,10141,10142,10143,10144,10159,10164















≥ 31

1143,1144,1146,1147,1157,1158,1171,1172,1173,
11100,11106,11107,11108,11109,11117,11134,11139,
11157,11165,11171,11175,11176,11194,11196,
11203,11212,11216,11223,11231,11232,11236,
11244,11245,11261,11263,11264,11286,11305,11306,
11318,11332,11338,11340,11351,11352,11355,
11n71,11n72,11n73,11n74,11n75,11n76,11n77,11n78,11n81,
11n85,11n86,11n87,11n94,11n104,11n105,11n106,11n107,11n136,
11n164,11n183,11n184,11n185,



























































≥ 31

918,937,940,958,959,960,10122,10136,10137,10138,
115,116,1151,11132,11239,11297,11348,11349,
11n100,11n148,11n157,11n165







≥ 41

11n78,11n148 ≥ 51
1074,10120,10122,11n71,11n185 ≥ 52

11352 ≥ 61
11351 ≥ 62

1147,11239 ≥ 63

8.2. Hasse diagram

Now let us consider a Hasse diagram. It is an oriented graph for a partial ordering as follows.

• a vertex : a prime knot

• an oriented ege : if K1 ≥ K2, then we draw it from the vertex of K1 to the one of K2.

Naturally the following problem arises.

Problem 8.15. How can we understand the structure of this Hasse diagram of the prime
knots under this partial order ?

By using Kawauchi’s imitation theory [26], the next theorem can be proved.

Theorem 8.16 (Kawauchi). For any knot K, there exists a hyperbolic knot K̃ such that
there exists an epimorphism from G(K̃) onto G(K) induced by a degree one map.

As a similar application of Kawauchi’s theory, we can see the following.

Proposition 8.17. For any knot K, there exists a hyperbolic knot K ′ such that there exist
two epimorphisms from G(K ′) onto G(K) as follows. The one is induced by degree one map
and another one is induced by degree zero map.

From the above proposition, there exists an epimorphism from a hyperbolic knot to any
knot. On the other hand, the following fact is known. See [51, 32].

Fact 8.18. For any torus knot K, if there exists an epimorphism φ : G(K)→ G(K ′), then K ′ is
a torus knot, too.

Further we can see this Hasse diagram is not so simple as follows. The following proposition
can be also proved by using Kawauchi’s imitation theory.
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Proposition 8.19. For any two prime knots K1 and K2, there exists a prime knot K such
that K ≥ K1 and K ≥ K2.

In our list of partial ordering, knots

31,41,51,52,61,62,63

are minimal elements in the set of prime knots with up to 11-crossings.
Here in fact, we can prove that they are minimal in the set of all prime knots.

Theorem 8.20 (Kitano-Suzuki[33]). The knots 31,41,51,52,61,62,63 are minimal
elements in the set of all prime knots.

By the above results, the following problem appears naturally.

Problem 8.21. If K1 ≥ K2, then is the crossing number of K1 greater than the one of K2?

It is clear in the list. If it is true in general, it gives another proof of the theorem by Agol and
Liu.

Theorem 8.22 (Agol-Liu [2]). Any knot group G(K) surjects onto only finitely many knot
groups.

Remark 8.23. This statement was called the Simon’s conjecture. See [27].

8.3. Epimorphisms induced by degree zero maps

Boileau, Boyer, Reid and Wang proved the following.

Proposition 8.24 (Boileau-Boyer-Reid-Wang [4]). Any epimorphism between 2-bridge
hyperbolic knots is always induced from a non zero degree map.

On the other hand, there are some interesting examples in our list as follows.

Example 8.25. Here 1059, 10137 are 3-bridge hyperbolic knots. From the list one has
1059, 10137 ≥ 41, that is, there exist epimorphisms

G(1059), G(10137)→ G(41).

However there is no non-zero degree map between them. Namely any epimorphism induced
by a proper map between these knot exteriors is induced from a degree zero map.

1059

Here recall the Alexander module of a knot. We take a Z-covering

E∞(K)→ E(K)
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10137

associated to α : G(K)→ Z ∼=< t >. Here a group ring Z[Z] ∼= Z[t, t−1] acts on H1(E∞(K);Z)
and it gives a structure of a module over a Laurent polynomial ring Z[t, t−1] on
H1(E∞(K);Z). This module is called the Alexander module of K over Z.

Remark 8.26. If we consider the Alexander module over Q, a generator of its order ideal is
just the Alexander polynomial of K.

To see that there are no non-zero degree maps, we have to study the structure of Alexander
modules. The following facts are well known in the theory of surgeries on compact
manifolds. For example, see in the book by Wall [56].

Fact 8.27. If there exits an epimorphism

φ∗ : G(K)→ G(K ′)

induced from a non zero degree map (resp. a degree one map)

E(K)→ E(K ′),

then its induced epimorphism

H1(E∞(K);Q)→ H1(E∞(K ′);Q)

between their Alexander modules over Q (resp. over Z) is split over Q (resp. Z).

Remark 8.28. The twisted Alexander module version of the above fact may be a refinement
of the divisibility of twisted Alexander polynomials.

Example 8.29. By similar observation for Alexander modules, we can see the followings.

• 924 ≥ 31 and 115 ≥ 41.

• Any epimorphism induced by a proper map between these knot exteriors is induced
only from an degree zero map.

Remark 8.30. Here 1059, 10137,924 are Montesinos knots given as follows.

• 1059 = M(−1; (5,2), (5,−2), (2,1)),

• 10137 = M(0; (5,2), (5,−2), (2,1)),

• 924 = M(−1; (3,1), (3,2), (2,1)).

Why does there exist an epimorphism between them ? We can explain the reason from the
geometric observation by Ohtsuki-Riley-Sakuma in [47].
Here let

φ : G(K)→ G(K ′)
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be an epimorphism. We take a simple closed curve γ ⊂ S3 \ K whose homotopy class
belongs to Kerφ ⊂ G(K). Then if γ is an unknot in S3, by taking the surgery along γ, we get a
new knot K̃ in S3 such that there exists an epimorphism G(K̃)→ G(K ′).
Now we can apply this construction to a pair of (41♯4̄1 = 41♯41,41). First we recall that there
exists an epimorphism

G(41♯4̄1)→ G(41)

which is a quotient map of a reflection. Then it is induced from a degree zero map. By
surgery along some simple closed curve, one has both of

G(1059)→ G(41),

and

G(10137)→ G(41).

More generally we can see the following by applying this construction to any 2-bridge knot.
It was not written explicitly, but essentially in [47] by Ohtsuki, Riley and Sakuma.

Proposition 8.31. For any 2-bridge knot K, there exists a Montesinos knot K̃ such that
there exists an epimorphism

G(K̃)→ G(K)

induced from a degree zero map E(K̃)→ E(K).

Return to the list of knots with up to 10-crossings. We can find epimorphisms explicitly, but
have not found all epimorphisms if they exist.
For the epimorpshism we could find, the following partial order relations can be realized by
epimorphisms induced from degree zero maps.

810, 820, 924, 1062, 1065, 1077,
1082, 1087, 1099, 10140, 10143

�

≥ 31

1059, 10157 ≥ 41
In this list, Montesinos knots appear as above.

Remark 8.32. The other knots are given by Conway’s notation [9] as follows:

• 1082 = 6∗∗4.2,

• 1087 = 6∗∗22.20,

• 1099 = 6∗∗2.2.20.20

About the above degree zero maps, it might be understood from this classification.

8.4. Problems

Finally we put a list of problems.

• Characterize a minimal knot in the set of prime knots under the partial order.

• Characterize an epimorphism induced from a degree zero map.

• If K1, K2 are hyperbolic knots and K1 ≥ K2, then is the hyperbolic volume of S3 \ K1
greater than or equal to the one of S3 \ K2 ?

• How strong is twisted Alexander polynomial for a representation over a finite field ?

– To determine the non-existence of an epimorphism.

– To detect the fiberedness.
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For example, is it true that K is fibered if any twisted Alexander polynomial is monic
for any 2-dimensional unimodular representation over a finite prime field ?

• By using twisted Alexander module, give a generalization of the method to determine
existence of epimorphism by using Alexander module.

• Find a skein relation for twisted Alexander polynomial.
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