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Abstract. In this paper, we investigate the effect of the space and time discretisation on the convergence properties
of Schwarz Waveform Relaxation (SWR) algorithms. We consider a reaction-diffusion problem with discontinuous
coefficients discretised on two non-overlapping domains with several numerical schemes (in space and time). A
methodology to determine the rate of convergence of the classical SWR method with standard interface conditions
(Dirichlet-Neumann or Robin-Robin) accounting for discretisation errors is presented. We discuss how such conver-
gence rates differ from the ones derived at a continuous level (i.e. assuming an exact discrete representation of the
continuous problem). In this work we consider a second-order finite difference scheme and a finite volume scheme
based on quadratic spline reconstruction in space, combined with either a simple backward Euler scheme or a two-
step “Padé” scheme (resembling a Diagonally Implicit Runge Kutta scheme) in time. We prove those combinations
of space-time schemes to be unconditionally stable on bounded domains. We illustrate the relevance of our analysis
with specifically designed numerical experiments.

2020 Mathematics Subject Classification. 65B99, 65L12, 65M12.
Keywords. Schwarz methods, Waveform relaxation, Semi-discrete.

1. Introduction

Schwarz Waveform Relaxation (SWR) methods [e.g. 14] are widely used in scientific computing for the
parallel resolution of numerical models. These iterative methods have proved to be quite efficient, their
performances being closely linked to a proper optimisation of their convergence rate. This convergence
speed can indeed be improved thanks to several levers, in particular by designing more or less so-
phisticated interface conditions and by optimising their associated degrees of freedom (e.g. the weight
between the Dirichlet and Neumann components within Robin interface conditions, or a relaxation
parameter within Dirichlet-Neumann interface conditions). However the actual performances obtained
in numerical experiments may be not as good as expected, and several recent studies [e.g. 1, 17, 31]
showed that this can be attributed to the effect of the numerical discretisation. As a matter of fact,
working at a continuous level neglects the impact of this discretisation, that may be rather significant.
On the other hand, taking into account the discretised form of the equations for the optimisation of
the convergence obviously reduces the scope of the results and their generality.

In the present paper, we address this optimisation of SWR methods at the discrete level in the
context of 1-D diffusion-reaction equations. Such equations are relevant in many fields of application.
For example (this was our initial motivation), they can be seen as a simplified formulation of the
oceanic and atmospheric thermodynamics in the vicinity of the air-sea interface [e.g. 19], hence as a

This work was supported by the French national research agency through the ANR project “COCOA” (COmprehensive
Coupling approach for the Ocean and the Atmosphere), grant ANR-16-CE01-0007. Florian Lemarié appreciates the
funding from the SHOM/DGA under grant agreement No 19CP07.
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toy model for ocean-atmosphere coupling. But more generally, these equations are also relevant for
applications in porous media, electrochemistry, biology, electrical circuit simulations, etc [7, 26].

The diffusion-reaction equations have been widely studied in the context of Schwarz domain decom-
position methods (e.g. [8, 11, 13, 24]). However the discrete optimisation of SWR method for these
equations has been few addressed yet to our knowledge: the specific case of discrete duality finite
volumes with backward Euler time discretisation has been investigated in [5] and [6], while comple-
mentary results are presented in the stationary case in [12, 15]. [29] addressed the semi-discrete (i.e.
continuous in time) optimisation problem for second-order central and fourth-order compact finite
differences, and [30] extended this work to the discrete case with a θ-scheme in time combined with
second-order central finite differences in space. However, the analysis excludes a multi-physics setting
and the optimisation requires overlapping domains.

Our aim here is to complement those preceding papers by studying the case of several discretisa-
tion schemes commonly used in the context of ocean-atmosphere modelling, and trying to take a step
back to be fairly general in our methodology and conclusions. Section 2 presents our model problem,
and briefly recalls about the SWR algorithm and its convergence rate computed from the continuous
equations. Section 3 introduces the two time schemes (backward Euler and Diagonally Implicit Runge
Kutta - DIRK) and the two space schemes (second-order central finite difference, and a finite vol-
ume scheme based on quadratic spline reconstruction) that we consider. The analytical expression of
the semi-discrete convergence rate is computed for Dirichlet-Neumann and for Robin-Robin interface
conditions. In Section 4, we prove the stability of the discrete schemes, and study the discrete conver-
gence rate and the interactions between the discretisations in time and space. Then (Section 5), the
theoretical speeds of convergence predicted by these continuous, semi-discrete and discrete analyses
are compared in actual numerical experiments. We will see that significant differences may appear and
emphasize the peculiar role of a centering operator involved in multi-step time schemes.

2. Model problem and Schwarz waveform relaxation algorithm

2.1. Model problem

As indicated previously, the model problem that will be considered in this paper is a reaction-diffusion
problem, that reads:

∂tu1 + (r − ν1∂
2
x)u1 = f1 (x, t) ∈ (−∞, 0)×]0, T ] (2.1a)

∂tu2 + (r − ν2∂
2
x)u2 = f2 (x, t) ∈ (0,+∞)×]0, T ] (2.1b)

u1(x, 0) = u1,0(x) x ∈ (−∞, 0) (2.1c)
u2(x, 0) = u2,0(x) x ∈ (0,+∞) (2.1d)
u1(0−, t) = u2(0+, t) t ∈ [0, T ] (2.1e)

ν1∂xu1(0−, t) = ν2∂xu2(0+, t) t ∈ [0, T ] (2.1f)

where ν1, ν2, r are given positive constants. For the sake of simplicity we consider the same damping
rate r in the two subdomains, but it is straightforward to extend our results to the case with two
different values.

2.2. Schwarz waveform relaxation algorithm

To solve the coupled problem (2.1), a Schwarz waveform relaxation (SWR) algorithm can be set.
Such algorithms are well-known and widely used in scientific computing, at least for domain decom-
position problems [e.g. 23]. They are also particularly well-suited for coupled problems, since they
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can naturally handle differences in the continuous formulations of the models to be coupled (dimen-
sions, equations. . . ) as well as in their discrete formulations (discretisation techniques, space and time
steps. . . ). A SWR algorithm applied to (2.1) reads

∂tu
k
1 + (r − ν1∂

2
x)uk1 = f1 (x, t) ∈ (−∞, 0)×]0, T ] (2.2a)

uk1(x, 0) = u1,0(x) x ∈ (−∞, 0) (2.2b)
B1u

k
1(0−, t) = B2u

k−1
2 (0+, t) t ∈ [0, T ] (2.2c)

then

∂tu
k
2 + (r − ν2∂

2
x)uk2 = f2 (x, t) ∈ (0,+∞)×]0, T ] (2.3a)

uk2(x, 0) = u2,0(x) x ∈ (0,+∞) (2.3b)
C2u

k
2(0+, t) = C1u

k
1(0−, t) t ∈ [0, T ] (2.3c)

where k ≥ 1 is an iteration index, and where u0
2(0+, t) is chosen arbitrarily, or using previous cal-

culations. This iteration loop is repeated until convergence of the sequences (uk1)k and (uk2)k. The
interface operators Bj and Cj (j = 1, 2) are chosen such that (2.2) and (2.3) are well-posed, and that
satisfying both relations B1u1(0−, t) = B2u2(0+, t) and C2u2(0+, t) = C1u1(0−, t) is equivalent to (2.1e)
and (2.1f). This ensures that the converged solution satisfies the desired Dirichlet-Neumann interface
conditions and thus is the solution of the initial coupled system (2.1).
This algorithm is said to be “multiplicative”, while replacing uk1 by uk−1

1 in (2.3c) would lead to a
so-called “parallel” version which requires more iterations to converge but allows for a simultaneous
resolution of (2.2) and (2.3) when implemented numerically.

2.3. General form of the continuous convergence rate

In order to study the convergence of the preceding SWR algorithm (2.2)-(2.3), let us introduce the
errors ekj (x, t) = ukj (x, t)− uj(x, t) where uj(x, t) is the solution on domain j of (2.1).. Assuming that
the operators Bj and Cj are linear, these errors satisfy:

∂te
k
1 + (r − ν1∂

2
x)ek1 = 0 (x, t) ∈ (−∞, 0)×]0, T ]

ek1(x, 0) = 0 x ∈ (−∞, 0)
B1e

k
1(0−, t) = B2e

k−1
2 (0+, t) t ∈ [0, T ]

and
∂te

k
2 + (r − ν2∂

2
x)ek2 = 0 (x, t) ∈ (0,+∞)×]0, T ]

ek2(x, 0) = 0 x ∈ (0,+∞)
C2e

k
2(0+, t) = C1e

k
1(0−, t) t ∈ [0, T ].

A time Fourier transform can be performed, assuming that T → +∞ and extending ej to zero for
t < 0. This leads to the following ordinary differential equations for the errors êj in Fourier space:

(iω + r) êk1 − ν1 ∂
2
xê
k
1 = 0 (x, ω) ∈ (−∞, 0)× R (2.4a)

B1ê
k
1(0−, ω) = B2ê

k−1
2 (0+, ω) ω ∈ R (2.4b)

and

(iω + r) êk2 − ν2 ∂
2
xê
k
2 = 0 (x, ω) ∈ (0,+∞)× R (2.5a)

C2ê
k
2(0+, ω) = C1ê

k
1(0−, ω) ω ∈ R (2.5b)
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where ω is the Fourier frequency. Hence the analytic expressions:
êk1(x, ω) = Ak e

µ1x and êk2(x, ω) = Bk e
−µ2x (2.6)

where µj is the square root of (r + iω)/νj with positive real part (since e1(x) → 0 for x → −∞ and
e2(x)→ 0 for x→ +∞).
Convergence factors can thus be defined, equal to êkj /ê

k−1
j , i.e. Ak/Ak−1 or Bk/Bk−1. The convergence

rate of the SWR algorithm is thus equal to the module of these convergence factors. The link between
(Ak, Bk) and (Ak−1, Bk−1) is provided by the interface conditions (2.4b) and (2.5b). In the particular
case of Dirichlet-Neumann conditions ek1(0−, t) = ek−1

2 (0+, t) and ν2 ∂xe
k
2(0+, t) = ν1 ∂xe

k
1(0−, t), one

gets Ak = Bk−1 and −ν2µ2Bk = ν1µ1Ak, which leads to Ak/Ak−1 = Bk/Bk−1 = −(ν1µ1)/(ν2µ2) =
−
√
ν1/ν2. The convergence rate for infinite domains 1 is thus

ρ
(c,c)
DN =

√
ν1
ν2
. (2.7)

The exponent (c, c) means that both the time and space dimensions have been treated in a continuous
way to derive (2.7) whereas in the following we will study semi-discrete and fully discrete cases. Simi-
larly, for so-called two-sided Robin interface conditions ν1 ∂xe

k
1(0−, t)+p1 e

k
1(0−, t) = ν2 ∂xe

k−1
2 (0+, t)+

p1 e
k−1
2 (0+, t) and ν2 ∂xe

k
2(0+, t)+p2 e

k
2(0+, t) = ν1 ∂xe

k
1(0−, t)+p2 e

k
1(0−, t), the convergence rate reads:

ρ
(c,c)
RR =

∣∣∣∣∣p1 −
√
ν2
√
iω + r

p1 +√ν1
√
iω + r

p2 +√ν1
√
iω + r

p2 −
√
ν2
√
iω + r

∣∣∣∣∣ .
3. Semi-discrete and discrete convergence rates

The discretisation in time (resp. space) uses a step ∆t (resp. h) constant across subdomains j = 1 and
j = 2. Time index is noted with the letter n whereas grid points are localised through the index m.
The letter k denotes the Schwarz iterate.

From the analysis conducted in this section, we can derive several discrete and semi-discrete conver-
gence rates. In the following, to characterize those convergence rates, we will use the unified notation
ρ

(time,space)
interface where “interface” can be either “DN” for Dirichlet-Neumann or “RR” for Robin-Robin,

“time” can be “c” for continuous, “BE” for backward Euler or “P2” for the second-order Padé scheme,
and “space” is either “c” for continuous, or “FD” for finite difference or “FV” for finite volume. In
this section we give the expression of ρ for various combinations of time and space discretisations and
interface conditions.

Choosing the discretisation of a continuous problem requires to focus on some desirable proper-
ties (e.g. simplicity, accuracy, discrete conservation laws). Two properties arise when using Schwarz
methods: the speed of convergence (characterized by ρ) and the difference between the converged
solution and a so-called monolithic solution, which solves the problem discretised over the full domain
Ω1∪Ω2 without any domain decomposition method. The latter difference should not exceed the order
of accuracy w.r.t. the continuous problem; apart from that, it may be desirable for additional dis-
crete properties to recover the monolithic solution at convergence up to the precision set to stop the
iterations.

3.1. Time discretisation

In this subsection, the objective is to incorporate in the convergence analysis the impact of the time
discretisation. The error in time will now be interpreted as a discrete signal {e(n)}∞n=0 with constant

1For finite domains of size H, [27] gives ρ(c,c)
DN =

√
ν1
ν2

∣∣∣coth (−H
√

r+iω
ν1

) tanh (H
√

r+iω
ν2

)
∣∣∣. With our numerical param-

eters the relative difference with (2.7) is smaller than 1% for ω ≥ 10−3 s−1 without reaction and for all ω if r ≥ 10−3 s−1.
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sampling ∆t (∆t > 0) such that e(n) approximates the continuous signal e(t = n∆t). To play the role
of a discrete equivalent of the Fourier transform used in the continuous analysis (see Sec. 2.3), we use
the one-sided Z-transform [e.g. 4] which is defined as

ê(z) = Z {e(n)} =
∞∑
n=0

e(n)z−n

where z = exp(s∆t) with ∆t the sampling period and s a complex frequency. In the following we
extensively use the property

Z {e(n+ 1)} = z (Z {e(n)} − e(0)) (3.1)
knowing that e(0) = 0 in our context (the error is initially zero).

3.1.1. One-step time schemes: a change of frequency variable

Time discretisation of our model problem (2.1a)-(2.1b) applied to the errors (i.e. with fj = 0) with a
backward Euler scheme gives

e(n+ 1)− e(n)
∆t

+ (r − ν∂2
x)e(n+ 1) = 0. (3.2)

After a Z-transform and using property (3.1), the semi-discrete equation (3.2) becomes(
z − 1
z∆t

)
ê(z) + (r − ν∂2

x)ê(z) = 0. (3.3)

For one-step time schemes, using a Z-transform instead of a Fourier transform is equivalent to perform-
ing a change of variable: the Fourier variable s = iω is approximated in the Z-domain by a stime

d . For
the backward Euler scheme it is obvious from (3.3) that sBE

d (z) = z − 1
z∆t

. Once the approximation sd
associated to the temporal discretisation of interest has been found, the rest of the convergence analysis
follows the same steps as the one in the continuous case and convergence rates accounting for the time
discretisation can be derived. However this methodology only works for one-step time schemes using
two time levels like Euler (forward or backward) or Crank-Nicholson, and for one-step time schemes
using more time levels like Leapfrog. For more advanced time integration methods, for example used
for realistic simulations of geophysical flows [e.g. 20, 28], the determination of convergence rates in the
semi-discrete case is significantly more complicated, as shown in the next subsection.

3.1.2. A two-step time scheme

The analyses of two-step time schemes feature higher-order Z-transformed differential equations. An-
other specificity of multiple-step time schemes is the time interpolation operator providing boundary
and interface conditions to the intermediate steps. A similar temporal operator also appears when
considering differing time steps [22], and has a significant impact on the convergence rate of Schwarz
iterations.

Determination of the semi-discrete errors. We now consider the “Padé” two-step (P2) scheme
proposed in [21] and [28] which, when applied to our model problem for the errors and reformulated,
reads (

1 + β∆t
(
r − ν∂2

x

))
e? =

(
1− (1− 2β)∆t

(
r − ν∂2

x

))
e(n) (3.4a)(

1 + β∆t
(
r − ν∂2

x

))
e(n+ 1) = e? (3.4b)
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10−1 100

ω∆t
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(p)
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∣∣∣

λ
(1)
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λ
(3)
1√
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λ
(2)
2

λ
(4)
2

−
√
sc∆t
ν2∆t

Figure 3.1. Absolute value of the real (left) and imaginary (right) parts of the four
complex roots of the characteristic equation associated with the Padé time scheme with
respect to ω∆t. The non-dimensional frequency variable ω∆t naturally appears when
dealing with time discretisations. The roots in the continuous case are also reported
(solid lines). Parameter values are ν1∆t = 0.5 m2, ν2∆t = 1 m2, r∆t = 0.1 and ω∆t ≤
π.

with β = 1 + 1/
√

2. This scheme, implemented in the atmospheric model of the European Centre for
Medium-Range Weather Forecasts (ECMWF), has the property to be second-order accurate, uncon-
ditionally stable and “monotonic damping” (i.e. shortest resolved scales are always more damped than
the larger ones). This last property is not satisfied by a Crank-Nicolson scheme, which explains why
this scheme is seldom used in “real-world” simulations. In a multiple step scheme like (3.4), a discrete
frequency sd ∈ C does not naturally appear. Indeed, combining the Z-transforms of (3.4a) and (3.4b),
we obtain (

z
(
1 + β∆t

(
r − ν∂2

x

))2
−
(
1− (1− 2β)∆t

(
r − ν∂2

x

)))
ê(x) = 0 (3.5)

where, unlike (3.3), derivatives with orders higher than that of the original equation are present. By
analogy with the one-step case, we can rearrange (3.5) as

(
sP2
d + r − ν∂2

x

)
ê = 0 to find that sP2

d

corresponds to the following differential operator:

sP2
d = sBE

d +∆t(r − ν∂2
x)
(
(2β − 1) sBE

d + β2(r − ν∂2
x)
)

where sBE
d = z − 1

z∆t
is defined in §3.1.1. In multiple-step schemes, even if sd takes the form of a differ-

ential operator and not of a complex scalar, a discrete analysis can nevertheless be pursued. However
having no representation of the time discretisation as a simple change of variable means that the tem-
poral scheme contribution to the convergence factor cannot be separated from the space scheme contri-
bution. In the continuous-in-space case, we solve the fourth-order ordinary differential equation (3.5)
whose solutions have general form ê(x) =

∑4
p=1 c

(p) exp(λ(p)x) with λ(p) the complex roots of the asso-
ciated characteristic equation. If we note λ(1), λ(2), λ(3), λ(4) respectively λ(+,−), λ(−,−), λ(+,+), λ(−,+),
the λ(p)’s are

λ(±,±) = ± 1
β
√

2∆tν

√
z−1 + 2β∆tsBE

d + 2β2∆tr ±
√
z−1

√
z−1 + 4β (1− β)∆tsBE

d

and the semi-discrete form of the errors is obtained. Two of the roots (λ(2) and λ(4)) have a negative
real part and the two others (λ(1) and λ(3)) have a positive real part. The evolution of λ(p) with respect
to ω∆t is plotted in Figure 3.1.
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3.1.3. Semi-Discrete convergence rates

In the following we use the subscript j to distinguish the two subdomains. The boundary conditions
at infinity lead to c(2)

1 = c
(4)
1 = 0 and c(1)

2 = c
(3)
2 = 0 and thus

ê1(x) = c
(1)
1 exp(λ(1)

1 x) + c
(3)
1 exp(λ(3)

1 x), x ∈ Ω1

ê2(x) = c
(2)
2 exp(λ(2)

2 x) + c
(4)
2 exp(λ(4)

2 x), x ∈ Ω2
(3.6)

where Ω1 = R− and Ω2 = R+. At this point we have four coefficients to set but only two relations
provided by the transmission conditions (either Dirichlet-Neumann or Robin-Robin).

To close this system, it is necessary to provide interface conditions to e? in (3.4). In the time domain
and in the Dirichlet-Neumann case, those interface conditions are e?1 (x = 0) = e2 (t = t?, x = 0) (with
t? = (n+ 1− β)∆t = (n− 1/

√
2)∆t) for subdomain j = 1 and ν2∂xe

?
2 (x = 0) = ν1∂xe1 (t = t?, x = 0)

for subdomain j = 2. We note γ the frequency operator used to center the appropriate values at time
t?. This interpolation or extrapolation operator γ will impact the convergence rate: the choice of γ
is discussed below in the present subsection. Considering Dirichlet-Neumann interface conditions, the
remaining coefficients in (3.6) are thus determined using the following conditions

êk1(x = 0, z) = êk−1
2 (x = 0, z) (3.7a)

ν2∂xê
k
2(x = 0, z) = ν1∂xê

k
1(x = 0, z) (3.7b)(

1 +∆tβ(r − ν1∂
2
x)
)
zêk1(x = 0, z) = γ(z) êk−1

2 (x = 0, z) (3.7c)

ν2
(
1 +∆tβ(r − ν2∂

2
x)
)
z∂xê

k
2(x = 0, z) = γ(z) ν1∂xê

k
1(x = 0, z) (3.7d)

where (3.4b) was used to treat the term e?j (x = 0). Combining (3.7) and (3.6), we get after some
algebra:

c
(1)
1,k = (1− γ̃)

(
c

(2)
2,k + c

(4)
2,k

)
c

(3)
1,k = γ̃

(
c

(2)
2,k + c

(4)
2,k

)
ν2c

(2)
2,kλ

(2)
2 = (1− γ̃) ν1

(
c

(1)
1,k−1λ

(1)
1 + c

(3)
1,k−1λ

(3)
1

)
ν2c

(4)
2,kλ

(4)
2 = γ̃ν1

(
c

(1)
1,k−1λ

(1)
1 + c

(3)
1,k−1λ

(3)
1

)
(3.8)

where

γ̃ =
z

(
1 + β∆t

(
r − ν1

(
λ

(1)
1

)2
))
− γ

(1/β)
√

1 + 4β (1− β) (z − 1)
=
z

(
1 + β∆t

(
r − ν2

(
λ

(2)
2

)2
))
− γ

(1/β)
√

1 + 4β (1− β) (z − 1)

γ̃ represents a weighted difference between two ways to estimate ej(x = 0, t = t?): either via a
time interpolation/extrapolation (by operator γ) or via the second step of the time scheme (3.4),
represented by z

(
1 + β∆t

(
r − νjλ2

j

))
. From (3.8) we can deduce a convergence rate defined here as

ρ
(P2,c)
DN =

∣∣∣%(P2,c)
DN

∣∣∣ =
∣∣∣∣∣ ν1∂xê

k
1

ν1∂xê
k−1
1

∣∣∣∣∣ with
%

(P2,c)
DN =

c
(1)
1,kλ

(1)
1 + c

(3)
1,kλ

(3)
1

c
(1)
1,k−1λ

(1)
1 + c

(3)
1,k−1λ

(3)
1

= %
(c,c)
DN

√
ν1
ν2

(
λ

(1)
1 (1− γ̃) + λ

(3)
1 γ̃

)(1− γ̃
λ

(2)
2

+ γ̃

λ
(4)
2

)
.
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Choosing γ for multi-step time schemes. When implementing a Schwarz method with multi-
step time scheme, a special attention should be paid to the choice of the operator of projection onto the
intermediate steps. In the case of the Padé time scheme, a first-order extrapolation from the current
times (γextr = z(1 − β) + β, which corresponds to the weights 1 − β at tn+1 and β at tn) suffices to
guarantee a second-order accuracy of the solution.

Once the desired order of accuracy is attained, one may want to recover the monolithic solution (i.e.
the solution that would have been obtained by discretising the problem directly on Ω1 ∪Ω2) to obtain
additional discrete properties. This solution can only be obtained if γ perfectly matches the second
step of the scheme, resulting in γ̃ = 0. In such an ideal case, the analysis would be similar to a one-step
scheme with the change of variable sP2,γ̃=0

d = 1
2β2∆t

(
2β+(1− 2β) z−1−

√
z−1

√
z−1 + 4β (1− β)∆tsBE

d

)
and the operator of projection would be γγ̃=0(z) = 1− 1

2β

(
1−

√
1 + 4β (1− β) (z − 1)

)
.

However this operator γγ̃=0(z) is non-local in time: indeed γ is a sum of z±p with z0 representing
the current time tn and z±p the time tn±p. If γ(z) is not of this form, then its time counterpart is not
local-in-time.

To ensure a small γ̃ and a local-in-time γ, a second-order Taylor development of γγ̃=0(z) at z = 1
can be made: γimit(z) = z−β(z−1)−β (β − 1)2 (z−1)2. This development is not in general a second-
order accurate extrapolation. Indeed, instead of precisely computing the interface condition at t = t?,
γ needs to mimic the second step of the time scheme (3.4). A more precise interpolation/extrapolation
of e(t = t?) would thus not give a smaller γ̃ because of the error committed by the second step of (3.4).

The choice of γ is crucial for the convergence speed, as can be seen in Figure 3.2 which compares
the first-order extrapolation to the Taylor expansion of γγ̃=0(z). This operator is a specific feature of
the intermediate steps of multi-step time schemes.

Equivalence with DIRK scheme. The analysed Padé two-step time scheme is equivalent to a
Diagonally Implicit Runge-Kutta scheme (DIRK) for space-periodic problems. However, in DIRK
schemes as defined in [2]:(

1 + β∆t
(
r − ν∂2

x

))
e?? = e(n)(

1 + β∆t
(
r − ν∂2

x

))
e(n+ 1) = e(n) + (1− β)∆t

(
r − ν∂2

x

)
e??

the intermediate step is not performed in the same way. Consequently, t?? is not ∆t (n+ 1− β) but
is t?? = ∆t (n+ β). When considering problems that are non-periodic in space, a Dirichlet interface
condition on this e?? yields instead of (3.7c):

êk1(x = 0, z) = γ(z)
(
1 + β∆t(r − ν1∂

2
x)
)
êk−1

2 (x = 0, z)

γ̃ and γ hence depend on the intermediate step and the convergence rate may differ from the P2 scheme.
However canceling γ̃ never leads to a local-in-time γγ̃=0(z) and the above discussion is extendable to
other multi-step schemes as long as the steps involve space differentiation.

3.2. Space discretisation

We now consider the semi-discretisation in space at a given location x = (m + l)h of the partial
differential equation satisfied by the errors on subdomain Ωj

(∂t + r) em+l,j − νj∂
2
xej
∣∣∣
x=xm+l

= 0

where we formulate the second-order derivative as a general flux divergence:

νj∂
2
xej
∣∣∣
x=xm+l

= νj
h

(
φm+l+ 1

2 ,j
− φm+l− 1

2 ,j

)
, with φm+l+ 1

2 ,j
≈ ∂xej |x=x

m+l+ 1
2

(3.10)
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10−1 100

ω∆t
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1.0

ρ
(P2,c)
DN

r = 0 s−1, γ = z − β(z − 1)

r = 0 s−1, γ = z − β(z − 1)− β(β − 1)2(z − 1)2

r = 0.1 s−1, γ = z − β(z − 1)

r = 0.1 s−1, γ = z − β(z − 1)− β(β − 1)2(z − 1)2

√
ν1
ν2

Figure 3.2. Convergence rate ρ(P2,c)
DN with respect to ω∆t for different choices of the

extrapolation function γ(z) and different values of the reaction coefficient. Other pa-
rameter values are ν1 = 0.5 m2 s−1, ν2 = 1 m2 s−1, ∆t = 1 s and ω∆t ≤ π. The Finite
Differences numerical experiment (circles) uses 104 vertical levels with a space step
h = 10−2m and 300 time steps are performed.

where l = 0 or l = 1
2 depending on the discretisation scheme (see Figure 3.3). In the following we

introduce a second-order centered finite difference scheme for which l = 0 and a finite volume scheme
based on quadratic splines reconstruction for which l = 1

2 . For both schemes we provide the form of
the semi-discretised in space error in Fourier space for various interface conditions. Note that the
domains are assumed of infinite size (m ∈ Z) and the numerical experiments that will be presented
later will also use a domain large enough for this approximation to be valid.

x1 x2 x3x0x−1x−2

x 1
2

h
Ω1 = (−∞, 0)

Ω2 = (0,+∞)

Figure 3.3. Computational grid in space for the discretisation in subdomains Ω1
and Ω2 with a common interface located at x = x0. For the finite difference scheme
presented in Sec. 3.2.1 the solution is computed at integer indices xm (m ∈ Z) and
fluxes at half indices while for the finite volume scheme in Sec. 3.2.2 control volumes
are centered on half indices, i.e. at xm+1/2 (m ∈ Z).

3.2.1. Standard finite difference scheme

We first consider a standard second-order finite difference space scheme for which the approximation
of derivatives at cell interfaces is

φFD
m+ 1

2 ,j
= em+1,j − em,j

h
.

Using (3.10), we easily find that the error at x = xm satisfies the differential equation

(∂t + r)em,j −
νj
h2 (em+1,j − 2em,j + em,j) = 0.
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Denoting êm,j(s) the Fourier transform2 of em,j(t) with s ∈ C, the error in the frequency domain
satisfies

(χj + 2) êm,j − (êm−1,j + êm+1,j) = 0, with χj = h2(r + s)
νj

. (3.11)

The general form of the semi-discretised error arising from a finite-difference spatial discretisation is

êkm,1 = αk(s)
(
σ+

1

)m
+ γk(s)

(
σ−1

)m
êkm,2 = βk(s)

(
σ−2

)m
+ ςk(s)

(
σ+

2

)m
where σ±j = 1

2

(
2 + χj ±

√
χj (χj + 4)

)
. The αk, γk, βk, and ςk coefficients are determined using the

boundary conditions. The infinite domain assumption leads to γk = ςk = 0 and thus

êkm,1 = αk(s)
(
σ+

1

)m
, êkm,2 = βk(s)

(
σ−2

)m
. (3.12)

3.2.2. A finite volume scheme based on quadratic spline reconstruction

A finite volume alternative to the standard finite difference scheme is derived in appendix A. This
scheme offers the advantage to naturally handle the transmission conditions between the two non-
overlapping domains and to guarantee that the converged solution is similar to the monolithic solution
of the problem. Among others, [13] also uses a finite volume scheme for the same reasons. This scheme,
denoted FV, corresponds to solving the tridiagonal system

1
6φ

FV
m−1 + 2

3φ
FV
m + 1

6φ
FV
m+1 =

ūm+ 1
2
− ūm− 1

2

h
(3.13)

to get φFV
m , and to deduce the second-order derivative via (3.10). In (3.13), ūm+ 1

2
is defined in a

finite-volume sense as ūm+ 1
2

= 1
h

∫ xm+1

xm
u(x) dx with h = xm+1 − xm. We then find that the error at

x = xm satisfies the differential equation

(∂t + r)
(1

6φ
FV
m−1,j + 2

3φ
FV
m,j + 1

6φ
FV
m+1,j

)
− νj
h2

(
φFV
m+1,j − 2φFV

m,j + φFV
m−1,j

)
= 0 (3.14)

where using coefficients ( 1
12 ,

5
6) instead of (1

6 ,
2
3) would give a fourth-order accurate compact scheme

[e.g. 18]. For convenience we will formulate here the convergence rate in terms of derivatives φFV
m,j

instead of the errors ēm+ 1
2 ,j

themselves. It is straightforward to show that both approaches lead to
equivalent results. Unlike in the finite difference case where we applied a Fourier transform on em,j(t),
we apply it here on φFV

m,j(t) in (3.14) to obtain the tridiagonal system(
χj
6 − 1

)
φ̂FV
m−1,j +

(2χj
3 + 2

)
φ̂FV
m,j +

(
χj
6 − 1

)
φ̂FV
m+1,j = 0 (3.15)

where χj is defined in (3.11). The roots of the characteristic equation associated to (3.15) are

λ±j = 1
1
χj
− 1

6

(
1
χj

+ 1
3 ±

√
1
χj

+ 1
12

)
whose Taylor expansion gives

λ±j = 1±
√
r + s

νj
h+ h2

2

(
r + s

νj

)
+ O(h3)

2When the time axis is continuous, it should be noted ê. However we use the discrete notation ê because s can be
either the continuous frequency variable or a one-step time scheme change of variable.
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showing that λ±j is an approximation of e
±
√

r+s
νj

h
. The infinite domain assumption thus leads to(

φ̂FV
m,1

)k
= υk(s)

(
λ+

1

)m
,

(
φ̂FV
m,2

)k
= τk(s)

(
λ−2

)m
(3.16)

where υk(s) =
√

s+r
ν1
αk(s) and τk(s) = −

√
s+r
ν2
βk(s) will be determined using the interface conditions.

3.2.3. Interface conditions

The discretisation of the interface conditions will allow to determine the semi-discrete errors in (3.12)
and (3.16). In the following we will consider the discretisations of Dirichlet and Neumann interface
conditions which also straightforwardly provide the discretisation of Robin interface conditions. We
define ηj,operator to represent the boundary operator on domain j where “operator” can either be “dir”
for a Dirichlet condition or “neu” for a Neumann condition. In a continuous setting, application of the
Dirichlet-Neumann interface conditions would lead to

η1,dirαk(s) = êk1(0, s) η2,dirβk(s) = êk2(0, s)
η1,neuαk(s) = ν1∂xê

k
1(0, s) η2,neuβk(s) = ν2∂xê

k
2(0, s)

with η1,dir = η2,dir = 1, η1,neu =
√
ν1(s+ r), and η2,neu = −

√
ν2(s+ r). We now derive the discrete

counterpart for ηj,operator in the finite difference and finite volume cases. In case we work on fluxes
φ̂kj = ∂xê

k
j rather than directly on the error êkj , we would simply have

η1,dirαk(s) =
√

ν1
s+ r

φ̂k1(0, s) η2,dirβk(s) = −
√

ν2
s+ r

φ̂k2(0, s)

η1,neuαk(s) = ν1φ̂
k
1(0, s) η2,neuβk(s) = ν2φ̂

k
2(0, s).

Finite differences interface conditions. Due to the grid arrangement we used (see Figure 3.3),
the discretisation of the Dirichlet boundary condition in the finite difference case is trivial since a
grid point is located on the interface at x = x0. We thus obtain in (3.12) êk0,1 = αk(s) and therefore
ηFD

1,dir = 1 which corresponds to the continuous case (same applies for subdomain 2). As far as the
Neumann boundary condition is concerned, derivatives are naturally located at cell interfaces i.e. a
half grid cell inside the domain and the finite difference discretisation requires a specific care. We
propose two possible discretisations for the Neumann boundary condition:

• Strategy #1 (naive discretisation): assume a Dirichlet-Neumann algorithm with Dirichlet
on Ω1 and Neumann on Ω2. For the grid points at x = x1 and x = x−1 we have

ν1∂
2
xe1
∣∣∣
x=x−1

= ν1
h

(
φ̃FD
− 1

2 ,1
− φFD

− 3
2 ,1

)
ν2∂

2
xe2
∣∣∣
x=x1

= ν2
h

(
φFD

3
2 ,2
− φ̃FD

1
2 ,2

)
where the ·̃ fluxes are influenced by interface conditions. On Ω1 we receive a Dirichlet condition
em=0,1 = eint such that

φ̃FD
− 1

2 ,1
= eint − em=−1,1

h

and ν1φ
FD
− 1

2 ,1
is sent to subdomain 2 and used as a Neumann condition.

On Ω2 we have
ν2φ̃

FD
1
2 ,2

= ν1φ̃
FD
− 1

2 ,1
(3.17)
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and the Dirichlet condition eint for subdomain Ω1 is computed as

eint = em=1,2 − hφ̃FD
1
2 ,2
.

• Strategy #2 (corrected discretisation): the previous interface discretisation has the
drawback to be less accurate than inside the domains. We now derive a second-order accurate
discretisation with the additional property of recovering the monolithic solution at convergence
of the Schwarz iterations. Starting from the discretisation we would have at x = x0 in the
monolithic case:

(∂t + r) e|x=x0
− 1
h

(
ν2φ

FD
1
2 ,2
− ν1φ

FD
− 1

2 ,1

)
= 0

and considering that e|x=x0
= 1

2 (em=0,j=1 + em=0,j=2) we end up with

ν1φ
FD
− 1

2 ,1
+ h

2 (∂t + r) e0,1 = ν2φ
FD
1
2 ,2
− h

2 (∂t + r) e0,2 (3.18)

as a substitute for (3.17) in the naive case. It is similar to a so-called ghost-point method,
but the time derivative in (3.18) will have a significant effect on the convergence. Using the
reaction-diffusion equation to replace the time derivative would require to know in a given
subdomain the diffusivity used in the other subdomain, which is not always practical.

To obtain unified notations between the naive and the corrected cases, we introduce a parameter κc
in front of the h

2 coefficient in (3.18) such that for κc = 0 we recover the naive Neumann condition (3.17)
and for κc = 1 we get the corrected discretisation (3.18).

Now going back to the determination of the ηj,neu we apply a Fourier transform on the discretisa-
tions (3.17) and (3.18) and use (3.12) to obtain

ν1 ∂xê
k
1

∣∣∣
x=x0

= ν1
êk0,1 − êk−1,1

h
+ κc

h

2 (s+ r)êk0,1 = αk(s) ν1
h

(
1− 1

σ+
1

+ κc
2 χ1

)
︸ ︷︷ ︸

ηFD
1,neu

ν2 ∂xê
k
2

∣∣∣
x=x0

= ν2
êk1,2 − êk0,2

h
− κc

h

2 (s+ r)êk0,2 = βk(s) ν2
h

(
σ−2 − 1− κc

2 χ2

)
︸ ︷︷ ︸

ηFD
2,neu

.

Finite volume discretisation of interface conditions. In the case of the finite volume discreti-
sation (3.13), the interface conditions are much easier and natural to discretise. Using the notations
introduced in appendix A, the error at the interface reads as follows

e1(x = 0, t) = S− 1
2

(h/2) = ē− 1
2 ,1

+ h

6
(
φFV
−1,1 + 2φFV

0,1

)
e2(x = 0, t) = S 1

2
(−h/2) = ē 1

2 ,2
− h

6
(
φFV

1,2 + 2φFV
0,2

)
where S is defined in (A.1) as the spline reconstruction of the solution. Considering the Fourier
transform of (A.4) for m = 0 and j = 1, we obtain the expression of ̂̄e− 1

2 ,1
, and similarly, using (A.3)
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Figure 3.4. Convergence rates with Dirichlet-Neumann interface conditions with re-
spect to ω for s = iω, ν1 = 0.5 m2 s−1, ν2 = 1 m2 s−1. The convergence rates
represented correspond to (a) ρ(c,FD)

DN for κc = 0 and r = 0 s−1, (b) ρ(c,FD)
DN for κc = 1

and r = 0 s−1, (c) ρ(c,FV)
DN for r = 0 s−1 (d),(e) and (f) are the same as (a),(b) and

(c) but for r = 0.1 s−1. Results are shown for different values of h: h = 0.1 m (black
dashed lines), h = 1 m (black solid lines), h = 5 m (grey dashed lines), and h = 10 m
(grey solid lines). The convergence rate in the continuous case is represented with red
solid lines.

for m = 0 and j = 2, we obtain ̂̄e 1
2 ,2

. We end up with:

êk1(0, s) =
{(

h

3 + h

χ1

)(
φ̂FV

0,1

)k
+
(
h

6 −
h

χ1

)(
φ̂FV
−1,1

)k}
= αk(s)

√
χ1

[(1
3 + 1

χ1

)
+
(1

6 −
1
χ1

) 1
λ+

1

]
︸ ︷︷ ︸

ηFV
1,Dir

êk2(0, s) =
{(

h

χ2
− h

6

)(
φ̂FV

1,2

)k
−
(
h

χ2
+ h

3

)(
φ̂FV

0,2

)k}
= βk(s)

√
χ2

[( 1
χ2

+ 1
3

)
−
( 1
χ2
− 1

6

)
λ−2

]
︸ ︷︷ ︸

ηFV
2,Dir

.

The expressions for ηFV
j,Dir thus obtained can be further simplified and are such that ηFV

j,Dir =
√

1 + χj
12 .

As far as the Neumann boundary condition is concerned, since we have constructed the scheme under
the constraints ∂ξS1/2(−h/2) = φFV

0,2 and ∂ξS−1/2(h/2) = φFV
0,1 (see appendix A) we easily obtain

η1,neu =
√

(s+ r)ν1 =
ν1
√
χ1
h

and η2,neu = −
√

(s+ r)ν2 = −
ν2
√
χ2
h

(i.e. the ones from the continuous
case). As mentioned earlier our finite volume discretisation allows to recover at convergence the solution
that would have been obtained by a numerical simulation over the union of the two subdomains up
to the precision set to stop the iterations.
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Table 3.1. Summary of the formulation of the ηj,dir and ηj,neu quantities which charac-
terise the space discretisation through the interface operators. κc = 1 for the corrected
FD case and κc = 0 in the naive FD case.

Space setting η1,dir η2,dir η1,neu η2,neu

Finite Volume
√

1 + χ1
12

√
1 + χ2

12
ν1
h

√
χ1 −ν2

h

√
χ2

Finite Difference 1 1 ν1
2h

(
χ1(κc − 1) +

√
χ1(4 + χ1)

)
ν2
2h

(
χ2(1− κc)−

√
χ2(4 + χ2)

)
Continuous 1 1 ν1

h

√
χ1 −ν2

h

√
χ2

Table 3.2. Frequency variables s, which characterise the time discretisation. z can
be replaced by eiω∆t. Using a change of variable for a multi-step time scheme would
neglect the projection operator γ (see section 3.1.3).

Time setting s
Backward Euler sBE

d = z−1
z∆t

Padé scheme sP2
d = z−1

z∆t −∆t
(
(2β − 1) z−1

z∆tν
(
∂2
x − r

)
− β2ν2 (∂2

x − r
)2)

Continuous sc = iω

3.2.4. Semi-Discrete convergence rates

We study the semi-discrete in space case where the determination of αk(s) and βk(s) in (3.12) can
be easily done via the ηj,dir and ηj,neu expressions derived in previous subsection. In the Dirichlet-
Neumann case, the transmission conditions lead to

ηFD
1,dirαk(s) = ηFD

2,dirβk(s) (3.19)
ηFD

2,neuβk(s) = ηFD
1,neuαk−1(s) (3.20)

and using the specific form of the ηj functions given in Tab. 3.1 we obtain the convergence rate
(corresponding here to |αk/αk−1|)

ρ
(c,FD)
DN =

∣∣∣∣∣η
FD
2,dirη

FD
1,neu

ηFD
1,dirη

FD
2,neu

∣∣∣∣∣ =
∣∣∣%(c,FD)

DN

∣∣∣ , %
(c,FD)
DN = ν1

ν2

(
χ1(κc − 1) +

√
χ1(χ1 + 4)

χ2(1− κc)−
√
χ2(χ2 + 4)

)

where we recall that χj = h2(s+ r)/νj . For h→ 0 we have

%
(c,FD)
DN =

√
ν1
ν2

+ (κc − 1)h2

(√
ν1
ν2
− 1

)√
s+ r

ν2
+ O(h2)

and thus ρ(c,FD)
DN is a first-order (resp. second-order) approximation of the convergence rate ρ(c,c)

DN in the
continuous case for κc = 0 (resp. κc = 1). The Taylor expansion of %(c,FD)

DN suggests that the impact of
numerical errors is small when ν1 is close to ν2 and ν2 is large because the leading order term is scaled
by
√
ν1 −

√
ν2

ν2
. In other situations the numerical results may deviate significantly from the continuous

analysis as shown in Figure 3.4. Moreover, whatever the parameter values, lim
ω→∞

%
(c,FD)
DN

∣∣∣
κc=1

= 1 (with
ω = Im(s)) such that we can anticipate poor performances with finite differences for high temporal
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frequencies. Figure 3.4 illustrates this aspect. On the other hand, lim
ω→∞

%
(c,FD)
DN

∣∣∣
κc=0

= ν1
ν2

which means
that the algorithm converges faster (if ν1 < ν2) for high frequencies.

In the continuous analysis, the reaction coefficient r does not appear in the convergence factor which
depends only on the diffusion coefficients νj (j = 1, 2), see (2.7). However in the semi-discretised in
space case with finite difference, the following asymptotes for low frequencies can be found:

lim
ω→0

%
(c,FD)
DN

∣∣∣
κc=1

=
√
ν1
ν2

1 + rh2

4ν1

1 + rh2

4ν2

 , lim
ω→0

%
(c,FD)
DN

∣∣∣
κc=0

=
√
ν1
ν2

√
1 + rh2

4ν1
−
√

rh2

4ν1√
1 + rh2

4ν2
−
√

rh2

4ν2

meaning that the discretisation affects the convergence factor even at lower frequencies compared to the

continuous case. In particular, assuming that ν1 < ν2 we have
(

1+ rh2
4ν1

1+ rh2
4ν2

)
> 1. The convergence is thus

slower and increasing r slows it down with the corrected FD discretisation. With the naive FD discreti-

sation, the convergence is faster than predicted by the continuous analysis since

√
1+ rh2

4ν1
−
√

rh2
4ν1√

1+ rh2
4ν2
−
√

rh2
4ν2

< 1,

and increasing r accelerates the convergence. The impact of the reaction coefficient on the convergence
rate is illustrated in Figure 3.4.

In the finite volume case, (3.19) and (3.20) also apply, and

ρ
(c,FV)
DN =

∣∣∣∣∣η
FV
1,neuη

FV
2,dir

ηFV
2,neuη

FD
1,dir

∣∣∣∣∣ =
∣∣∣%(c,FV)

DN

∣∣∣ , %
(c,FV)
DN =

ν1
√

χ1
12+χ1

ν2
√

χ2
12+χ2

.

%
(c,FV)
DN is a second-order approximation of

√
ν1/ν2, since

%
(c,FV)
DN =

√
ν1
ν2

+ h2

24

(
ν1 − ν2√
ν1ν2

)(
s+ r

ν2

)
+ O(h4).

Just like in the finite difference case, the order of magnitude of the leading error term in the Taylor
expansion for h → 0 depends on the parameter values for ν1 and ν2. This is also the case for large
values of ω since lim

ω→∞
%

(c,FV)
DN = ν1

ν2
. Like in the naive FD case, in the FV case the algorithm for

ν1 < ν2 will be more efficient for high temporal frequencies than for low frequencies. This is confirmed
by Figure 3.4.

The reaction coefficient does not affect the asymptote for large values of ω. However for small values
of ω we have

lim
ω→0

%
(c,FV)
DN =

√
ν1
ν2

√√√√1 + h2r
12ν2

1 + h2r
12ν1

which is systematically smaller than
√
ν1/ν2 for ν1 < ν2 as seen in Figure 3.4. Moreover, with both

discretisations %(c,c)
DN is obtained when χj → 0. Consequently if s+ r → 0 the continuous convergence

rate is recovered even when using a large h.

4. Discrete case

4.1. Stability analysis

In the following, we investigate the stability of the various combinations between the space and time
discretisations. To this aim, we consider a Dirichlet condition on the external boundaries of the indi-
vidual subproblems and Robin conditions at interface. It will thus be straightforward to extend the
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results to a Dirichlet or a Neumann interface condition. The subscript j is omitted as the stability
does not depend on it. To describe the space discretisations, we introduce two tridiagonal matrices
Y {FD,FV} and two tridiagonal matrices D{FD,FV} such that both discretisations read in matrix form(

(∂t + r)Y − ν

h2 D

)
x = c

where x represents the variable u with the finite difference discretisation and the variable φ when using
finite volumes. c has no effect on the stability, and consists of the possible forcing and contributions
from the boundary and interface conditions.

Y FD =



1
2κc

1 0
. . .

0 1
0

 ,D
FD =


−(hν p̃+ 1) 1

1 −2 1 0
. . . . . . . . .

0 −2 1
0 −1

 (4.1)

and

Y FV = 1
6


2(3 + h

ν p̃)
h
ν p̃

1 4 1 0
. . . . . . . . .

0 1 4 1
1 2

 ,D
FV =


−hp̃

ν
hp̃
ν

1 −2 1 0
. . . . . . . . .

0 1 −2 1
1 −1

 . (4.2)

p̃ is p1 in the domain Ω1 or −p2 in the domain Ω2.

4.1.1. Theoretical tools for analysis

The proof of stability relies on the hypothesis that p̃ ≥ 0 to obtain diagonally dominant matrices. The
following propositions will help us proving the stability of both time schemes by providing the sign of
the eigenvalues of (DFD)−1Y FD and (Y FV)−1DFV.

Proposition 4.1. For any l ∈ C such as R(l) > 0, det(D− lY ) 6= 0 (i.e. det(DFV − lY FV) 6= 0 and
det(DFD − lY FD) 6= 0).
Proof. Using the hypotheses p̃ ≥ 0 and R(l) > 0, we get:

• DFV − lY FV is strictly diagonally dominant and is hence non-singular.

• If κc = 1 or p̃ > 0, DFD − lY FD is also strictly diagonally dominant.

• If κc = 0 and p̃ = 0, the first row of DFD− lY FD is only weakly diagonally dominant. However
the matrix is weakly chained diagonally dominant (see e.g. [3]) thus non-singular.

Proposition 4.2. DFD and Y FV are non-singular.
Proof. Y FV is strictly diagonally dominant and DFD is weakly chained diagonally dominant. Hence
both are non-singular.

From now on, the superscript FD or FV will be omitted when a sentence stands for both discretisations.
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4.1.2. Stability of the Backward Euler scheme

The Backward Euler scheme corresponds to the operation Axn+1 = Y xn + ∆tc where A =
((1 + r∆t)Y − ΓD) and Γ is the parabolic Courant number.

Proposition 4.3. The Backward Euler scheme is unconditionally stable with FD and FV on a bounded
domain with Dirichlet-Robin boundary conditions.

Proof. It is easy to see that A is non-singular for p̃ ≥ 0. Let σ ∈ C∗ be a non-zero eigenvalue of
A−1Y and v the associated eigenvector. Then σAv = Y v, i.e. (σ(1 + r∆t)− 1)Y v = σΓDv. Then:

• v is an eigenvector of (Y FV)−1DFV, with eigenvalue λ = σ(1+r∆t)−1
Γσ .

• v is an eigenvector of (DFD)−1Y FD, with eigenvalue 1/λ.

We assumed that σ 6= 0. By definition of λ, det(D − λY ) = 0. From proposition 4.1 we get that
R(λ) ≤ 0, and since σ = 1

1+r∆t−Γλ , we conclude that |σ| ≤ 1. The moduli of all eigenvalues of A−1Y
are therefore smaller or equal to 1: the Backward Euler scheme is unconditionally stable for finite
differences and for finite volumes (for variable φ).
Special attention must be paid to the finite volume scheme if r = 0: unm+1/2 = u0

m+1/2+ ν
h

∑n
i=1(φim+1−

φim + f
i
m+1/2). To prove stability we need this serie to be bounded when f = 0 and the eigenvalues

should hence be of modulus strictly smaller than 1 in order to have geometric convergence. However
the eigenspace associated to 1 is the kernel of DFV . In this eigenspace, φm+1 − φm = 0. We hence
conclude that the Backward Euler scheme is unconditionally stable also for the variable u of finite
volumes.

4.1.3. Stability of the “Padé” two-step scheme

The “Padé” two-step time scheme studied in this paper reads:

(Ỹ β − βΓD)x? =
(
Ỹ 2β−1 − (2β − 1)ΓD

)
xn + β∆tc? − (2β − 1)∆tcn

(Ỹ β − βΓD)xn+1 = Y x? + β∆tcn+1

where Ỹ X = (1 +Xr∆t)Y and Γ = ν∆t
h2 .

Proposition 4.4. The “Padé” two-step scheme is unconditionally stable with FD and FV on a bounded
domain with Dirichlet-Robin boundary conditions.

Proof. We study the eigenvalues of the matrix

AP =
(
Ỹ β − βΓD

)−1
Y
(
Ỹ β − βΓD

)−1 (
Ỹ 2β−1 − (2β − 1)ΓD

)
.

From proposition 4.1:

• we get that all eigenvalues λ ∈ C of (Y FV)−1DFV are such that R(λ) ≤ 0.

• All non-zero eigenvalues 1/λ ∈ C of (DFD)−1Y FD are such that R(λ) ≤ 0.

Let λ ∈ C defined as in one of the two cases above. The associated eigenvector is also an eigenvector
of AP , with eigenvalue σ given by:

σ = 1 + (2β − 1)(r∆t− Γλ)
(1 + β(r∆t− Γλ))2 . (4.3)
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All the eigenvalues of AP correspond to a λ in (4.3) or correspond to the zero eigenvalue of
(DFD)−1Y FD. In the latter case, the eigenvectors correspond to the zero eigenvalue of AP .
Since Γ and r∆t are strictly positive, we can restrain our study to the function λ̃ 7→

∣∣∣1+(2β−1)λ̃
(1+βλ̃)2

∣∣∣, where
λ̃ = r∆t − Γλ belongs to the right half of the complex plane. A routine calculation returns that for
β = 1 + 1/

√
2, this function is always strictly smaller than 1, except in λ̃ = 0.

As for the Backward Euler scheme, the eigenspace associated to σ = 1 for finite volumes scheme is the
kernel of DFV and we can draw the same conclusion: the Padé two-step time scheme is unconditionally
stable.

4.2. Convergence rates

In previous subsections we have derived the semi-discrete (either in time or in space) convergence
rates of SWR algorithm. Now that we have checked that the various combinations of space and time
discretisations are unconditionally stable for bounded domains, the discrete convergence rates can be
studied.

In Section 3.1 we mentioned that adding the time-discretisation in the analysis amounts to a change
of variable for one-step time schemes (i.e. s in the continuous case is replaced by sd(z) in the discretised
case). We also showed that for a multiple-step time scheme, the convergence factor %(P2,space)

DN requires
solving a characteristic equation which is fourth order. Because of the lengthy computations involved
in the derivation of ρ(P2,FD)

DN and ρ(P2,FV)
DN we do not provide their analytical expressions.

4.2.1. Dirichlet-Neumann boundary conditions

The convergence with Dirichlet-Neumann operators does not directly depend on the discretisation in
time itself. Indeed ρ(BE,c)

DN = ρ
(c,c)
DN and ρ(P2,c)

DN = ρ
(c,c)
DN (provided that γ̃ = 0). With those transmission

operators, changing the value of ∆t in a semi-discrete in time convergence rate has no effect, whereas
changing it in a fully-discrete case shows the effect of the time scheme on the semi-discrete in space
convergence rate.

Figure 4.1 shows the fully-discrete convergence rate for several values of the parabolic Courant
number Γ = ν∆t/h2. The convergence rate is not much affected by Backward Euler scheme (a,
b, c). This is not surprising as the semi-discrete in time and the continuous convergence rates are
identical. On the other hand, the Padé time scheme (d, e, f) interacts with the Finite Difference scheme
differently when changing the operator γ. In the right column, the reaction coefficient r accelerates
the convergence in low frequencies and damps the space-time interactions. We see that leaving aside
the operator γ which plays an important role in high frequencies, the discretisation in time modifies
only slightly the effect of the semi-discrete analysis in space.

4.2.2. Robin-Robin boundary conditions

Now considering the two-sided Robin-Robin case for one-step time schemes, we obtain the following
general expression of the interface conditions:

p1η1,dirαk(s) + η1,neuαk(s) = p1η2,dirβk(s) + η2,neuβk(s)
p2η2,dirβk(s) + η2,neuβk(s) = p2η1,dirαk−1(s) + η1,neuαk−1(s).

The convergence rate thus reads:

ρRR =
∣∣∣∣∣(p2η1,dir + η1,neu) (p1η2,dir + η2,neu)
(p2η2,dir + η2,neu) (p1η1,dir + η1,neu)

∣∣∣∣∣ .
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Figure 4.1. Interactions between space and time discretisations with Dirichlet-
Neumann transmission operators. The relative importance of time and space schemes
are characterised by the parabolic Courant number Γ = ν1

∆t
h2 : as Γ → 0 (in red), the

semi-discrete in space case is recovered, whereas the convergence rate gets closer to the
semi-discrete in time setting when Γ→∞.
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RR , γ = γimit
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(f)

ρ
(P2,FD)
RR , γ = γimit, r = 0.1s−1

Figure 4.2. Convergence factor for different combinations of space and time discreti-
sation schemes, with Robin two-sided transmission operators optimised in the semi-
discrete in space setting (see Section 5.2). Several values of Γ = ν1

∆t
h2 are compared.

The reference red curve corresponds to the very small value Γ = 10−3 (i.e. almost
semi-discrete in space). The reaction coefficient r is set to 0, except in the right column
(r = 0.1). The extrapolation is γextr = z−β(z−1) whereas the imitation of the scheme
is γimit = γextr − β (β − 1)2 (z − 1)2.

The operators η, which depend on the space discretisation, are given in Table 3.1, and the frequency
variables are given in Table 3.2. A semi-discrete or fully-discrete setting is thus characterized by a
particular interface operator ηSpace

j and frequency variable sTime
d . Using sP2

d here amounts to neglecting
the operator γ. We instead use for ρ(P2,·)

RR an other expression based on subsection 3.1.3.
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Section 5.2 will detail the optimisation of the convergence rate with Robin two-sided interface
conditions and compare the discrete and semi-discrete cases. First results are shown in Figure 4.2
which presents the discrete convergence rates with several discretisations, reaction coefficients r and
parabolic Courant number Γ. For each discretisation and reaction coefficient, Robin parameters are
fixed as the optimal parameters for a semi-discrete in space setting, in order to focus on the effect of
changing Γ. It is seen on this figure that the convergence speed is accelerated by Backward Euler (a,b,c)
when Γ increases. When using Padé time scheme (d, e, f) the interaction with the finite difference
scheme drastically depends on γ. In the right column, the presence of a reaction coefficient r > 0
accelerates the convergence.

The operator of projection γ becomes more important as Γ increases. However, unlike with Dirichlet-
Neumann boundary conditions, the convergence is not slowed down by γ.

5. Numerical examples and optimisation of convergence rates

5.1. Comparison between numerical and theoretical convergence rates

Figures 3.2, 3.4, 4.1, 4.2 include circles that represent frequencies obtained in numerical simulations
3. It is seen that the numerical simulation fits the theoretical convergence rates. In Figure 3.4 for
r = 0 s−1 there are significant differences between the theoretical prediction with h = 10−1 m with
FD and FV. For lower frequencies, this comes from the limited size of the space domains (100 vertical
levels are used in each Ωj : the domains are smaller if h is smaller) In the highest frequencies, the
difference comes from the time discretisation. Figure 3.4 uses ∆t = 10−2 s and 105 time steps to
be close to a semi-discrete in space setting. In Figures 4.1 and 4.2 there are 104 time steps and 100
vertical levels are used in each Ωj . The differences between the theoretical analysis and the numerical
simulation come from the size of the time window. Other parameters are given in legend of Figure 5.1.

Note that for all the numerical experiments (including those in next section) we tried to obtain a
robust estimation of the convergence rate by performing 10 simulations, each one being initialized with
ek=0 as a white noise. Schwarz algorithm is applied to each of these 10 simulations. The convergence
rate is then computed as the rate of reduction of the standard deviation of the quantity |p1ê

k
2 + ν2φ̂

k
2|

over the 10 instances.

5.2. Optimisation of the two-sided Robin interface conditions

Having an accurate description of the discrete convergence rate is useful to maximize the convergence
speed. One way to do so stems from the optimised Schwarz methods framework [e.g. 14]. In the present
study we consider an optimisation based on the two-sided Robin interface conditions defined in §2.3.
Those interface conditions introduce two free parameters p1, p2 which can be chosen to minimise the
convergence rate:

(p1, p2) = argmin
(q1,q2)∈R2

max
ωmin≤ω≤ωmax

ρ
(·,·)
RR (ω; q1, q2). (5.1)

Depending on which ρ(·,·)
RR is used, the optimal (p1, p2) may differ.

Figure 5.1 compares the solutions of (5.1) with convergence rates obtained through continuous, semi-
discrete in time and discrete analyses. It illustrates how taking a discretisation into account in (5.1)
affects the convergence speed of Schwarz algorithms. Several comments can be drawn (theoretical ρ(.,.)

are referred to as “prediction” in the following sentences):

3The code used is available in the Zenodo archive (https://doi.org/10.5281/zenodo.6324930, [9])
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Table 5.1. Ratio of the L2 norms between consecutive iterations (k = 1, 2) in cases
shown in Figure 5.1. Left (resp. right) parts of the cells correspond to the BE (resp.
P2) implementation and to the left (resp. right) of Figure 5.1. The first three lines of
this Table are obtained with the FV implementation.

Optimised ρ(·,·)
RR (left | right) ||p1ek=2

2 +φk=2
2 ||2

||p1ek=1
2 +φk=1

2 ||2
(with BE | P2) Figure 5.1 color

ρ
(c,c)
RR | ρ(c,c)

RR 0.32 | 0.32 green
ρ

(BE,c)
RR | ρ(P2,c)

RR 0.28 | 0.29 red
ρ

(BE,FV)
RR | ρ(P2,FV)

RR 0.28 | 0.30 black
ρ

(BE,FD)
RR | ρ(P2,FD)

RR 0.23 | 0.23 (FD) blue

• The first thing to notice is that predictions (triangles) are close to corresponding observed
values (solid lines of the same color): they accurately fit, except for high frequencies in the
continuous or semi-discrete cases.

• For high frequencies, the convergence rate predicted by the continuous analysis significantly
differs from the actual convergence rate, which is here smaller than the prediction. For lower
frequencies, the discretisations accurately describe the continuous equations. Similarly to Fig-
ure 4.1, changing the time step would shift the frequencies for which the continuous equation
is well represented. As in the upper part of Figure 3.4 decreasing the space step would reduce
the range of frequencies for which the continuous and semi-discrete in space convergence rate
differ since r is small.

• The discrete analysis provides a better convergence (the maximum attained by the curves “Dis-
crete” are smaller than the maximum attained by the other analyses) and Robin parameters
change significantly between the discrete and continuous cases.

• The optimised convergence is faster for finite differences with kc = 0 than for finite volumes. It
is also the case for Dirichlet-Neumann in Figure 4.1 and Figure 3.4 indicates that this comes
from the discretisation of the flux.

• The optimal Robin parameters minimise a 3-point equi-oscillation. If the prediction differs
from the observed convergence at one of the equi-oscillation points then the minimisation can
be refined.

• Table 5.1 gives the convergence rate of the L2 norm in the time domain for each simulation
of Figure 5.1. The maximum of ρ(·,·)

RR is an upper bound of the L2 convergence rate and it is
seen that the discrete analysis provides as well a better convergence in the time domain. It
was checked that the convergence is linear for our choice of time window. For shorter time
windows, the convergence is superlinear as shown in the case of SWR with Dirichlet boundary
conditions in [10].

The choice was made here to illustrate the use of discrete analysis on Robin two sided transmission
operators, but an optimisation could of course also be performed on a relaxation parameter within
Dirichlet-Neumann interface conditions [e.g. 16, 22]. We quantitatively checked (not shown) that for
values of ν1, ν2 varying in a range from 10−2 to 2 the results obtained are consistent with the one
shown in Figure 5.1 for particular values of ν1, ν2. Our results hence seem quite robust to the values
of these parameters.
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Optimized convergence rates with different methods

Continuous Semi-discrete Discrete, FV Discrete, FD Theoretical prediction

Figure 5.1. Comparison of theoretical (triangles) and observed (solid lines) con-
vergence rates with Robin-Robin interface conditions. Theoretical values corre-
spond to ρ

(c,c)
RR (p1, p2) (green), ρ(Time,c)

RR (p1, p2) (red), ρ(Time,FV)
RR (p1, p2) (black) and

ρ
(Time,FD)
RR (p1, p2) (blue), with “Time” being BE (left panel) or P2 (right panel). The

actual values of p1, p2 are chosen to solve the min-max optimisation problem of the cor-
responding convergence rate. Solid lines are Fourier-transformed observed convergence
rates obtained by implementing SWR in a numerical code, with the finite difference
scheme (κc = 0) for the blue line and the finite volume scheme in the other cases.
Parameter values are ν1 = 0.5 m2s−1, ν2 = 1 m2s−1, h = 1 m, r = 10−3 s−1, ∆t = 1 s
and ω∆t ≤ π. For Padé time scheme, γ = γextr. There are 100 space levels in each
domain and 106 time steps.

6. Conclusion

In this paper, we studied an iterative Schwarz method defined for non-overlapping diffusion-reaction
problems with discontinuous coefficients. We analytically examined the behavior of the discrete con-
vergence rates of the iterative process for different spatial and temporal discretisations of the problem
and compared it to the ones obtained in the conventional continuous case. In particular we showed
that the discretisation of the interface conditions has a significant impact on the efficiency of the
method. For example the standard ghost-point method used for the finite difference discretisation of
Neumann conditions significantly slows down the convergence speed for high frequencies. As far as
the time dimension is concerned, when a simple one-step time-stepping scheme is used the impact of
the temporal discretisation on the convergence can be easily obtained from the continuous analysis
via a change of frequency variable. However for more advanced multi-step schemes the algebra is more
tedious because higher-order differential equations must be considered to determine the convergence
rate. In this case we also showed that the projection operator required to provide the boundary data at
the intermediate steps must be carefully chosen not to compromise the convergence speed. This aspect
has been discussed for a diagonally implicit Runge-Kutta scheme and a two-step “Padé” scheme.

A discrete analysis provides a convergence rate more representative of the behavior observed in
actual numerical experiments. Knowledge of the discrete convergence rate is thus advantageous for
techniques aimed at optimising the speed of convergence either through approximation of the absorbing
conditions or through a relaxation parameter weighting two or more successive iterates. We have
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illustrated this aspect in the particular case of zeroth-order approximation of the absorbing conditions
(i.e. using two-sided Robin-Robin interface conditions).

In future work the methodology developed in the present paper will be applied to problems with
more complex interface conditions (e.g. in the presence of turbulent boundary layers) like the ones
arising from wall laws in fluid dynamics. With applications to multi-physics settings in mind the
approach presented in this paper can also be used to analyse the case of different time and space
discretisations in each subdomain.

Appendix A. A finite volume scheme based on quadratic spline reconstruction

We present here a finite volume alternative to the standard finite difference scheme introduced in
section 3.2.1. We construct a scheme based on quadratic splines. This scheme offers the advantage to
naturally handle the transmission conditions between the two non-overlapping domains and to guar-
antee that the converged solution is similar to the monolithic solution of the problem. In this appendix
we drop the j subscript to denote subdomains for the sake of clarity. As described in Figure 3.3, we
consider control volumes delimited by xm and xm+1 such that h = xm+1− xm and the solution ūm+ 1

2

has to be interpreted in a finite volume sense, i.e. ūm+ 1
2

= 1
h

∫ xm+1

xm
u(x) dx.

We suppose here that the subgrid reconstruction u(x) on a volume centered at x = xm+ 1
2
is given

by a quadratic polynomial:

u(x) = Sm+ 1
2
(x− xm+ 1

2
) with x− xm+ 1

2
∈
[
−h2 ; h2

]
Sm+ 1

2
(ξ) = rm+ 1

2 ,2
ξ2 + rm+ 1

2 ,1
ξ + rm+ 1

2 ,0
.

Consistent with (3.10) in section 3.2, we note φFV
m the approximation of the derivative of u at the

interface between volumes m− 1
2 and m+ 1

2 . The coefficients rm+ 1
2 ,p

in Sm+ 1
2
(ξ) are chosen to satisfy

the following constraints:

(1) 1
h

∫ h/2

−h/2
Sm+ 1

2
(ξ) dξ = ūm+ 1

2

(2) ∂ξSm+ 1
2
(−h/2) = φFV

m

(3) ∂ξSm+ 1
2
(h/2) = φFV

m+1.

Those constraints, imposing the continuity of φ between two neighboring volumes and the consistency
with ūm+ 1

2
, provide rm+ 1

2 ,p
coefficients such that:

Sm+ 1
2
(ξ) = ūm+ 1

2
+
φFV
m+1 + φFV

m

2 ξ +
φFV
m+1 − φFV

m

2h

(
ξ2 − h2

12

)
. (A.1)

The last step amounts to impose the continuity of the solution at cell interfaces, i.e. Sm− 1
2

(
h
2

)
=

Sm+ 1
2

(
−h

2

)
, to obtain

1
6φ

FV
m−1 + 2

3φ
FV
m + 1

6φ
FV
m+1 =

ūm+ 1
2
− ūm− 1

2

h
(A.2)

which corresponds to a tridiagonal problem to solve to get φFV
m and then the second-order derivative

via (3.10). This scheme was also used for example in [25] to discretise vertical advection in an oceanic
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model. Note that using coefficients 1
12 instead of 1

6 and 5
6 instead of 2

3 in (A.2) would lead to a
fourth-order accurate compact scheme [e.g. 18].

Now that we have presented the numerical scheme of interest, we apply it to the equation satisfied
by the error. Considering (3.10) and the equations satisfied by the errors ēm interpreted in a finite
volume sense we end up with

(∂t + r)ēm+ 1
2

= ν

h

(
φFV
m − φFV

m−1

)
(A.3)

(∂t + r)ēm− 1
2

= ν

h

(
φFV
m+1 − φFV

m

)
(A.4)

which, when combined with (A.2), leads to

(∂t + r)
(1

6φ
FV
m−1 + 2

3φ
FV
m + 1

6φ
FV
m+1

)
− ν

h2

(
φFV
m+1 − 2φFV

m + φFV
m−1

)
= 0.
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