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SOME APPLICATIONS OF RICCI FLOW TO
3-MANIFOLDS

Sylvain Maillot

1. Introduction

The purpose of this text is to describe some applications of Ricci flow
to questions about the topology and geometry of 3-manifolds. The most
spectacular achievement in the recent years was the proof of W. Thurston’s
Geometrization Conjecture by G. Perelman [39, 41, 40].

In Sections 2–6 we outline a proof of the Geometrization Conjecture
which is based in part on Perelman’s ideas. This is joint work with L.
Bessières, G. Besson, M. Boileau, and J. Porti. Some details have already
appeared in the preprint [4]; the rest will be contained in our forthcoming
monograph [3]. In Section 7 we announce some results on the topologi-
cal classification of (possibly noncompact) 3-manifolds with positive scalar
curvature. These results follow from an extension of those discussed in Sec-
tion 6, and are joint work with L. Bessières and G. Besson. Details will
appear elsewhere.

The theory of Ricci flow in low dimensions relies on techniques and in-
sights from riemannian geometry, geometric analysis, and topology. In this
text, we deliberately adopt the topologist’s viewpoint; thus we shall focus
on the topological and geometric arguments rather than the analytic as-
pects. The Ricci flow is considered here as a tool to prove topological and
geometric theorems. Therefore, we sometimes do not prove the strongest
possible estimates on Ricci flow solutions, but rather strengthen the theo-
rems that are used to deduce topological consequences (e.g. Theorem 4.2
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122 SYLVAIN MAILLOT

or Proposition 5.11) by weakening their hypotheses. It should go without
saying that the Ricci flow as a mathematical object is worth studying for
its own sake, which justifies trying to obtain the best possible results on
the analytic side.

This text is mostly intended for nonexperts. The prerequisites are basic
concepts in algebraic topology and differential geometry; previous knowl-
edge of 3-manifold theory or Ricci flow is of course useful, but not necessary.
We have endeavored to make the various parts of the proof as independent
from each other as possible, in order to clarify its overall structure.

Special paragraphs marked with an asterisk (*) are geared toward the
experts who wish to understand the differences between the proof of the Ge-
ometrization Theorem presented here and Perelman’s proof. Only in those
paragraphs is some familiarity with Perelman’s papers implicitly assumed.

Acknowledgments. — I would like to thank all the people who have, di-
rectly or indirectly, helped me understand Perelman’s Ricci flow papers. In
addition to my above-mentioned co-authors, this includes the participants
of the workshops in Grenoble 2004 and München 2005, especially Bernhard
Leeb, Thomas Schick, Hartmut Weiss and Jonathan Dinkelbach. I am also
indebted to Bruce Kleiner and John Lott for writing their notes [30], as
well as the Clay Mathematics Institute for financial support.

Numerous conversations, in particular with Thomas Delzant and Olivier
Biquard, have helped shape my thoughts on the subject. I also thank the
organizers of the seminars and conferences where I have had the opportu-
nity to present this work. The present text is based in part on notes from
those talks. Lastly, I would like to thank Laurent Bessières and Gérard
Besson for their remarks on a preliminary version of this paper.

2. Geometrization of 3-manifolds

All 3-manifolds considered in this text are assumed to be smooth, con-
nected, and orientable. The n-dimensional sphere (resp. n-dimensional real
projective space, resp. n-dimensional torus) is denoted by Sn (resp. RPn,
resp. Tn). General references for this section are [43, 6, 7, 25, 26].

We are mostly interested in compact manifolds, and more precisely closed
manifolds, i.e., compact manifolds whose boundary is empty. A closed 3-
manifold is spherical if it admits a riemannian metric of constant positive
sectional curvature. Equivalently, a 3-manifold is spherical if it can be ob-
tained as a quotient of S3 by a finite group of isometries acting freely. In
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SOME APPLICATIONS OF RICCI FLOW TO 3-MANIFOLDS 123

particular, the universal cover of a spherical 3-manifold is diffeomorphic
to S3.

In this text, a 3-manifold H with empty boundary is called hyperbolic if
it admits a complete riemannian metric of constant sectional curvature −1
and finite volume. Such a metric is called a hyperbolic metric. A hyperbolic
manifold may be closed, or have finitely many ends, called cusps, which
admit neighborhoods diffeomorphic to T 2×[0,+∞). The hyperbolic metric,
which by Mostow rigidity is unique up to isometry, is denoted by ghyp.
By extension, a compact manifold M with nonempty boundary is called
hyperbolic if its interior is hyperbolic. Thus in this case ∂M is a union of
tori.

A 3-manifold is Seifert fibered, or simply Seifert, if it is the total space of a
fiber bundle over a 2-dimensional orbifold. It is well-known that all spherical
3-manifolds are Seifert fibered. Seifert manifolds have been classified, and
form a well-understood class of 3-manifolds. Among them, spherical mani-
folds are exactly those with finite fundamental group.

To state the Geometrization Theorem, we still need two definitions: a
3-manifold M is irreducible if every embedding of the 2-sphere into M

can be extended to an embedding of the 3-ball. An orientable embedded
surface F ⊂ M of positive genus is called incompressible if the group
homomorphism π1F → π1M induced by the inclusion map is injective.

The main purpose of this article is to present a proof of the following
result:

Theorem 2.1 (Perelman). — Let M be a closed, irreducible 3-manifold.
Then M is hyperbolic, Seifert fibered, or contains an embedded incompress-
ible torus.

Theorem 2.1, together with the Kneser-Milnor prime decomposition theo-
rem (see e.g. [25],) the torus splitting theorem of Jaco-Shalen [27] and
Johannson [28], and Thurston’s hyperbolization theorem for Haken mani-
folds [37, 36, 29], implies Thurston’s original formulation of the Geometri-
zation Conjecture in terms of a canonical decomposition of any compact
3-manifold along spheres and tori into ‘geometric’ 3-manifolds admitting
locally homogeneous riemannian metrics.(1)

Theorem 2.1 implies the Poincaré Conjecture: indeed, by Kneser’s theo-
rem and van Kampen’s theorem, it is enough to prove this conjecture for

(1) Of the famous ‘eight geometries’ that uniformize those locally homogeneous 3-
manifolds, six correspond to Seifert manifolds (including spherical geometry), one is
hyperbolic geometry, and the last one, Sol, does not appear in the above statement.
(From our viewpoint, Sol manifolds are just special 3-manifolds containing incompres-
sible tori.)
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124 SYLVAIN MAILLOT

irreducible 3-manifolds. Now if π1M is trivial, then M cannot be hyper-
bolic or contain an incompressible torus. Hence M is Seifert. As mentioned
earlier, Seifert manifolds with finite fundamental group are spherical. It
follows that M is a quotient of the 3-sphere by a trivial group, i.e. the
3-sphere itself.

By a straightforward extension of the above argument, one can deduce
from Theorem 2.1 the following strengthening of the Poincaré Conjecture:

Elliptization Conjecture. — Every closed 3-manifold with finite funda-
mental group is spherical.

When π1M is infinite, it was known from [44, 33, 47, 16, 9] (see also [32]
and [7, Chapter 5]) that if π1M has a subgroup isomorphic to Z2, then it is
Seifert fibered or contains an embedded incompressible torus. Thus, prior
to Perelman’s work, the only remaining open question was the following:

Hyperbolization Conjecture. — If M is a closed, irreducible 3-mani-
fold whose fundamental group is infinite and does not contain a subgroup
isomorphic to Z2, then M is hyperbolic.

This statement is also a direct consequence of Theorem 2.1.
The dichotomy finite vs infinite fundamental group will not appear di-

rectly in the proof presented here, but rather via properties of the higher
homotopy groups. The connection is given by the following well-known
lemma:

Lemma 2.2. — Let M be a closed, irreducible 3-manifold. Then the
following are equivalent:

(i) π1M is infinite;
(ii) π3M is trivial;
(iii) M is aspherical, i.e. πkM is trivial for all k > 2.

Proof. — It follows from irreducibility of M and the Sphere Theorem
that π2M is trivial. Let M̃ be the universal cover of M . Then M̃ is 2-
connected. By the Hurewicz Isomorphism theorem, we have π3M̃ ∼= H3M̃ .
Hence π3M , which is isomorphic to π3M̃ , vanishes if and only if M̃ is
noncompact. This proves that (i) and (ii) are equivalent.

It is immediate that (iii) implies (ii). For the converse, apply the Hurewicz
theorem inductively to M̃ . �
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3. The Ricci Flow approach

Notation 3.1. — If g is a riemannian metric, we denote by Rmin(g) the
minimum of its scalar curvature, by Ricg its Ricci tensor, and by vol(g) its
volume.

Let M be a closed, irreducible 3-manifold. In the Ricci flow approach to
geometrization, one studies solutions of the evolution equation

(3.1)
dg

dt
= −2Ricg(t),

called the Ricci flow equation, which was introduced by R. Hamilton. A so-
lution is an evolving metric {g(t)}t∈I , i.e. a 1-parameter family of riemann-
ian metrics on M defined on an interval I ⊂ R. In [20], Hamilton proved
that for any metric g0 on M , there exists ε > 0 such that Equation (3.1) has
a unique solution defined on [0, ε) with initial condition g(0) = g0. Thus
there exists T ∈ (0,+∞] such that [0, T ) is the maximal interval where
the solution to (3.1) with initial condition g0 is defined. When T is finite,
one says that Ricci flow has a singularity at time T . Ideally, one would
like to see the geometry of M appear by looking at the metric g(t) when t

tends to T (whether T be finite or infinite.) To understand how this works,
we first consider some (very) simple examples, where the initial metric is
locally homogeneous.

Example 3.2. — If g0 has constant sectional curvature K, then the so-
lution is given by g(t) = (1 − 4Kt)g0. Thus in the spherical case, where
K > 0, we have T < ∞, and as t goes to T , the manifold shrinks to a point
while remaining of constant positive curvature.

By contrast, in the hyperbolic case, where K < 0, we have T = ∞ and
g(t) expands indefinitely, while remaining of constant negative curvature. In
this case, the hyperbolically rescaled solution g̃(t) := (4t)−1g(t) converges
to the metric of constant sectional curvature −1.

Example 3.3. — If M is the product of a circle with a surface of genus
at least 2, and g0 is a product metric whose second factor has constant
negative curvature, then T = ∞; moreover, the metric is constant on the
first factor, and expanding on the second factor.

In this case, g(t) does not have any convergent rescaling. However, one
can observe that the hyperbolically rescaled solution g̃(t) defined above col-
lapses with bounded curvature, i.e. has bounded curvature and injectivity
radius going to 0 everywhere as t goes to +∞. Manifolds admitting col-
lapsing sequences of riemannian metrics under various curvature bounds
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126 SYLVAIN MAILLOT

have been studied by several authors, starting with the seminal work of
Cheeger-Gromov [10, 11] (see also the surveys [38, 15], as well as the recent
paper [45] and the references therein.) Thus one is led to expect that these
techniques can be used to deduce topological information on M from the
large-scale behavior of g̃(t) in this case.

One can give similar formulae for other locally homogeneous Ricci flows
(see e.g. [31].)

An (overly) optimistic program based on the previous examples would go
as follows: if π1M is finite, prove that any Ricci flow solution has a singu-
larity at some finite time T , and that the spherical metric can be obtained
as a limit of rescalings of g(t) when t goes to T . If π1M is infinite, show
that Ricci flow is defined for all times, and study the long time behavior of
the hyperbolically rescaled solution g̃(t) := (4t)−1g(t) in order to recognize
the topological type of M ; for instance, if M has a hyperbolic metric, then
this metric ought to appear as the limit of g̃(t) as t tends to infinity.

Several important results were obtained by Hamilton [20, 21, 24] in this
direction, among which we state just two. When g0 has positive Ricci cur-
vature, then T < ∞, and the volume-rescaled Ricci flow vol(g(t))−2/3g(t)
converges to a round metric as t → T . If T = ∞ and g̃(t) has uniformly
bounded sectional curvature, then it converges or collapses, or M contains
an incompressible torus.(2)

The general case, however, is more difficult, because it sometimes hap-
pens that T < ∞ while the behavior of g(t) as t tends to T does not allow
to determine the topology of M . One possibility is the so-called neck pinch,
where part of M looks like a thinner and thinner cylindrical neck as one
approaches the singularity. This can happen even if M is irreducible (see [2]
for an example where M = S3); thus neck pinches may not give any useful
information on the topology of M . See [22] and [12, Chapters 8 and 9]
for a discussion of what was known on formation of singularities prior to
Perelman’s work.

A solution to this problem was found by G. Perelman, inspired by ideas
of Hamilton [23]. In [41], Perelman explains how to construct a kind of gen-
eralized solution to the Ricci flow equation, which he calls Ricci flow with
δ-cutoff. This type of solution exists for all time unless it leads to a metric
that is sufficiently controlled so as to allow one to recognize the topology
of the manifold. Several slightly different ways to make this construction

(2) Hamilton’s original results were formulated in terms of normalized Ricci flow. We
have restated them so that they fit better in our discussion.
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precise are given in [30, 34, 8]. We shall work with closely related objects
which we call weak solutions of the Ricci flow equation.

The first part of the proof of Theorem 2.1 is to prove an existence theorem
for weak solutions. The proof then splits into two cases.

If π1M is finite, then by Lemma 2.2, we have π3M 6= 0. Following [13],
we use this fact to associate to any riemannian metric g a quantity called
its width W (g). This invariant can be studied via minimal surface theory.
In particular, one can control the way it varies with time in a weak solution
{g(t)}. This is used to prove that for some finite time t0, the metric g(t0)
belongs to a special class of metrics, called locally canonical metrics. This
permits to recognize the topology of M .

If π1M is infinite, then we need to refine the existence theorem for weak
solutions. We prove that such solutions exist for all time, and enjoy addi-
tional properties. Then we study the long time behavior of the correspond-
ing hyperbolically rescaled solutions to deduce topological consequences.

In Section 4, we give a precise definition of weak solutions, state an
existence result, and explain how to deduce the Elliptization Conjecture.
The case where π1M is infinite is tackled in Section 5. In Section 6, we
discuss in more detail the construction of weak solutions.

4. Canonical neighborhoods, weak solutions and
elliptization

4.1. Canonical neighborhoods

Let ε be a positive number. The standard ε-neck is the riemannian prod-
uct Nε := S2×(−ε−1, ε−1), where the S2 factor is round of scalar curvature
1. Its metric is denoted by gε

0.

Definition 4.1. — Let ε be a positive number, (M, g) be a riemannian
3-manifold and x be a point of M . A neighborhood U ⊂ M of x is called
a weak ε-canonical neighborhood if one of the following holds:

(i) There exist a number λ > 0 and a C[ε−1]+1-diffeomorphism f :
(Nε, ∗) → (U, x) (where Nε is the standard ε-neck, and ∗ is a
basepoint in S2 × {0}) such that the C[ε−1]+1-norm of the tensor
φ∗(λg)− gε

0 is less than ε everywhere. In this case, we say that U

is an ε-neck centered at x.
(ii) U is the union of two sets V,W such that x ∈ V , V is a closed

topological 3-ball, W ∩ V = ∂V , and W is an ε-neck. Such a U is
called an ε-cap centered at x.
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(iii) U is a spherical 3-manifold (hence U = M since M is connected).

This notion is useful for topological purposes because of the following
result (cf. [34, Proposition A.25]):

Theorem 4.2. — Let (M, g) be a closed riemannian 3-manifold. If ev-
ery point of (M, g) has a weak 10−2-canonical neighborhood, then M is
spherical or diffeomorphic to S2 × S1.

Sketch of proof. — If some point has a neighborhood of the third type,
there is nothing to prove. Otherwise, there are two cases: if all points are
centers of necks, then by piecing together those necks, one obtains a fibra-
tion of M by 2-spheres. Since M is orientable, it must be diffeomorphic to
S2 × S1. If some point is the center of a cap, then one shows that M is
either the union of two caps, or the union of two caps and a chain of necks
connecting them. In either case, M is diffeomorphic to S3. �

Theorem 4.2 motivates the following definition:

Definition 4.3. — A riemannian metric g on a 3-manifold M is locally
canonical if every point of (M, g) has a weak 10−2-canonical neighborhood.

Remark 4.4. — (*) Definition 4.1 is weaker than Perelman’s in several
respects. Perelman’s definition includes additional geometric information
such as estimates on the curvature or its derivatives, which are not needed
for Theorem 4.2. He also considers caps that are diffeomorphic to the punc-
tured real projective 3-space instead of the 3-ball. We do not need to do this
because we shall soon restrict attention to 3-manifolds without embedding
projective planes.

Case (iii) of Definition 4.1 may appear somewhat artificial. A more nat-
ural definition would include some geometric information related to the
formation of singularities of the Ricci flow. However, this requires splitting
case (iii) into two subcases, which creates complications irrelevant to the
topological applications.

4.2. Weak solutions

Until the end of this section, we suppose that M is closed and irreducible.
We also assume that M is RP 2-free, i.e. does not contain any submanifold
diffeomorphic to RP 2. This is not much of a restriction because the only
closed, irreducible 3-manifold that does contain an embedded copy of RP 2

is RP 3, which is a spherical manifold.
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The next goal is to give the formal definition of weak solutions and state
an existence theorem. To motivate this, we first give a very broad outline
of the construction, which will be developped in Section 6.

As we already explained, one of the main difficulties in the Ricci flow
approach to geometrization is that singularities unrelated to the topology
of M may appear. Using maximum principle arguments, one shows that
singularities in a 3-dimensional Ricci flow can only occur when the scalar
curvature tends to +∞ somewhere. One of Perelman’s major breakthroughs
was to give a precise local description of the geometry at points of large
scalar curvature. In particular, he showed that those points have weak
canonical neighborhoods.

To solve the problem of singularities, we fix a large number Θ, which
plays the role of a curvature threshold. As long as the maximum of the
scalar curvature is less than Θ, Ricci flow is defined. If it reaches Θ at
some time t0, then there are two possibilities: if the minimum of the scalar
curvature of the time-t0 metric is large enough, then we shall see that this
metric is locally canonical, so that Theorem 4.2 enables us to recognize the
topology of M .

Otherwise, we modify g0 so that the maximum of the scalar curvature
of the new metric, denoted by g+(t0), is at most Θ/2. This modification
is called metric surgery. It consists in replacing some ε-caps by a special
type of ε-caps called almost standard caps. Then we start the Ricci flow
again, using g+(t0) as new initial metric. This procedure is repeated as
many times as necessary. The main difficulty is to choose Θ and do metric
surgery in such a way that the construction can indeed by iterated.

We now come to the formal definitions. Let M be a 3-manifold.
An evolving metric on M defined on an interval [a, b] is a map t 7→

g(t) from [a, b] to the space of smooth riemannian metrics on M . It is
piecewise C1 if there is a finite subdivision a = t0 < t1 < · · · < tp = b such
that the map defined on [ti, ti+1] by sending ti to g+(ti) and t to g(t) for
all t ∈ (ti, ti+1] is C1-smooth.

We often view an evolving metric g(·) as a 1-parameter family of metrics
indexed by the interval [a, b]; thus we use the notation {g(t)}t∈[a,b]. For
t ∈ [a, b], we say that t is regular if g(·) is C1-smooth in a neighborhood
of t. Otherwise t is called singular. By definition, the set of singular times
is finite. If t ∈ (a, b) is a singular time, then it follows from the definition
that the map g(·) is continuous from the left at t, and has a limit from the
right, denoted by g+(t).
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There are similar definitions where the domain of definition [a, b] is re-
placed by an open or a half-open interval I. When I has infinite length,
the set of singular times is a discrete subset of the real line, but it may be
infinite.

Definition 4.5. — Let I ⊂ R be an interval. A piecewise C1 evolving
metric t 7→ g(t) on M defined on I is said to be a weak solution of the Ricci
flow equation (3.1) if

(i) Equation (3.1) is satisfied at all regular times.
(ii) For every singular time t ∈ I one has

(a) Rmin(g+(t)) > Rmin(g(t)), and
(b) g+(t) 6 g(t).

We now state the main technical result on weak solutions needed to prove
the Elliptization Conjecture (cf. [41, Proposition 5.1]):

Theorem 4.6 (Existence of weak solutions). — Let M be a closed, ir-
reducible, RP 2-free 3-manifold. For every T > 0 and every riemannian
metric g0 on M , there exists T ′ ∈ (0, T ] and a weak solution {g(t)} on M ,
defined on [0, T ′], with initial condition g(0) = g0, and such that either

(i) T ′ = T , or
(ii) T ′ < T and g(T ′) is locally canonical.

Remark 4.7. — The statement of Theorem 4.6 is slightly weaker than
one might expect, since in case (i) it is not claimed that the solution exists
for all time. A stronger statement is in fact true (cf. Theorem 5.7 below),
but its proof is more involved.

Remark 4.8. — (*) There are a few differences between weak solutions
and Perelman’s Ricci flow with δ-cutoff. One obvious difference is that a
weak solution is an evolving metric on a fixed manifold rather than an
evolving manifold. This simplification is made possible by the extra topo-
logical assumptions on M .

Another, perhaps more significant difference is that surgery occurs before
the Ricci flow becomes singular, rather than at the singular time. Our con-
struction is in this respect closer in spirit to the surgery process envisioned
by Hamilton [23]. This point is discussed in more detail in Section 6.

4.3. Proof of elliptization

To deduce the elliptization part of Theorem 2.1, all we need is the fol-
lowing result (cf. [40, 13]:)
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Theorem 4.9. — Let M be a closed, irreducible, RP 2-free 3-manifold
with finite fundamental group. For each riemannian metric g0 on M there is
a number T (g0) > 0 such that if {g(t)} on M is a weak solution defined on
some interval [0, T ] and with initial condition g(0) = g0, then T < T (g0).

Indeed, assume that Theorems 4.2, 4.6, and 4.9 have been proved. Let M

be a closed, irreducible, RP 2-free 3-manifold such that π1M is finite, and
let g0 be an arbitrary metric on M . Theorem 4.9 provides a positive number
T (g0) > 0 such that no weak solution with initial condition g0 can exist
up to time T (g0). Let T ′ > 0 and {g(t)}06t<T ′ be given by Theorem 4.6
applied with T = T (g0). Then Case (ii) of the conclusion of that theorem
must hold. This implies that M has a locally canonical metric. Applying
Theorem 4.2 and noting that S2×S1 is not irreducible, we conclude that M

is spherical.
Let us sketch the proof of Theorem 4.9. Let M be a 3-manifold satisfy-

ing the hypotheses and g0 be a riemannian metric on M . First we show,
following Colding-Minicozzi [13], that there is a constant T such that there
exists no Ricci flow solution on M defined on [0, T ], with initial condition
g(0) = g0. It will then be straightforward to extend the argument to prove
that there can in fact exist no weak solution defined on the same interval.

Let Ω be the space of smooth maps f : S2 × [0, 1] → M such that
f(S2 × {0}) and f(S2 × {1}) are points. Since π1M is finite, Lemma 2.2
implies that π3M 6= 0. It follows that there exists f0 ∈ Ω which is not
homotopic to a constant map. Let ξ be the homotopy class of f0. We set

W (g) := inf
f∈ξ

max
s∈[0,1]

E(f(·, s)),

where E denotes the energy

E(f(·, s)) =
1
2

∫
S2
|∇xf(x, s)|2 dx.

Let {g(t)}t∈[0,T ] be a Ricci flow solution such that g(0) = g0. The func-
tion t 7→ W (g(t)) is continuous. Colding and Minicozzi [13, 14] prove that
there exists a constant C > 0 depending only on g0 such that:

(4.1)
d

dt
W (g(t)) 6 −4π +

3
4(t + C)

W (g(t)),

where d
dtW (g(t)) is to be interpreted as

lim sup
h>0,h→0

W (g(t + h))−W (g(t))
h

in case W (g(t)) is not differentiable at t in the traditional sense.
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Since the right-hand side is not integrable and W (g(t)) cannot become
negative, this easily implies an upper bound on T depending only on C,
hence on g0.

If we replace {g(t)}t∈[0,T ] by a weak solution, then W (g(t)) need not
be continuous in t. However, condition (ii)(b) in the definition of a weak
solution immediately implies that

(4.2) W (g+(t)) 6 W (g(t))

if t is a singular time. One can show that the inequality (4.1) still holds at
regular times. This is enough to conclude that the previous a priori upper
bound on the existence time of Ricci flow also applies to weak solutions.

Remark 4.10. — (*) In the above argument, property (ii)(b) of the
definition of weak solutions, which amounts to the fact that surgery does
not increase distances, was used in a crucial way. This part of the proof has
been simplified: indeed, when one uses Perelman’s surgery construction,
the pre-surgery metric is not defined on the whole manifold, which makes
the proof of (4.2) more complicated (cf. [5]).

Remark 4.11. — (*) Alternatively, one can replace W (g) by Perelman’s
invariant A(α, g) introduced in [40] and follow [34] for the derivation of the
inequality analogous to (4.1). Working with weak solutions in our sense as
opposed to Ricci flow with δ-cutoff leads to a similar simplification.

5. The aspherical case

In this section, we outline the proof of the other ‘half’ of the geometriza-
tion theorem 2.1, where π1M is assumed to be infinite. Subsection 5.1 is
devoted to background material on Haken manifolds, graph manifolds and
the JSJ-decomposition. In Subsection 5.2, we state Theorem 5.7, which
contains all the results on the Ricci flow that are needed in the proof.
In Subsection 5.3, we explain how to use this result to reach the desired
conclusion.

5.1. Some 3-manifold theory

A Haken 3-manifold is a compact, irreducible 3-manifold that contains
an incompressible surface. A 3-manifold is atoroidal if every incompressible
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torus in M is parallel to a component of ∂M . Jaco-Shalen [27] and Johann-
son [28] showed that each closed Haken 3-manifold contains a canonical
family of disjoint incompressible tori T1, . . . , Tn, called the JSJ-decomposi-
tion of M , such that each connected component of M split along T1, . . . , Tn

is Seifert fibered or atoroidal. Thurston proved that the atoroidal pieces
which are not Seifert are hyperbolic (see [37, 36, 29].) Note that the JSJ-
decomposition may be empty. In this case, M is Seifert or hyperbolic.
Therefore, the above-mentioned results prove Theorem 2.1 in the case where
M is Haken.

We say that M is a graph manifold if it is a union of circle bundles glued
along their boundaries. This notion was introduced by F. Waldhausen [48].
We collect some useful facts about graph manifolds in the next proposition:

Proposition 5.1. —

(i) Any Seifert manifold is a graph manifold.
(ii) If M is a Haken manifold, then M is a graph manifold if and only

if its JSJ-decomposition has only Seifert pieces.
(iii) If M is an irreducible graph manifold, then M is Seifert or contains

an incompressible torus.

We shall be concerned with the long time behavior of the Ricci flow, or
weak solutions if Ricci flow is not defined for all time. More precisely, we
look at the hyperbolically rescaled solution g̃(t) = (4t)−1g(t). Heuristically,
one can expect g̃(t)) to converge to a hyperbolic metric on M if there exists
one, and to collapse if M is a graph manifold. If M has a nonempty JSJ-
decomposition with at least one hyperbolic piece, then it should split into
a ‘thick’ part and a ‘thin’ part, where the thick part corresponds to the
union of the hyperbolic pieces, and the ‘thin’ part corresponds to the union
of the Seifert pieces, which is a graph manifold. These two parts should be
separated by incompressible tori.

Remark 5.2. — It follows from a theorem of R. Myers [35] that any
closed 3-manifold M contains a hyperbolic knot, i.e. an embedded circle
whose complement is hyperbolic. In particular, M can be decomposed as
the union of a hyperbolic manifold and a solid torus (which is a graph
manifold). Thus when we work with the riemannian metrics given by weak
solutions to the Ricci flow, it is crucial to show that the tori that appear as
boundary components of the thick part are incompressible; otherwise, we
would not obtain any further understanding of the topology of M .
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Before closing this subsection, we define another classical notion in 3-
manifold topology which is needed in the sequel: let X be a compact 3-
manifold whose boundary is a (possibly empty) union of tori. We say that
M can be obtained from X by Dehn filling if there exists an embedding
f : X → M and a (possibly empty, possibly disconnected) 1-submanifold
L ⊂ M such that M \ f(X) is a regular neighborhood of L. By convention,
we allow L to be empty, so that the class of manifolds that can be obtained
from M by Dehn filling contains M itself. This will be convenient later on.

If Y is an open 3-manifold diffeomorphic to X \ ∂X and M can be
obtained from X by Dehn filling, then we also say that M can be obtained
from Y by Dehn filling. Thus the theorem of Myers quoted above implies
that any closed 3-manifold can be obtained from a hyperbolic manifold by
Dehn filling.

5.2. Long time behavior of weak solutions

Until the end of Section 5, M is a closed, irreducible 3-manifold whose
fundamental group is infinite. By Lemma 2.2, this implies that M is as-
pherical.

Using the contrapositive of Theorem 4.2, it follows from our hypotheses
that M does not admit locally canonical metrics. Hence Theorem 4.6 im-
plies that for any initial condition, there exists a weak solution defined on
any compact interval [0, T ]. We need to strengthen this in two respects: first
we need weak solutions defined on [0,+∞); second, we want them to sat-
isfy a list of geometric properties relevant to the topological applications.
In order to state those properties, we need some terminology.

Definition 5.3. — Let k > 0 be a whole number. Let (Mn, gn, xn)
be a sequence of pointed riemannian manifolds, and let (M∞, g∞, x∞) be
a pointed riemannian manifold. We shall say that (Mn, gn, xn) converges
to (M∞, g∞, x∞) in the Ck-sense if there exists a sequence of numbers
εn > 0 tending to zero, and a sequence of Ck-diffeomorphisms ϕn from the
metric ball B(x∞, ε−1

n ) ⊂ M∞ to the metric ball B(xn, ε−1
n ) ⊂ Mn such

that ϕ∗n(gn) − g∞ has Ck-norm less then εn everywhere. We say that the
sequence subconverges if it has a convergent subsequence.

Remark 5.4. — Note that the limit manifold M∞ need not be homeo-
morphic to any of the Mn’s. Typically, the Mn’s are compact and M∞ is
noncompact. However, if M∞ is compact, then for large n, the manifold
Mn must be diffeomorphic to M∞.
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Definition 5.5. — Let (X, g) be a riemannian 3-manifold. We say that
a point x ∈ X is ε-thin with respect to g if there exists a radius ρ ∈ (0, 1]
such that the ball B(x, ρ) has the following two properties: all sectional
curvatures on this ball are bounded below by ρ−2, and the volume of this
ball is less than ερ3. Otherwise, x is ε-thick with respect to g.

We set

R̂(g) := Rmin(g) · vol(g)2/3.

This quantity has two important properties: it is scale-invariant, and it
is nondecreasing along the Ricci flow on a closed manifold, as long as it
remains nonpositive. This is also true for weak solutions by condition (ii)
of Definition 4.5. Since our manifold M is aspherical, it does not admit any
metric of positive scalar curvature [19, 42]. Hence R̂(g) is nonpositive for
each metric g on M . As a consequence, we have:

Proposition 5.6. — Let {g(t)} be a weak solution on M . Then the
function t 7→ R̂(g(t)) is nondecreasing.

When H is a hyperbolic manifold, we let R̂(H) denote R̂(ghyp), where
ghyp is the hyperbolic metric. Note that this number is equal to −6 ·
vol(ghyp)2/3, since ghyp has constant scalar curvature equal to −6. Hence if
H1,H2 are two hyperbolic manifolds, then vol(H1) 6 vol(H2) if and only
if R̂(H1) > R̂(H2).

We are now in position to state the main result of this subsection (cf. [41,
Sections 6 and 7]):

Theorem 5.7. — Let M be a closed, irreducible, aspherical 3-mani-
fold. For every riemannian metric g0 on M , there exists a weak solution
g(t) defined on [0,+∞) with the following properties:

(i) g(0) = g0

(ii) The volume of the hyperbolically rescaled metric g̃(t) is bounded
uniformly in t.

(iii) For every ε > 0 and every sequence (xn, tn) ∈ M × [0,+∞), if tn
tends to +∞ and xn is ε-thick with respect to g̃(tn), then there
exists a hyperbolic 3-manifold H and a basepoint ∗ ∈ H such
that the sequence (M, g̃(tn), xn) subconverges in the pointed C2

topology to (H, ghyp, ∗). (Recall that for us, ‘hyperbolic manifold’
means complete and of bounded volume.)

(iv) For every sequence tn → ∞, the sequence g̃(tn) has controlled
curvature in the sense of Perelman.
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‘Controlled curvature in the sense of Perelman’ is a technical property,
which is weaker than a global two-sided curvature bound, but suffices for
some limiting arguments. It will not be discussed here. See [4] for the defi-
nition.

Remark 5.8. — The assumption that M is irreducible is in fact redun-
dant: since M is aspherical, any embedded 2-sphere in M bounds a homo-
topy 3-ball B; by the positive solution to the Poincaré Conjecture, B must
be diffeomorphic to the 3-ball. We include this hypothesis to emphasize
that various parts of the proof of Theorem 2.1 can be made independent
from one another.

Remark 5.9. — Condition (iii) may be vacuous, i.e. there may exist
no such sequence of ε-thick basepoints for any fixed ε. This happens for
instance if g(t) is a flat solution on a 3-torus.

5.3. Sequences of riemannian metrics on aspherical 3-manifolds

We begin with a direct corollary of Theorem 5.7:

Corollary 5.10. — Let M be a closed, irreducible, aspherical 3-mani-
fold. For every riemannian metric g0 on M , there exists an infinite sequence
of riemannian metrics g1, . . . , gn, . . . with the following properties:

(i) The sequence (R̂(gn))n>0 is nondecreasing. In particular, it has a
limit, which is greater than or equal to R̂(g0).

(ii) The sequence (vol(gn))n>0 is bounded.
(iii) For every ε > 0 and every sequence xn ∈ M , if xn is ε-thick with

respect to gn, then there exists a hyperbolic 3-manifold H and a
basepoint ∗ ∈ H such that the sequence (M, gn, xn) subconverges
in the pointed C2 topology to (H, ghyp, ∗).

(iv) The sequence gn has controlled curvature in the sense of Perelman.

Proof. — Applying Theorem 5.7, we obtain a weak solution {g(t)}t∈[0,∞)

with initial condition g0. Set gn := g̃(tn) for n > 1. Using Proposition 5.6
and the scale invariance of R̂, we have

R̂(g0) 6 R̂(g1) 6 · · · 6 R̂(gn) 6 · · · .

This proves assertion (i). Assertions (ii), (iii) and (iv) follow from their
counterparts in the conclusion of Theorem 5.7. �

The next task is to explore the topological consequences of the existence
of a sequence of metrics satisfying the conclusion of Corollary 5.10. This
leads to Proposition 5.11 below.
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Proposition 5.11. — Let g0, g1, . . . be a sequence of riemannian met-
rics on M as in Corollary 5.10. Then one of the following conclusions hold:

(i) M is a graph manifold,
(ii) M is hyperbolic,
(iii) M contains an incompressible torus, or
(iv) There exists an open hyperbolic manifold H such that M can be

obtained by Dehn filling on H, and R̂(H) > R̂(g0).

Sketch of proof. — Up to extracting a subsequence, we distinguish sev-
eral cases:

Case 1 (“collapsing case”). — There exists a sequence εn → 0 such that
every point of (M, gn) is εn-thin. In this case, we prove that M is a graph
manifold. Below we only give a quick sketch so that the reader can see the
ideas involved. See [4] for the details.

Our approach is centered around the notion of simplicial volume, in-
troduced by Gromov in [17]. The simplicial volume of a closed, orientable
n-manifold X is defined by

‖X‖ := inf{
∑

i

|αi|, [X] =
∑

i

αiσi},

where [X] ∈ Hn(X,R) is the fundamental class, the σi’s are continuous
maps of the standard n-simplex to X, and the αi’s are real numbers.

It is known [46] that if X is a Haken 3-manifold, then ‖X‖ equals V3 times
the sum of the volumes of the hyperbolic pieces in the JSJ-decomposition
of X, where V3 is a universal constant. In particular, ‖X‖ = 0 if and only
if X is a graph manifold.

Using the Cheeger-Gromov compactness theorem, we show that every
point x ∈ M has a neighborhood Ux whose geometry approximates a met-
ric ball in a 3-manifold of nonnegative curvature. By Cheeger-Gromoll the-
ory, there is a list of possible topologies for Ux; for instance, Ux might be a
thickened torus T 2× I or a solid torus S1×D2. All the Ux’s have virtually
abelian fundamental group. Using the hypothesis that M is aspherical, we
show that there exists x ∈ M such that the complement X of Ux in M

is Haken. The next step is to prove that any closed 3-manifold obtained
from X by Dehn filling has vanishing simplicial volume. Using Thurston’s
hyperbolic Dehn filling theorem and classical facts from 3-manifold topol-
ogy, one deduces that X is a graph manifold, which implies that M is a
graph manifold.

Case 2. — There exists ε > 0 and a sequence xn ∈ M such that xn is
ε-thick with respect to gn.
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Using Corollary 5.10 (iii), by further extracting a subsequence we can
assume that (M, gn, xn) converges in the pointed C2-sense to some pointed
hyperbolic manifold (H1, ghyp, ∗). If H1 is closed, then M is diffeomorphic
to H1, hence M is hyperbolic. Thus the interesting case is when H1 is
noncompact. In this case, (M, gn) contains for large n a submanifold H̄1

n

which is a large metric ball around xn and diffeomorphic to a large ball
in H. Thus each boundary component of H̄1

n is a torus corresponding to
some cusp cross-section in H.

Repeating this construction if necessary, we find a finite set of hyperbolic
manifolds H1, . . . ,Hp such that, for large n, the ε-thick part of (M, gn) is
covered by disjoint submanifolds H̄1

n, . . . , H̄p
n, which are approximated by

large metric balls in the Hi’s, and are bounded by approximately cuspidal
tori. To prove that the construction stops for an integer p independent of n,
we use the uniform bound on vol(gn) and the Margulis Lemma.

All boundary components of the H̄i
n’s are tori. If one of these tori is

incompressible in M , then we are done. Hence we assume that they are all
compressible. Let X be a connected submanifold of M . We say that X is
abelian if the image of the natural homomorphism π1X → π1M is abelian.
This is the case, for instance, if some component of ∂X bounds a solid
torus containing H̄i

n, or if H̄i
n is contained in some topological 3-ball.

We have the following purely topological lemma:

Lemma 5.12. — Let X ⊂ M be a submanifold bounded by compressible
tori. If X is non-abelian, then M can be obtained from X by Dehn filling.

The proof then splits again into two cases: if all H̄i
n’s are abelian, then

a refined version of the argument used for Case 1 shows that M is a
graph manifold. If there exists i such that H̄i

n is non-abelian, then us-
ing Lemma 5.12 applied to X = H̄i

n, we deduce that M can be obtained
from H̄i

n by Dehn filling. Since Hi is diffeomorphic to the interior of H̄i
n, M

is also obtained from Hi by Dehn filling. From the monotonicity of R̂(gn)
and the fact that Hi is a pointed limit of (M, gn), we get

R̂(g0) 6 lim
n→∞

R̂(gn) 6 R̂(Hi).

This finishes our sketch of proof of Proposition 5.11. �

We continue the proof of Theorem 2.1. If conclusion (i), (ii), or (iii) of
Proposition 5.11 holds, then by Proposition 5.1 the required topological
conclusion has been reached. All that remains to do is to explain how the
initial metric g0 can be chosen so that conclusion (iv) is excluded.

At this point it is convenient to recall the following well-kown facts from
hyperbolic geometry:
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Theorem 5.13 (see [18]). — The set of volumes of hyperbolic manifolds
is well-ordered.

Proposition 5.14 ([1]). — Let H be an open hyperbolic 3-manifold
and M be a closed 3-manifold obtained from H by Dehn filling. Then M

carries a riemannian metric gε such that R̂(gε) > R̂(H).

Consider the collection of all hyperbolic manifolds H such that M can be
obtained from H by Dehn filling. By the theorem of Myers quoted at the
end of Subsection 5.1, this collection is never empty. Hence we can consider
the infimum of the volumes of these manifolds, which we will denote by
V0(M). By Theorem 5.13, this infimum is in fact a minimum.(3)

We are now ready for the last argument: let H0 be a hyperbolic manifold
realizing the minimum in V0(M). If M is not hyperbolic, then H0 is open,
and M is obtained from H0 by Dehn filling. By Proposition 5.14, M admits
a metric gε such that R̂(gε) > R̂(H0). Applying Theorem 5.7 with g0 = gε

yields a sequence g1, g2, . . .. If H is a hyperbolic manifold from which M can
be obtained by Dehn filling, then by definition of V0(M), we have vol(H) >
vol(H0). This implies that R̂(H) 6 R̂(H0) < R̂(gε). Thus conclusion (iv)
of Proposition 5.11 is excluded, and applying this proposition finishes the
proof of Theorem 2.1 in the aspherical case.

Remark 5.15. — Since we allow ourselves to pass to subsequences, we
do not prove that when M is hyperbolic, hyperbolically rescaled weak so-
lutions starting from arbitrary metrics actually converge to the hyperbolic
metric. This stronger statement is in fact true. Its proof requires additional
arguments (see [41, 24, 30].)

Remark 5.16. — (*) The part of the proof that deals with compressible
tori is inspired by [41, Section 8]. We have replaced Perelman’s invariants λ̂

and V̄ by R̂ and V0 respectively. The idea to use R̂ seems due to M. Ander-
son (see also [30, Section 93], where two versions of the argument along the
lines suggested by Perelman are given.) The minimal volume V̄ considered
by Perelman and Kleiner-Lott is different from our V0; for instance, V̄ (M)
is zero if M is a graph manifold, whereas V0(M) is always positive.

Our treatment of the collapsing case is completely different from the one
hinted at by Perelman in [41, Section 7]. See [45] for another approach
using Alexandrov space theory.

(3) Although it is not necessary for the proof, it is perhaps worth remarking that when
M is hyperbolic, one can show that V0(M) is equal to the hyperbolic volume of M . This
follows from the well-known fact that hyperbolic Dehn filling decreases volume, which
is also conceptually connected to Proposition 5.14. Hence one can think of V0(M) as a
replacement for the hyperbolic volume when the manifold is not hyperbolic.
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6. More on weak solutions

The purpose of this section is to discuss some aspects of the proof of
Theorem 4.6. We first give some background on the Ricci flow, then describe
the metric surgery construction. In all of this section, M is a closed, irredu-
cible, RP 2-free 3-manifold.

For an evolving metric {g(t)} we denote the minimum (resp. maximum)
of the scalar curvature of the time-t metric by Rmin(t) (resp. Rmax(t).)

6.1. Preliminaries

A riemannian metric on M is normalized if it has sectional curvature
between 1 and −1, and the volume of any ball of unit radius is greater
than or equal to half the volume of a Euclidean ball of unit radius. Since
M is compact, any metric can be normalized by scaling. Moreover, the
property of being locally canonical for a metric is scale invariant. Hence it
suffices to prove Theorem 4.6 for normalized initial conditions.

Let I ⊂ [0,+∞) be an interval. Following the terminology of [34], we say
that an evolving metric {g(t)}t∈I has curvature pinched toward positive if
for every (x, t) ∈ M × I the following two conditions hold:

R(x, t) > − 6
4t + 1

(6.1)

R(x, t) > 2X(x, t)(log X(x, t) + log(1 + t)− 3) whenever X(x, t) > 0,

(6.2)

where X(x, t) is the opposite of the lowest eigenvalue of the curvature
operator of g(t) at x.

Below we give a few basic properties of the Ricci flow on M .

Proposition 6.1 (Long time existence). — Let K be a positive num-
ber. If g0 is a metric satisfying |Rm| 6 K, then the Ricci flow solution with
initial condition g0 exists on [0, 2−4K−1] and satisfies |Rm| 6 2K on this
interval.

Proposition 6.2 (Curvature estimates). — Let I ⊂ [0,+∞) be an in-
terval containing 0. Let {g(t)}t∈I be a Ricci flow solution with normalized
initial condition. Then g(t) has curvature pinched toward positive.

Seeking to prove Theorem 4.6, we fix a number T > 0 and a normal-
ized initial condition g0. It follows from Proposition 6.2 that Rmin(t) is
uniformly bounded from below. Moreover, if we have a solution defined
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on some interval [0, t0] and such that Rmax(t) is bounded from above on
[0, t0], then by Proposition 6.2, the norm of the curvature tensor is also
bounded above on this interval. Hence by Proposition 6.1, the solution can
be prolonged on a slightly larger interval [0, t0 + α].

As a result, Theorem 4.6 is only difficult to prove if the Ricci flow solu-
tion with initial condition g0 is defined on a maximal interval [0, T ′) with
T ′ < T and Rmax(t) is unbounded as t → T ′. That is why we need a
good description of the regions of M where the scalar curvature becomes
large. Such a description is provided by the following theorem of Perelman
(cf. [39, Theorem 12.1].)

Theorem 6.3. — For every ε > 0 and every T > 0, there exists r =
r(ε, T ) > 0 such that if {g(t)} is a Ricci flow solution on M defined on [0, T ]
with normalized initial condition, then for all (x0, t0) ∈ M × [0, T ] such
that R(x0, t0) > r−2, the point (x0, t0) has an ε-canonical neighborhood in
(M, {g(t)}).

The definition of ε-canonical neighborhood is a bit technical, so it will
not be given here. It suffices to know two things: first, if (x0, t0) has an
ε-canonical neighborhood in (M, {g(t)}), then x has a weak ε-canonical
neighborhood in (M, g(t0)); second, it implies the differential inequality

(6.3)
∂R

∂t
< C|R|2,

where C is a constant depending only on ε. (In the sequel, ε will be fixed,
so C will be universal.)

Definition 6.4. — An evolving metric {g(t)}t∈I satisfies the Canoni-
cal Neighborhoods property with parameter r (henceforth abbreviated as
(CN)r) if for all (x, t) ∈ M × [0, T ] such that R(x, t) > r−2, the point (x, t)
has an ε-canonical neighborhood in (M, g(t)).

6.2. Surgery on δ-necks

We now describe the surgery procedure. We fix a small number ε > 0.
This number should satisfy various conditions, e.g. it should be less than
10−2 so that Theorem 4.2 holds.

The two main parameters that govern the surgery procedure are called r

and δ. The parameter r is related to the curvature scale above which points
have canonical neighborhoods; it has the dimension of length, and is smaller
than the number r(ε, T ) given by Theorem 6.3. The parameter δ describes
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the precision of the surgery; it is dimensionless, and much smaller than ε.
Assume for the moment that r and δ have been fixed.

The following technical result is adapted from Lemma 4.3 of [41].

Theorem 6.5 (Existence of cutoff parameters). — There exist positive
numbers h < δr and D > 10 depending only on δ and r, such that if
(M, {g(t))} is a weak solution satisfying (CN)r, t is a time in the domain
of definition, and x, y, z are points of M such that R(x, t) 6 2r−2, R(y, t) =
h−2, R(z, t) > Dh−2, and y lies on a minimizing g(t)-geodesic connecting
x to z, then y is the center of a δ-neck.

We now carry out the construction outlined in Section 4, setting the
curvature threshold to 2Dh−2. Precisely, this means the following: we let
t0 6 T be the first time where Rmax(t) reaches Θ := 2Dh−2 (if there is
no such time, then there is nothing to prove.) If all points of (M, g(t0))
have scalar curvature greater than r−2, then by Theorem 6.3 they all have
canonical neighborhoods, and we are done. From now on, we assume that
it is not the case. We partition M into three subsets R,O,G defined as
follows:

R := {z ∈ M | Dh−2 6 R(z, t0)}

O := {y ∈ M | 2r−2 < R(y, t0) < Dh−2}

G := {x ∈ M | R(x, t0) 6 2r−2}.

Intuitively, R is the set of ‘red’ points, where the scalar curvature is
huge, and a singularity is threatening to appear. The purpose of the surgery
operation is to remove those points. The set G consists of ‘green’ points,
where R cannot be large, and O is the set of ‘orange’ points, where R may
be large, but not that much.

By assumption, G and R are not empty. Let x be a point of G, z be a
point of R, and γ be a minimizing geodesic connecting x to z. Then by the
intermediate value theorem, there exists a point y ∈ γ whose scalar cur-
vature is exactly h−2. Applying Theorem 6.5, we obtain a δ-neck centered
on y. One can show that this can be repeated finitely many times to yield
a finite collection of disjoint δ-necks N1, . . . Np whose union separates R
from G.

Let us denote by X1, . . . , Xq, Xq+1, . . . , Xq+s the connected components
of M \

⋃
i Ni, where Xj ⊂ G ∪ O for j 6 q and Xj ⊂ O ∪ R for

j > q. By a relative version of Theorem 4.2, the high curvature compo-
nents Xq+1, . . . , Xq+s, which are covered by canonical neighborhoods, are
diffeomorphic to B3 or S2 × I. Since M is irreducible, a straightforward
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topological argument shows that there is a not-so-large-curvature compo-
nent Xj0 , j0 6 q, such that M \Xj0 is a finite, disjoint union of topological
3-balls in M , and each point of ∂Xj0 is the center of a δ-neck.

In other words, M \Xj0 is covered by a union Σ(t0) of δ-caps. The surgery
operation consists in replacing those caps by special caps, called ‘almost
standard caps’. The precise definition is too technical to be discussed here.
The main points are that the post-surgery metric g+(t0) has curvature
pinched toward positive, and at all points of Σ(t0) its scalar curvature is
comparable to h−2. As a result, Rmax(g+(t0)) is bounded above by Θ/2.
After this, we restart the Ricci flow with new initial condition g+(t0).

As long as condition (V C)r is satisfied, we can iterate this construction.
Since points of scalar curvature between r−2 and Θ have canonical neigh-
borhoods, they satisfy inequality (6.3). Together with the fact that surgery
makes Rmax drop by at least half its value, this ensures that there is a
definite lower bound for the time span between two consecutive surgeries.
Hence the iteration of this process produces a weak solution.

To prove Theorem 4.6, we need to show that the parameters r and δ can
be chosen so that the construction can indeed be iterated until it produces
a weak solution defined on [0, T ] or a locally canonical metric. Theorem 6.3
does not suffice for this; instead, we need to generalize it to a special class
of weak solutions. This is done in a complex limiting argument involving
such notions as κ-solutions or κ-noncollapsing, which I will not attempt to
explain here.

Remark 6.6. — (*) Since we work on a compact time interval rather
than [0,+∞), the parameters r and δ are fixed rather than time-dependent
as in [41]. This simplification was observed by Perelman in [40]. To prove
Theorem 5.7 however, we need to work with time-dependent parameters,
which creates an additional layer of complexity.

Remark 6.7. — (*) As we already noticed, the main difference between
our construction and Perelman’s is that we do surgery before the singu-
larity appears, rather than at the singular time. As a consequence, we do
not have to discuss horns, capped horns and double horns. Our solution
for a given initial condition may be very different from Perelman’s: at one
extreme, Ricci flow may be defined for all time: then Perelman’s construc-
tion produces the Ricci flow solution, while ours may lead to surgery if the
curvature reaches the threshold. Neither construction leads to a canonical
‘Ricci flow through singularities’.

Another consequence of this choice is that we do not explicitly address
the question of formation of singularities in the Ricci flow. The reader
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should be aware, however, that the difficulties we have to face and the way
they are overcome (e.g. blow-up arguments) are essentially the same.

Remark 6.8. — (*) Our argument to rule out accumulation of surgeries
is different from Perelman’s, and does not use the volume. This is crucial
for the generalization to infinite volume solutions discussed below.

7. Extension to non-compact 3-manifolds

Let M be a possibly noncompact 3-manifold without boundary. A rie-
mannian metric g on M has bounded geometry if it has bounded sectional
curvature and injectivity radius bounded away from zero. An evolving met-
ric {g(t)}t∈I is complete (resp. has bounded geometry, resp. has bounded
sectional curvature) if for each t ∈ I the metric g(t) has the corresponding
property.

The results of Section 4 can be extended to this context. For simplicity
we give the existence result for irreducible open 3-manifolds (note that such
a manifold is automatically RP 2-free.)

Theorem 7.1. — Let M be an open, irreducible 3-manifold not diffeo-
morphic to R3. Let g0 be a complete riemannian metric on M which has
bounded geometry. Then there exists a complete weak solution {g(t)}t∈[0,∞)

of bounded geometry on M with initial condition g(0) = g0.

Theorem 7.1 is proved using the construction described in Section 6 and
the following version of Theorem 4.2 for open 3-manifolds:

Theorem 7.2. — Let (M, g) be an open riemannian 3-manifold. If g is
locally canonical, then M is diffeomorphic to R3 or S2 ×R. In particular,
if M is irreducible, then M is diffeomorphic to R3.

Sketch of proof of Theorem 7.1. — One defines parameters r, δ, h, D, Θ
as in the compact case. If the maximum of the scalar curvature reaches the
threshold Θ for some time t0, there is a similar decomposition of M into
three subsets R, O, and G, which may have infinitely many components. By
Theorem 7.2, g(t0) cannot be locally canonical, so G is nonempty. Using an
generalization of Theorem 6.5, one finds a (possibly infinite) set of spheres
in O which are middle spheres of δ-necks and separate R from G. Using
elementary 3-manifold topology, one deduces from irreducibility of M that
there is a noncompact submanifold X ⊂ M containing no point of R, and
whose complement is a (possibly infinite) set of disjoint 3-balls. Then one
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performs geometric surgery on each of these 3-balls in order to decrease the
maximal scalar curvature. The rest of the argument goes through without
major changes. �

Theorem 7.1 has an application to positive scalar curvature, which we
now describe. Let us denote by Rmin(g) the infimum of the scalar curvature
of a metric g (which may or may not be attained.) Following [19], we say
that g has uniformly positive scalar curvature if Rmin(g) > 0.

Theorem 7.3. — Let M be an open, irreducible 3-manifold which car-
ries a complete metric g0 of bounded geometry and uniformly positive scalar
curvature. Then M is diffeomorphic to R3.

Proof. — If M is not diffeomorphic to R3, then we can apply Theo-
rem 7.1 to get a complete weak solution {g(t)} of bounded geometry with
initial condition g0, defined on [0,+∞). A maximum principle argument
(cf. [8, §2.1]) together with condition (ii)(a) of the definition of weak solu-
tion shows that

Rmin(t) >
Rmin(0)

1− 2tRmin(0)/3

if g(t) is a complete weak solution with bounded sectional curvature. This
gives an upper bound on the lifetime of such a solution, hence a contradic-
tion. �

Theorem 7.3 is a special case of a more general result. In order to state it,
we need a definition of connected sum allowing infinitely many summands.

If X is a class of closed 3-manifolds, we say that a 3-manifold M is a
connected sum of members of X if there exists a locally finite simplicial
tree T and a map v 7→ Xv which associates to each vertex of T a manifold
in X , such that by removing from each Xv as many 3-balls as vertices
incident to v and gluing the thus punctured Xv’s to each other along the
edges of T , one obtains a 3-manifold diffeomorphic to M .

For instance, both R3 and S2 ×R can be viewed as connected sums of
S3’s, the tree being a half-line in the former case, and a line in the latter.

It is easy to see that if one takes X to be the class containing spherical
3-manifolds and manifolds diffeomorphic to S2 × S1, then any connected
sum of members of X admits a complete riemannian metric of uniformly
positive scalar curvature. The following result is a partial converse to this:

Theorem 7.4. — Let M be a 3-manifold which carries a complete
metric g0 of bounded geometry and uniformly positive scalar curvature.
Then M is a connected sum of spherical manifolds and copies of S2 × S1.
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To prove Theorem 7.4, one needs to work with a more general notion
of weak solution, where the manifold is allowed to change with time. The
surgery process may disconnect the manifold, and break it into possibly
infinite connected sums. However, the essence of the proof is already con-
tained in Theorem 7.1.
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