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Abstract. A new fully-mixed formulation is advanced for the stationary Oberbeck–Boussinesq problem when vis-
cosity depends on both temperature and concentration of a solute. Following recent ideas in the context of mixed
methods for Boussinesq and Navier–Stokes systems, the velocity gradient and the Bernoulli stress tensor are taken
as additional field variables in the momentum and mass equilibrium equations. Similarly, the gradients of tem-
perature and concentration together with a Bernoulli vector are considered as unknowns in the heat and mass
transfer equations. Consequently, a dual-mixed approach with Dirichlet data is defined in each sub-system, and
the well-known Banach and Brouwer theorems are combined with Babuška–Brezzi’s theory in each independent set
of equations, yielding the solvability of the continuous and discrete schemes. We show that our development also
applies to the case where the equations of thermal energy and solute transport are coupled through cross-diffusion.
Appropriate finite element subspaces are specified, and optimal a priori error estimates are derived. Furthermore, a
reliable and efficient residual-based a posteriori error estimator is proposed. Several numerical examples illustrate
the performance of the fully-mixed scheme and of the adaptive refinement algorithm driven by the error estimator.

2020 Mathematics Subject Classification. 65N30, 65N12, 65N15, 35Q79, 80A20, 76D05, 76R10.
Keywords. Oberbeck–Boussinesq equations, fully–mixed formulation, fixed-point theory, finite element
methods, a priori error analysis.

1. Introduction

Natural convection in porous media is of paramount interest due to its applicability in many environ-
mental and technological processes. Typical examples include seawater flow, mantle flow in the earth’s
crust, water movement in geothermal reservoirs, underground spreading of chemical wastes and other
pollutants, and many others [1, 3, 19, 38, 40]. A special case is when temperature and concentration
differences occur simultaneously, and a mathematical description of this flow regime is the so-called
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125

mailto:ecolmenares@ubiobio.cl
mailto:ggatica@ci2ma.udec.cl
mailto:smoragas@sfu.ca
mailto:ricardo.ruizbaier@monash.edu


E. Colmenares, G.N. Gatica, et al.

Oberbeck–Boussinesq approximation. It consists of the incompressible Navier–Stokes/Brinkman equa-
tions describing the hydrodynamics of viscous flow in the porous media, and advection-diffusion equa-
tions for solute’s concentration and temperature, nonlinearly coupled via convective mass and heat
transfer.

Motivated by the vast applications and the challenging mathematical structure of such nonlinearly
coupled system, the interest in analyzing it and in developing efficient numerical techniques to simulate
related phenomena has significantly increased, see, e.g., [2, 4, 5, 7, 9, 11, 14, 16, 21, 22, 25, 28, 29, 32,
34, 36, 39, 42, 41, 44, 46, 48] and the references therein. Those works include numerical algorithms
based on finite volume approaches, standard finite element techniques, parallel and projection-based
stabilization methods, spectral collocation, and mixed finite element methods; and they concentrate
on heat-driven flows and double-diffusion convection, including cases in which the phenomena occur
in porous enclosures, with either constant or variable physical parameters.

In certain applications, additional physically relevant variables, such as the velocity gradient or
the concentration and heat fluxes, might reveal specific mechanisms of the phenomena, and hence
become of primary interest. Whilst these variables could be obtained via numerical differentiation of
the discrete solutions provided by standard methods, this entails a loss of accuracy that deteriorate
the expected convergence orders. In light of this, the purpose of this work is to construct, analyze and
implement a high-order optimally convergent mixed finite element scheme for simulating this type
of coupled flows. We extend the use of the theory developed in the recent work [22] (specified for
temperature-driven flows), to the case of Oberbeck–Boussinesq equations. In doing so, and besides
the stress and the velocity gradient in the fluid equations, we introduce the temperature gradient, the
concentration gradient and a vector version of the Bernoulli tensor combining advective and diffusive
heat and concentration fluxes, as further field variables. The extension is non-trivial, but the resulting
formulation retains the same saddle-point structure on reflexive Banach spaces for both the Navier–
Stokes/Darcy and the thermal energy conservation equations. This feature constitutes a clear (but
essentially theoretically relevant) advantage over recent developments since the continuous and discrete
analyses for the two sub-models can be carried out separately and very much in the same way. Indeed,
the well-known Banach and Brouwer theorems, combined with the application of the Babuška–Brezzi
theory to each independent equation, lead to the solvability of the continuous and discrete schemes.
Additionally, our analysis is also applicable to a case of cross-diffusion for the heat and mass transfer
equations. In this regard, we emphasize that, rather than deriving a new theoretical framework, in
the present work we show that the same theory of [22] can be extended accordingly and tailored to
fit the Oberbeck–Boussinesq model, thus confirming its applicability to a larger family of nonlinear
coupled problems. Appropriate finite element spaces (that yield a stable Galerkin scheme) are, for
instance, Raviart–Thomas elements of order k ≥ n− 1 for the Bernoulli tensor and its vector version,
and piecewise polynomials (and not necessarily globally continuous) of degree ≤ k for the velocity,
the temperature, the concentration, and all gradients, constitute a feasible choice yielding a stable
Galerkin scheme. Discontinuous approximations can be of interest if rough solutions or coefficients are
expected. Some advantages of the proposed scheme include

(a) the pressure is eliminated by the functional setting, and it can be recovered by postprocessing,

(b) relaxed regularity requirements on temperature and concentration, yielding more flexibility in
choosing approximation spaces,

(c) the trace-free velocity gradient and the temperature and concentration gradients are now
primary unknowns,
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(d) differently from the methods constructed in [11, 16, 24, 41], the Dirichlet boundary conditions
for the temperature and concentration are naturally introduced into the formulation, avoiding
the use of either an extension or a boundary Lagrange multiplier,

(e) this scheme does not involve any augmentation term (as done, e.g. in [6, 7, 9, 10]), avoiding
stabilization parameters for well-posedness of the continuous and discrete problems, as well as
for the convergence of the method,

(f) the analysis also applies to a more general model of cross-diffusion.

The rest of this work is laid out as follows. At the end of this section we collect notational conven-
tions. In Section 2 we state the governing equations in strong primal form and in strong mixed form.
Next, the continuous variational formulation is derived in Section 3, which, after decoupling the fluid
equation from the heat and mass transfer equations, is rewritten as a fixed-point operator equation.
The solvability analysis is done using the Banach version of the classical Babuška–Brezzi theory, and
the Banach fixed-point theorem. Also, we show that the same theory can be applied to a case of
cross-diffusion. In Section 4 we define the Galerkin scheme with arbitrary finite element subspaces
satisfying general assumptions, and follow basically the same techniques employed in Section 3 to an-
alyze its solvability. We then specify finite element subspaces satisfying the assumptions stipulated in
Section 4. Our analysis makes use of a sufficiency result developed in [22] (see, also [35]) for the occur-
rence of inf-sup conditions on products of reflexive Banach spaces. In Section 5 we assume sufficiently
small data to derive an a priori error estimate for the Galerkin scheme with arbitrary finite element
subspaces. A reliable and efficient residual-based a posteriori error estimator Ψ and its associated
adaptive refinement algorithm are discussed in Section 6. Finally, numerical examples illustrating the
performance of our fully-mixed formulation with the particular subspaces proposed in Section 4, and
confirming the reliability and efficiency of Ψ, are reported in Section 7.

Recurrent notation and preliminaries

Let us denote by Ω ⊆ Rn, n ∈ {2, 3} a given bounded domain with polyhedral boundary Γ, and denote
by ν the outward unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces Lp(Ω)
and Sobolev spaces Ws,p(Ω), with s ∈ R and p > 1, whose corresponding norms, either for the scalar,
vectorial, or tensorial case, are denoted by ‖·‖0,p;Ω and ‖·‖s,p;Ω, respectively. In particular, given a non-
negative integer m, Wm,2(Ω) is also denoted by Hm(Ω), and the notations of its norm and seminorm
are simplified to ‖ ·‖m,Ω and | · |m,Ω, respectively. Furthermore, as usual I stands for the identity tensor
in Rn×n, and | · | denotes the Euclidean norm in Rn. In turn, for any vector fields v = (vi)i=1,n and
w = (wi)i=1,n we set the tensor product operator as v⊗w := (viwj)i,j=1,n. In addition, for any tensor
fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be the divergence operator div acting along
the rows of τ , and denote by τ t, tr(τ ), and τ d, the transpose, the trace, and the deviatoric tensor
of τ , respectively, and define the tensor inner product between τ and ζ as τ : ζ :=

∑n
i,j=1 τijζij .

Next, we introduce the Banach spaces H(div4/3; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L4/3(Ω)

}
and

H(div4/3; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L4/3(Ω)

}
, equipped with the natural norms

‖τ‖div4/3;Ω := ‖τ‖0,Ω + ‖div(τ )‖0,4/3;Ω and ‖τ‖div4/3;Ω := ‖τ‖0,Ω + ‖div(τ )‖0,4/3;Ω.

In addition, H1/2(Γ) is the space of traces of functions of H1(Ω) and H−1/2(Γ) is its dual. Also, by
〈·, ·〉Γ we will denote the duality pairing between H−1/2(Γ) and H1/2(Γ) (and also between H−1/2(Γ)
and H1/2(Γ)).
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2. Governing equations

The stationary Oberbeck–Boussinesq problem is constituted by the incompressible Navier–Stokes–
Brinkman equations coupled with the heat and mass transfer equations through a convective term and
a buoyancy term acting in opposite direction to gravity. The problem of interest (without dimensionless
numbers for readability purposes) reduces to: Find a velocity field u, a pressure field p, a temperature
field ϕ1 and a concentration field ϕ2, both defining a vector ϕ :=

(
ϕ1, ϕ2

)
, such that

γu− 2 div(µ(ϕ)e(u)) + (∇u)u +∇p− (ϑ ·ϕ)g = 0 in Ω,
div u = 0 in Ω,

−div
(
K1∇ϕ1

)
+ u · ∇ϕ1 = 0 in Ω,

−div
(
K2∇ϕ2

)
+ u · ∇ϕ2 = 0 in Ω,

(2.1)

where γ is a positive constant inversely proportional to the reciprocal of the Darcy number Da,
µ : R×R+ −→ R+ is the viscosity of the fluid, which is assumed to depend on both the temperature
and the concentration of mass, e(u) := 1

2
{
∇u + (∇u)t

}
is the rate of strain tensor, ϑ :=

(
ϑ1, ϑ2

)
is a vector containing expansion coefficients, g ∈ L∞(Ω) is an external force per unit mass, and
Kj ∈ L∞(Ω), j ∈

{
1, 2
}
, are uniformly positive definite tensors allowing the possibility of anisotropy

(cf. [37]). In addition, µ is assumed bounded and Lipschitz continuous, i.e., there exist µ1, µ2, Lµ > 0,
such that

µ1 ≤ µ(φ) ≤ µ2 and |µ(φ)− µ(ψ)| ≤ Lµ|φ−ψ| ∀φ,ψ ∈ R × R+, (2.2)

where | · | denotes from on the euclidean norm of Rn, n ∈
{
1, 2, 3

}
. Equations (2.1) are complemented

with Dirichlet boundary conditions for the velocity, the temperature, and the concentration, that is

u = uD, ϕ1 = ϕ1,D, and ϕ2 = ϕ2,D on Γ, (2.3)

with given data uD ∈ H1/2(Γ), ϕ1,D ∈ H1/2(Γ) and ϕ2,D ∈ H1/2(Γ). Owing to the incompressibility
of the fluid and the Dirichlet boundary condition for u, the datum uD must satisfy the compatibility
condition

∫
Γ uD · ν = 0. In addition, due to the first equation of (2.1), and in order to guarantee

uniqueness of the pressure, this unknown will be sought in the space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

On the other hand, in order to derive a fully-mixed formulation for (2.1)–(2.3), in which the essential
boundary conditions become natural ones, we now proceed as in [22, Section 2] (see also [7, 23, 24]),
and introduce the velocity gradient and the Bernoulli stress tensor as further unknowns

t := ∇u and σ := 2µ(ϕ)tsym −
1
2(u⊗ u)− pI, (2.4)

where tsym := 1
2{t + tt} is the symmetric part of t. In this way, and noting thanks to the incompress-

ibility condition that div(u⊗ u) = (∇u)u, we find that the first equation of (2.1) becomes

γu− divσ + 1
2tu− (ϑ ·ϕ)g = 0.

In turn, applying the matrix trace to the expression defining σ and using that tr(tsym) = div u = 0,
one arrives at

p = − 1
2ntr

(
2σ + u⊗ u

)
, (2.5)
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which, replaced back into the second equation of (2.4), yields what we call from now on the new
constitutive law of the fluid, namely

σd = 2µ(ϕ)tsym −
1
2(u⊗ u)d. (2.6)

Conversely, starting from (2.5) and (2.6) we readily recover the incompressibility condition and the
original definition of σ, whence these pair of equations are actually equivalent. Furthermore, for the
heat and mass transfer equations we proceed similarly as for the fluid, so that following now [22, eq.
(2.7)], we introduce for each j ∈

{
1, 2
}
the auxiliary unknowns

t̃j := ∇ϕj and σ̃j := Kj t̃j −
1
2ϕju. (2.7)

They represent respectively the gradients and the total (diffusive plus advective) fluxes for temperature
and concentration of solutes. Observing again from the incompressibility condition that in this case
there holds div(ϕju) = ∇ϕj ·u = t̃j ·u, our model problem (2.1) is re-stated as follows: Find (u, t,σ)
and (ϕj , t̃j , σ̃j), j ∈

{
1, 2
}
, in suitable spaces to be indicated below such that

∇u = t in Ω,

γu− divσ + 1
2tu− (ϑ ·ϕ)g = 0 in Ω,

2µ(ϕ)tsym −
1
2(u⊗ u)d = σd in Ω,

∇ϕj = t̃j in Ω,

Kj t̃j −
1
2ϕju = σ̃j in Ω,

−div σ̃j + 1
2 t̃j · u = 0 in Ω,

u = uD and ϕ = ϕD on Γ,∫
Ω

tr(2σ + u⊗ u) = 0,

(2.8)

where the Dirichlet datum for ϕ is certainly given by ϕD :=
(
ϕ1,D, ϕ2,D

)
. As suggested by (2.5), p is

eliminated from the formulation and computed afterwards in terms of σ and u. This fact justifies the
last equation in (2.8), which aims to ensure that the resulting p does belong to L2

0(Ω).

3. Well-posedness of the continuous problem

In this section we derive a weak formulation for (2.8) and analyze its properties decoupling the
advection-diffusion equations from the fluid equations using a fixed-point argument. The main dif-
ferences with respect to [22, eq. (2.8)] reside in the presence of an extra first order term γu and the
mass transfer equation, but the overall structure of the problem remains unchanged.

3.1. The fully-mixed formulation

Proceeding in a standard manner, we arrive at the following weak form of (2.8): Find (u, t,σ) ∈
L4(Ω)×L2

tr(Ω)×H(div4/3; Ω), and (ϕj , t̃j , σ̃j) ∈ L4(Ω)×L2(Ω)×H(div4/3; Ω), j ∈
{
1, 2
}
, such that
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∫
Ω tr(2σ + u⊗ u) = 0, and∫

Ω
γu · v−

∫
Ω

v · div(σ) + 1
2

∫
Ω

tu · v =
∫

Ω
(ϑ ·ϕ)g · v ∀v ∈ L4(Ω),∫

Ω
2µ(ϕ)tsym : s− 1

2

∫
Ω

(u⊗ u)d : sd =
∫

Ω
σd : sd ∀s ∈ L2

tr(Ω),∫
Ω
τ : t +

∫
Ω

u · div(τ ) = 〈τν,uD〉Γ ∀τ ∈ H(div4/3; Ω), (3.1)

−
∫

Ω
ψj div(σ̃j) + 1

2

∫
Ω
ψj t̃j · u = 0 ∀ψj ∈ L4(Ω),∫

Ω
Kj t̃j · s̃j −

1
2

∫
Ω
ϕju · s̃j =

∫
Ω
σ̃j · s̃j ∀s̃j ∈ L2(Ω),∫

Ω
τ̃ j · t̃j +

∫
Ω
ϕj div(τ̃ j) = 〈τ̃ j · ν, ϕj,D〉Γ ∀τ̃ j ∈ H(div4/3; Ω),

where the Dirichlet boundary conditions for u and ϕ have been employed in the derivation of the
foregoing weak formulation. Note here that the continuous injection of H1(Ω) in L4(Ω) (resp. the
continuous injection of H1(Ω) in L4(Ω)) guarantees that τν (resp. τ̃ j · ν) is well defined and belongs
to H−1/2(Γ) (resp. H−1/2(Γ)) when τ ∈ H(div4/3; Ω) (resp. τ̃ j ∈ H(div4/3; Ω)). On the other hand,
notice that we look for t in L2

tr(Ω) due to the incompressibility condition, where

L2
tr(Ω) :=

{
s ∈ L2 : tr(s) = 0

}
.

We now consider, as in [22, eqs. (3.8) and (3.9)], the orthogonal decomposition (cf., e.g. [30, 43])

H(div4/3; Ω) = H0(div4/3; Ω)⊕ RI, with H0(div4/3; Ω) :=
{
ζ ∈ H(div4/3; Ω) :

∫
Ω

tr(ζ) = 0
}
, (3.2)

and (3.2) together with
∫
Ω tr(2σ + u⊗ u) = 0, imply that σ can be uniquely decomposed as

σ = σ0 + c0I, with σ0 ∈ H0(div4/3; Ω) and c0 := − 1
2n|Ω|

∫
Ω

tr(u⊗ u). (3.3)

Making abuse of notation, we will continue to denote σ0 as simply σ ∈ H0(div4/3; Ω), and instead
of (3.1) consider the equivalent formulation: Find (u, t,σ) ∈ L4(Ω) × L2

tr(Ω) × H0(div4/3; Ω), and
(ϕj , t̃j , σ̃j) ∈ L4(Ω) × L2(Ω) × H(div4/3; Ω), j ∈

{
1, 2
}
, such that (3.1) holds for all (v, s, τ ) ∈

L4(Ω)× L2
tr(Ω)×H0(div4/3; Ω), and (ψj , s̃j , τ̃ j) ∈ L4(Ω)×L2(Ω)×H(div4/3; Ω), j ∈

{
1, 2
}
. For sake

of clarity in the presentation we introduce the following vector quantities
→u := (u, t), →v := (v, s), →u0 := (u0, t0) ∈ L4(Ω)× L2

tr(Ω),

and
→
ϕj := (ϕj , t̃j),

→
ψj := (ψj , s̃j) ∈ L4(Ω)× L2(Ω),

with their corresponding norms given by

‖→u‖ := ‖u‖0,4;Ω + ‖t‖0,Ω ∀→u ∈ L4(Ω)× L2
tr(Ω), (3.4)

‖→ϕj‖ := ‖ϕj‖0,4;Ω + ‖t̃j‖0,Ω ∀→ϕj ∈ L4(Ω)× L2(Ω). (3.5)
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Then, the fully-mixed formulation for the coupled problem reads: Find (→u,σ) ∈
(
L4(Ω) × L2

tr(Ω)
)
×

H0(div4/3; Ω) and (→ϕj , σ̃j) ∈
(
L4(Ω)× L2(Ω)

)
×H(div4/3; Ω), j ∈

{
1, 2
}
, such that

aϕ(→u,→v) + c(u;→u,→v) + b(→v ,σ) = Fϕ(→v) ∀→v ∈
(
L4(Ω)× L2

tr(Ω)
)
,

b(→u, τ ) = G(τ ) ∀τ ∈ H0(div4/3; Ω),

ãj(
→
ϕj ,

→
ψj) + c̃u(→ϕj ,

→
ψj) + b̃(

→
ψj , σ̃j) = 0 ∀

→
ψj ∈

(
L4(Ω)× L2(Ω)

)
,

b̃(→ϕj , τ̃ j) = G̃j(τ̃ j) ∀τ̃ j ∈ H(div4/3; Ω),

(3.6)

where, given arbitrary (w,φ) ∈ L4(Ω) × L4(Ω), the forms aφ, b, c(w; ·, ·), ãj , b̃, and c̃w, and the
functionals Fφ, G, and G̃j , are defined by

aφ(→u,→v) :=
∫

Ω
γu · v +

∫
Ω

2µ(φ)tsym : s, b(→v , τ ) := −
∫

Ω
τ : s−

∫
Ω

v · div(τ ), (3.7)

c(w;→u,→v) := 1
2

{∫
Ω

tw · v−
∫

Ω
(u⊗w)d : sd

}
, (3.8)

for all →u := (u, t), →v := (v, s) ∈ L4(Ω)× L2
tr(Ω), for all τ ∈ H0(div4/3; Ω),

ãj(
→
ϕj ,

→
ψj) :=

∫
Ω
Kj t̃j · s̃j , b̃(

→
ψj , τ̃ j) := −

∫
Ω
τ̃ j · s̃j −

∫
Ω
ψj div(τ̃ j),

c̃w(→ϕj ,
→
ψj) := 1

2

{∫
Ω
ψj t̃j ·w−

∫
Ω
ϕjw · s̃j

}
,

(3.9)

for all →ϕj := (ϕj , t̃j),
→
ψj := (ψj , s̃j) ∈ L4(Ω)× L2(Ω), for all τ̃ j ∈ H(div4/3; Ω), and

Fφ(→v) :=
∫

Ω
(ϑ · φ)g · v, G(τ ) := −〈τν,uD〉Γ, G̃j(τ̃ j) := −〈τ̃ j · ν, ϕj,D〉Γ, (3.10)

for all →v := (v, s) ∈ L4(Ω)× L2
tr(Ω), for all τ ∈ H0(div4/3; Ω), for all τ̃ j ∈ H(div4/3; Ω).

In what follows we proceed similarly as in [10] to prove that problem (3.6) is well-posed. More
precisely, in Section 3.2 we will reformulate (3.6) as an equivalent fixed-point equation in terms of a
suitable operator T . Then, in Section 3.3 we show that T is well-defined, and finally in Section 3.4 we
apply the classical Banach theorem to conclude that T has a unique fixed point.

3.2. The fixed-point approach

We first let S : L4(Ω)× L4(Ω) −→ L4(Ω) be the operator defined by

S(w,φ) := u ∀(w,φ) ∈ L4(Ω)× L4(Ω),

where (→u,σ) :=
(
(u, t),σ

)
∈
(
L4(Ω)×L2

tr(Ω)
)
×H0(div4/3; Ω) is the unique solution (to be confirmed

below) of the problem:

aφ(→u,→v) + c(w;→u,→v) + b(→v ,σ) = Fφ(→v) ∀→v ∈ L4(Ω)× L2
tr(Ω),

b(→u, τ ) = G(τ ) ∀τ ∈ H0(div4/3; Ω).
(3.11)

In turn, for each j ∈
{
1, 2
}
we let S̃j : L4(Ω) −→ L4(Ω) be the operator given by

S̃j(w) := ϕj ∀w ∈ L4(Ω),
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where (→ϕj , σ̃j) :=
(
(ϕj , t̃j), σ̃j

)
∈
(
L4(Ω) × L2(Ω)

)
×H(div4/3; Ω) is the unique solution (to be con-

firmed below) of the problem:

ãj(
→
ϕj ,

→
ψj) + c̃w(→ϕj ,

→
ψj) + b̃(

→
ψj , σ̃j) = 0 ∀

→
ψj ∈ L4(Ω)× L2(Ω),

b̃(→ϕj , τ̃ j) = G̃j(τ̃ j) ∀τ̃ j ∈ H(div4/3; Ω),
(3.12)

so that we can introduce S̃(w) :=
(
S̃1(w), S̃2(w)

)
∈ L4(Ω) for all w ∈ L4(Ω). Having defined the

mappings S and S̃, we now set T : L4(Ω)× L4(Ω) −→ L4(Ω)× L4(Ω) as

T (w,φ) :=
(
S(w,φ), S̃

(
S(w,φ)

))
∀(w,φ) ∈ L4(Ω)× L4(Ω), (3.13)

and realize that solving (3.6) is equivalent to finding (u,ϕ) ∈ L4(Ω)× L4(Ω) such that

T (u,ϕ) = (u,ϕ).

3.3. Well-definedness of the fixed-point operator

In what follows we show that T is well-defined, reducing to prove that the uncoupled problems (3.11)
and (3.12) are well-posed. These results will be straightforward consequences of the Banach version
of the Babuška–Brezzi theory (cf. [27, Theorem 2.34]). Note that the problems in (3.12) only differ in
the bilinear forms ãj and the functionals G̃j on the right-hand side of the second equation. However,
since the tensors Kj defining the forms ãj satisfy exactly the same properties, the required hypotheses
need to be checked only for a generic ãj and for b̃.

We begin our analysis by observing, as in [22, eqs. (3.30), (3.31)], that the kernels of the operators
induced by the bilinear forms b and b̃, are given by V and Ṽ, respectively, where

V :=
{→v = (v, s) ∈ L4(Ω)× L2

tr(Ω) : ∇v = s and v ∈ H1
0(Ω)

}
, (3.14)

and
Ṽ :=

{→
ψ = (ψ, s̃) ∈ L4(Ω)× L2(Ω) : ∇ψ = s̃ and ψ ∈ H1

0(Ω)
}
. (3.15)

Next, we introduce the spaces H := L4(Ω)×L2
tr(Ω) and H̃ := L4(Ω)×L2(Ω), with norms given by (3.4)

and (3.5), and readily establish the boundedness of aφ, b, ãj , and b̃, by using the Cauchy–Schwarz
inequality, the bound for µ (cf. (2.2)), and the fact that Kj ∈ L∞(Ω). More precisely, there hold

aφ(→u,→v) ≤ (|Ω|1/2γ + 2µ2)‖→u‖‖→v‖ ∀φ ∈ L4(Ω), ∀→u,→v ∈ H, (3.16)

b(→v , τ ) ≤ ‖→v‖‖τ‖div4/3;Ω ∀→v ∈ H, ∀τ ∈ H0(div4/3; Ω), (3.17)

ãj(
→
ϕj ,

→
ψj) ≤ ‖Kj‖0,∞;Ω‖

→
ϕj‖‖

→
ψj‖ ∀→ϕj ,

→
ψj ∈ H̃, (3.18)

b̃(
→
ψj , τ̃ j) ≤ ‖

→
ψj‖‖τ̃ j‖div4/3;Ω ∀

→
ψj ∈ H̃, ∀τ̃ j ∈ H(div4/3; Ω). (3.19)

In turn, the following lemma establishes the ellipticity of the bilinear forms aφ and ãj .

Lemma 3.1. There exist positive constants α and α̃ such that

aφ(→v ,→v) ≥ α‖→v‖2 ∀φ ∈ L4(Ω), ∀→v ∈ V, (3.20)

and
ãj(
→
ψ,
→
ψ) ≥ α̃‖

→
ψ‖2 ∀

→
ψ ∈ Ṽ. (3.21)

Proof. Given →v = (v, s) ∈ V and φ ∈ L4(Ω), we know from (3.14) that ∇v = s and v ∈ H1
0(Ω),

which yields e(v) = ssym. Hence, applying the lower bound of µ (cf. (2.2)), the Korn inequality in
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H1
0(Ω), the continuous injection i : H1(Ω) −→ L4(Ω), and the Friedrichs–Poincaré inequality with

constant cp, we obtain

aφ(→v ,→v) =
∫

Ω
γv · v +

∫
Ω

2µ(φ)ssym : ssym ≥ 2µ1‖ssym‖20,Ω = 2µ1‖e(v)‖20,Ω

≥ µ1|v|21,Ω = µ1
2 |v|

2
1,Ω + µ1

2 ‖s‖
2
0,Ω ≥

µ1cp
2‖i‖2 ‖v‖

2
0,4;Ω + µ1

2 ‖s‖
2
0,Ω,

which implies (3.20) with α depending on µ1, cp, and ‖i‖. The proof of (3.21), using that Kj is a
uniformly positive definite tensor, and proceeding analogously to the one of (3.20), is omitted.

We find it important to remark that the V-ellipticity of aφ does not depend on γ. This property
will remain valid for the discrete case, and therefore this constant could be chosen arbitrarily small.
In particular, while γ is related to Darcy’s number, it could also arise from time discretization of the
evolutionary problem. In this case, and since the aforementioned ellipticity is already guaranteed by
the second term defining aφ and by the lower bound µ1 of µ, we stress that this property will not be
affected by a small value of γ, which confirms the relevance of extending the applicability of the theory
from [22] to the present model. Next, we recall from [22] that b and b̃ (cf. (3.7) and (3.9)) verify the
inf-sup condition corresponding to the Banach version of the Babuška–Brezzi theory.

Lemma 3.2. There exist positive constants β and β̃ such that

sup
→
v∈H
→
v 6=0

b(→v , τ )
‖→v‖

≥ β‖τ‖div4/3;Ω ∀τ ∈ H0(div4/3; Ω),

and

sup
→
ψ∈H̃
→
ψ 6=0

b̃(
→
ψ, τ̃ )

‖
→
ψ‖

≥ β̃‖τ̃‖div4/3;Ω ∀τ̃ ∈ H(div4/3; Ω).

Proof. See [22, Lemma 3.3].

Furthermore, in what follows we collect also from [22] various fundamental properties of the forms
c(w; ·, ·) and c̃w that are instrumental for the forthcoming analysis.

Lemma 3.3. The bilinear forms c(w; ·, ·) : H ×H → R and c̃w : H̃ × H̃ → R are bounded for each
w ∈ L4(Ω) with boundedness constants given in both cases by ‖w‖0,4;Ω. Moreover:

c(w;→v ,→v) = 0 and c̃w(→ϕj ,
→
ϕj) = 0 ∀w ∈ L4(Ω), ∀→v ∈ H, ∀→ϕj ∈ H̃, (3.22)∣∣c(w;→u,→v)− c(z;→u,→v)

∣∣ ≤ ‖w− z‖0,4;Ω‖
→u‖‖→v‖ ∀w, z ∈ L4(Ω), ∀→u,→v ∈ H, (3.23)∣∣c̃w(

→
φj ,

→
ψj)− c̃w(→ϕj ,

→
ψj)

∣∣ ≤ ‖w‖0,4;Ω‖
→
φj −

→
ϕj‖‖

→
ψj‖ ∀w ∈ L4(Ω), ∀

→
φj ,

→
ϕj ,

→
ψj ∈ H̃, (3.24)∣∣c̃w(→ϕj ,

→
ψj)− c̃z(→ϕj ,

→
ψj)

∣∣ ≤ ‖w− z‖0,4;Ω‖
→
ϕj‖‖

→
ψj‖ ∀w, z ∈ L4(Ω), ∀→ϕj ,

→
ψj ∈ H̃. (3.25)

Proof. See [22, Lemma 3.4].
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Given (w,φ) ∈ L4(Ω)×L4(Ω), we adopt a similar notation as in [22, Lemma 3.5, 3.6] and introduce
the bilinear forms Aw,φ : H×H −→ R and Ãw,j : H̃× H̃ −→ R defined by

Aw,φ(→u,→v) := aφ(→u,→v) + c(w,→u,→v) ∀→u,→v ∈ H (3.26)

Ãw,j(
→
ϕj ,

→
ψj) := ãj(

→
ϕj ,

→
ψj) + cw(→ϕj ,

→
ψj) ∀→ϕj ,

→
ψj ∈ H̃, (3.27)

which, thanks to (3.16), (3.18) and Lemma 3.3, satisfy∣∣Aw,φ(→u,→v)
∣∣ ≤ (|Ω|1/2γ + 2µ2 + ‖w‖0,4;Ω

)
‖→u‖‖→v‖ ∀→u,→v ∈ H, (3.28)

|Ãw,j(
→
ϕj ,

→
ψj)| ≤

(
‖Kj‖0,∞;Ω + ‖w‖0,4;Ω

)
‖→ϕj‖‖

→
ψj‖ ∀→ϕj ,

→
ψj ∈ H̃. (3.29)

In addition, in virtue of Lemma 3.1 and (3.22), we readily see that Aw,φ and Ãw,j are V-elliptic and
Ṽ-elliptic, respectively, with the same constants α and α̃ from Lemma 3.1. According to these results
and the inf-sup conditions satisfied by b and b̃ (cf. Lemma 3.2), straightforward applications of the
Babuška–Brezzi theory in Banach spaces imply that (3.11) and (3.12) are well-posed, equivalently
that the operators S and S̃j , j ∈

{
1, 2
}
(and hence S̃), are all well-defined. More precisely, denoting

‖K‖0,∞;Ω := ‖K1‖0,∞;Ω + ‖K2‖0,∞;Ω, we are now in position to state the following lemmas.

Lemma 3.4. For each (w,φ) ∈ L4(Ω) × L4(Ω), problem (3.11) has a unique solution (→u,σ) :=(
(u, t),σ

)
∈ H×H0(div4/3; Ω). Moreover, there exists CS > 0, independent of (w,φ), such that

‖S(w,φ)‖ := ‖u‖0,4;Ω ≤ CS
{
‖φ‖0,4;Ω‖g‖0,∞;Ω +

(
1 + ‖w‖0,4;Ω

)
‖uD‖1/2,Γ

}
. (3.30)

Lemma 3.5. For each w ∈ L4(Ω), and j ∈
{
1, 2
}
, problem (3.12) has a unique solution (→ϕj , σ̃j) :=(

(ϕj , t̃j), σ̃j
)
∈ H̃×H(div4/3; Ω). Moreover, there exists C

S̃
> 0, independent of w, such that

‖S̃(w)‖ := ‖
(
S̃1(w), S̃2(w)

)
‖ = ‖(ϕ1, ϕ2)‖ ≤ C

S̃

{
1 + ‖K‖0,∞;Ω + ‖w‖0,4;Ω

}
‖ϕD‖1/2,Γ. (3.31)

We refer to [22, Lemmas 3.5 and 3.6] for similar algebraic details on the a priori estimates (3.30)
and (3.31), as well as for the explicit expressions for the constants CS and C

S̃
.

3.4. Solvability of the fixed-point equation

Having proved that the operators S, S̃, and hence T , are well-defined, we now follow [22] to establish
the existence of a unique fixed point for T . For sake of simplicity of the remaining analysis, we consider
a constant viscosity, but should µ depend on ϕ, we would only need to assume further regularity on
the solution of the problem defining S, exactly as we did in [22, Section 3.4]. In any case, the most
distinctive aspects of our subsequent mathematical discussion will remain unchanged.

We begin by observing from (3.13), the a priori bounds for S̃ (cf. Lemma 3.5) and S (cf. Lemma 3.4),
and some algebraic manipulations, that for all (w,φ) ∈ L4(Ω)× L4(Ω) there holds

‖T (w,φ)‖ := ‖
(
S(w,φ), S̃

(
S(w,φ)

))
‖ = ‖S(w,φ)‖+ ‖S̃

(
S(w,φ)

)
‖

≤
(
1 + C

S̃
‖ϕD‖1/2,Γ

)
‖S(w,φ)‖+ C

S̃

(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ

≤ CS max
{
1, C

S̃

}(
1 + ‖ϕD‖1/2,Γ

)(
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)(
1 + ‖(w,φ)‖

)
+ C

S̃

(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ,

(3.32)

from which, assuming that ‖(w,φ)‖ ≤ r, with r > 0 given, we get

‖T (w,φ)‖ ≤ C(r)
{(

1 + ‖ϕD‖1/2,Γ
)(
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
+
(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ

}
, (3.33)
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with C(r) := CS max
{
1, C

S̃

}
(r+1)+C

S̃
. In this way, denoting by W the closed ball of L4(Ω)×L4(Ω)

with radius r, we conclude from the foregoing estimate that if the data satisfy the assumption{(
1 + ‖ϕD‖1/2,Γ

)(
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
+
(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ

}
≤ r

C(r) , (3.34)

then the operator T maps W into itself.
In the following lemmas we establish the continuity of the operators S and S̃.

Lemma 3.6. Let α be the V-ellipticity constant provided by Lemma 3.1 and let LS := α−1. Then

‖S(w,φ)− S(z,ψ)‖ ≤ LS
{
‖w− z‖0,4;Ω‖S(z,ψ)‖+ ‖φ−ψ‖0,4;Ω‖g‖0,∞;Ω

}
, (3.35)

for all (w,φ), (z,ψ) ∈ L4(Ω)× L4(Ω).

Proof. It proceeds similarly as in [22, Lemma 3.8 and eq. (3.64)]. We omit further details.

Lemma 3.7. There exists a positive constant L
S̃
, depending on α̃ and C

S̃
(cf. Lemma 3.5), such that

‖S̃(w)− S̃(z)‖ ≤ L
S̃
‖z−w‖0,4;Ω

{(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ + ‖z‖0,4;Ω‖ϕD‖1/2,Γ

}
, (3.36)

for all w, z ∈ L4(Ω).

Proof. Given w, z ∈ L4(Ω), it suffices to recall that S̃(w)− S̃(z) =
(
S̃1(w)− S̃1(z), S̃2(w)− S̃2(z)

)
,

and then apply the continuity for each S̃j , j ∈
{
1, 2
}
, provided by [22, Lemma 3.9].

We are now in a position to establish the continuity of T as a consequence of Lemmas 3.6 and 3.7.

Lemma 3.8. There holds

‖T (w,φ)− T (z,ψ)‖ ≤ LS
{

1 + L
S̃

(
1 + ‖K‖0,∞;Ω + ‖S(z,ψ)‖

)
‖ϕD‖1/2,Γ

}
×
{
‖(S(z,ψ)‖+ ‖g‖0,∞;Ω

}
‖(w,φ)− (z,ψ)‖ (3.37)

for all (w,φ), (z,ψ) ∈ L4(Ω)× L4(Ω).

Proof. According to the definition of T (cf. (3.13)), and employing the continuity estimate (3.36) for
S̃ (cf. Lemma 3.7), we readily find first that
‖T (w,φ)− T (z,ψ)‖ = ‖S(w,φ)− S(z,ψ)‖+ ‖S̃

(
S(w,φ)

)
− S̃

(
S(z,ψ)

)
‖

≤
{

1 + L
S̃

(
1 + ‖K‖0,∞;Ω + ‖S(z,ψ)‖

)
‖ϕD‖1/2,Γ

}
‖S(w,φ)− S(z,ψ)‖,

from which, appealing to the continuity estimate (3.35) for S (Lemma 3.6), we conclude the proof.

Next, given (z,ψ) ∈ L4(Ω) × L4(Ω) such that ‖(z,ψ)‖ ≤ r, with r > 0 given, we deduce from the
a priori estimate (3.30) for S (cf. 3.4) that

‖S(z,ψ)‖ ≤ CS(1 + r)
{
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

}
.

In this way, inserting the foregoing estimate back into (3.37), and performing several suitable inequali-
ties, we are able to show the Lipschitz-continuity of T , that is

‖T (w,φ)− T (z,ψ)‖ ≤ LT (1 + r)2C(K, g,uD,ϕD)
(
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
‖(w,φ)− (z,ψ)‖, (3.38)
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for all (w,φ) ∈ L4(Ω)× L4(Ω), where LT := LS max
{
1, L

S̃

}(
max

{
1, CS

})2, and
C(K, g,uD,ϕD) :=

{
1 +

(
1 + ‖K‖0,∞;Ω + ‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
‖ϕD‖1/2,Γ

}
. (3.39)

We now establish sufficient conditions for the existence of a unique fixed point of T (equivalently,
for the well-posedness of the coupled problem (3.6)). More precisely, we have the following result.

Theorem 3.9. Given r > 0, let W be the closed ball in L4(Ω)× L4(Ω) with center at the origin and
radius r, and assume that the data satisfy (3.34) and

LT (1 + r)2C(K, g,uD,ϕD)
(
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
< 1. (3.40)

Then, the operator T has a unique fixed point (u,ϕ) ∈W . Equivalently, the coupled problem (3.6) has
a unique solution (→u,σ) ∈ H × H0(div4/3; Ω) and (→ϕj , σ̃j) :=

(
(ϕj , t̃j), σ̃j

)
∈ H̃ ×H(div4/3; Ω), j ∈{

1, 2
}
, with (u,ϕ) :=

(
u, (ϕ1, ϕ2)

)
∈W . Moreover, there exist positive constants Ci, i ∈

{
1, 2, . . . , 6

}
,

depending on CS, r, CS̃, ‖K‖0,∞;Ω, |Ω|, γ, µ2, α, ϑ1, ϑ2, β, β̃, and α̃j, j ∈
{
1, 2
}
, such that the

following a priori estimates hold

‖→u‖ ≤ C1‖g‖0,∞;Ω + C2‖uD‖1/2,Γ, (3.41)
‖σ‖ ≤ C3‖g‖0,∞;Ω + C4‖uD‖1/2,Γ, (3.42)

‖→ϕj‖ ≤ C5‖ϕD‖1/2,Γ, (3.43)
‖σ̃j‖ ≤ C6‖ϕD‖1/2,Γ. (3.44)

Proof. Let us recall from the first part of the present Subsection 3.4 that, under the assumption (3.34),
T maps the ball W into itself. Then, thanks to (3.38) and (3.40), a straightforward application of
Banach fixed-point theorem implies the existence of a unique fixed point (u,ϕ) ∈W of T . In turn, the
estimates (3.41), (3.43), (3.42), and (3.44) follow similarly to the derivation of the a priori estimates [22,
eqs. (3.74), (3.75), (3.76) and (3.77), Theorem 3.11].

3.5. Incorporating isotropic cross-diffusion

In this section we briefly describe a related model to (2.1), which, on one hand is a particular case
of that problem, and on the other hand constitutes a slight modification of it. More precisely, the
temperature and concentration equations can accommodate cross-diffusion (see, for instance [16]):

−div
(
K11∇ϕ1 + K12∇ϕ2

)
+ u · ∇ϕ1 = 0 in Ω,

−div
(
K21∇ϕ1 + K22∇ϕ2

)
+ u · ∇ϕ2 = 0 in Ω,

(3.45)

Here, the coefficients Kij ∈ L∞(Ω), i, j ∈
{
1, 2
}
, are appropriate scalar functions that need to satisfy

adequate properties so that the equations remain well-defined. Introducing the tensor

K :=
(

K11 K12
K21 K22

)
∈ L∞(Ω), (3.46)

we realize that (3.45) can be rewritten as the system

−div
(
K∇ϕ

)
+
(
∇ϕ

)
u = 0 in Ω,
ϕ = (ϕ1,D, ϕ2,D) on Γ,

(3.47)
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including the Dirichlet boundary conditions for the vector temperature-concentration. In this way,
proceeding as in Sections 2 and 3.1, but instead of (2.7), setting

t̃ := ∇ϕ and σ̃ := Kt̃− 1
2ϕ⊗ u,

we arrive at the following variational formulation for the coupling of (3.47) with the momentum
and mass balance equations: Find (→u,σ) :=

(
(u, t),σ

)
∈
(
L4(Ω) × L2

tr(Ω)
)
× H0(div4/3; Ω) and

(→ϕ, σ̃) :=
(
(ϕ, t̃), σ̃

)
∈
(
L4(Ω)× L2(Ω)

)
×H(div4/3; Ω) such that

aϕ(→u,→v) + c(u;→u,→v) + b(→v ,σ) = Fϕ(→v) ∀→v ∈
(
L4(Ω)× L2

tr(Ω)
)
,

b(→u, τ ) = G(τ ) ∀τ ∈ H0(div4/3; Ω),

ã(→ϕ,
→
ψ) + c̃u(→ϕ,

→
ψ) + b̃(

→
ψ, σ̃) = 0 ∀

→
ψ ∈

(
L4(Ω)× L2(Ω)

)
,

b̃(→ϕ, τ̃ ) = G̃(τ̃ ) ∀τ̃ ∈ H(div4/3; Ω),

(3.48)

where, for a given (w,φ) ∈ L4(Ω)×L4(Ω), the forms aφ, b, and c(w; ·, ·), and the functionals Fφ and
G, are defined as in (3.7),(3.8),(3.10), whereas ã, b̃, c̃w, and G̃, are specified as

ã(→ϕ,
→
ψ) :=

∫
Ω
Kt̃ : s̃, b̃(

→
ψ, τ̃ ) := −

∫
Ω
τ̃ : s̃−

∫
Ω
ψ · div(τ̃ ),

c̃w(→ϕ,
→
ψ) := 1

2

{∫
Ω

t̃w ·ψ −
∫

Ω
(ϕ⊗w) : s̃

}
, G̃(τ̃ ) := −〈τ̃ν,ϕD〉Γ,

for all →ϕ := (ϕ, t̃),
→
ψ := (ψ, s̃) ∈ L4(Ω)×L2(Ω), for all τ̃ ∈ H(div4/3; Ω). Note that the well-posedness

analysis for (3.48) follows almost verbatim to that in Sections 3.2–3.5 with a single j ∈
{
1, 2
}
in (3.6),

upon the assumption that K (cf. (3.46)) is uniformly positive definite. We omit further details. A
numerical example illustrating the performance of the finite element scheme associated with (3.48) is
reported in Section 7.

4. The Galerkin scheme

We now devote ourselves to constructing a Galerkin method for (3.6). The solvability of this scheme
is addressed following similar techniques as those employed throughout Section 3.

4.1. Preliminaries

Let us consider arbitrary finite dimensional subspaces Hu
h ⊆ L4(Ω), Ht

h ⊆ L2
tr(Ω), Hσh ⊆ H0(div4/3; Ω),

Hϕ
h ⊆ L4(Ω), Ht̃

h ⊆ L2(Ω), and Hσ̃
h ⊆ H(div4/3; Ω), whose specific choices are postponed to Section 4.3,

below. Hereafter, h := max
{
hK : K ∈ Th

}
stands for the size of a regular triangulation Th of Ω formed

by triangles K (when n = 2) or tetrahedra K (when n = 3) of diameter hK . Next, we denote

→uh := (uh, th), →vh := (vh, sh), →u0,h := (u0,h, t0,h) ∈ Hh := Hu
h ×Ht

h,

→
ϕj,h := (ϕj,h, t̃j,h),

→
ψj,h := (ψj,h, s̃j,h) ∈ H̃h := Hϕ

h ×Ht̃
h.
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The Galerkin scheme associated with (3.6) reads: Find (→uh,σh) ∈ Hh×Hσh and (→ϕj,h, σ̃j,h) ∈ H̃h×Hσ̃
h ,

j ∈
{
1, 2
}
, such that

aϕh
(→uh,

→vh) + c(uh;→uh,
→vh) + b(→vh,σh) = Fϕh

(→vh) ∀→vh ∈ Hh,

b(→uh, τ h) = G(τ h) ∀τ h ∈ Hσh ,

ãj(
→
ϕj,h,

→
ψj,h) + c̃uh

(→ϕj,h,
→
ψj,h) + b̃(

→
ψj,h, σ̃j,h) = 0 ∀

→
ψj,h ∈ H̃h,

b̃(→ϕj,h, τ̃ j,h) = G̃j(τ̃ j,h) ∀τ̃ j,h ∈ Hσ̃
h .

(4.1)

We now follow a discrete analogue of the fixed-point approach developed in Section 3.2. To this
end, we first let Hϕ

h := Hϕ
h ×Hϕ

h and introduce the operator Sh : Hu
h ×Hϕ

h → Hu
h defined by

Sh(wh,φh) := uh ∀(wh,φh) ∈ Hu
h ×Hϕ

h ,

where (→uh,σh) =
(
(uh, th),σh

)
∈ Hh × Hσh is the unique solution (to be confirmed below) of the

problem
aφh

(→uh,
→vh) + c(wh;→uh,

→vh) + b(→vh,σh) = Fφh
(→vh) ∀→vh ∈ Hh,

b(→uh, τ h) = G(τ h) ∀τ h ∈ Hσh .
(4.2)

In turn, for each j ∈
{
1, 2
}
we let S̃j,h : Hu

h → Hϕ
h be the operator given by

S̃j,h(wh) := ϕj,h ∀wh ∈ Hu
h ,

where (→ϕj,h, σ̃j,h) =
(
(ϕj,h, t̃j,h), σ̃j,h

)
∈ H̃h ×Hσ̃

h is the unique solution (to be confirmed below) of
the problem

ãj(
→
ϕj,h,

→
ψj,h) + c̃wh

(→ϕj,h,
→
ψj,h) + b̃(

→
ψj,h, σ̃j,h) = 0 ∀

→
ψj,h ∈ H̃h,

b̃(→ϕj,h, τ̃ j,h) = G̃j(τ̃ j,h) ∀τ̃ j,h ∈ Hσ̃
h ,

(4.3)

and then we introduce S̃h(wh) :=
(
S̃1,h(wh), S̃2,h(wh)

)
∈ Hϕ

h for all wh ∈ Hu
h . Hence, defining

Th : Hu
h ×Hϕ

h → Hu
h ×Hϕ

h as

Th(wh,φh) :=
(
Sh(wh,φh), S̃h

(
Sh(wh,φh)

))
∀(wh,φh) ∈ Hu

h ×Hϕ
h , (4.4)

we realize that solving (4.1) is equivalent to seeking a fixed point of Th, that is: Find (uh,ϕh) ∈ Hu
h×Hϕ

h
such that

Th(uh,ϕh) = (uh,ϕh). (4.5)

4.2. Solvability of the discrete problem

We now aim to establish the well-posedness of (4.1) by studying the solvability of the equivalent equa-
tion (4.5) using Brouwer’s fixed-point theorem (cf. [20, Theorem 9.9-2]). Exactly as for the continuous
case, we begin by showing that Sh and S̃j,h, j ∈

{
1, 2
}
, and hence S̃h and Th, are well-defined. For

this purpose, we need to establish hypotheses on the (so far, arbitrary) discrete spaces. Subsequently
we will specify suitable finite element spaces satisfying these conditions.

In what follows, we let Vh and Ṽh be the discrete kernels of b and b̃, respectively, that is

Vh :=
{→vh := (vh, sh) ∈ Hh :

∫
Ω
τ h : sh +

∫
Ω

vh · div(τ h) = 0 ∀τ h ∈ Hσh
}
,

Ṽh :=
{→
ψh := (ψh, s̃h) ∈ H̃h :

∫
Ω
τ̃ h · s̃h +

∫
Ω
ψh div(τ̃ h) = 0 ∀τ̃ h ∈ Hσ̃

h

}
.

In addition, for each sh ∈ Ht
h we denote by sh,sym and sh,skw its symmetric and skew-symmetric parts,

respectively.
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Then, we consider the following hypotheses on the discrete subspaces employed:
Assumption 4.1. There exists a positive constant βd > 0, independent of h, such that

sup
→
v h∈Hh
→
v h 6=0

b(→vh, τ h)
‖→vh‖

≥ βd‖τ h‖div4/3;Ω ∀τ h ∈ Hσh . (4.6)

Assumption 4.2. There exists a positive constant Cd, independent of h, such that
‖sh,sym‖0,Ω ≥ Cd‖(vh, sh,skw)‖ ∀→vh := (vh, sh) ∈ Vh. (4.7)

Assumption 4.3. There exists a positive constant β̃d > 0, independent of h, such that

sup
→
ψj,h∈H̃h
→
ψj,h 6=0

b̃(
→
ψj,h, τ̃ j,h)

‖
→
ψj,h‖

≥ β̃d‖τ̃ j,h‖div4/3;Ω ∀τ̃ j,h ∈ Hσ̃
h . (4.8)

Assumption 4.4. There exists a positive constant C̃d, independent of h, such that

‖s̃j,h‖0,Ω ≥ C̃d‖ψj,h‖0,4;Ω ∀
→
ψj,h := (ψj,h, s̃j,h) ∈ Ṽh. (4.9)

As consequence of Assumptions 4.1 and 4.2, and following basically the same procedure and nota-
tions from [22, Lemma 4.2], we are able to establish next the well-definedness of Sh, which constitutes
the discrete analogue of Lemma 3.4.
Lemma 4.5. For each (wh,φh) ∈ Hu

h ×Hϕ
h , (4.2) has a unique solution (→uh,σh) :=

(
(uh, th),σh

)
∈

Hh ×Hσh . Moreover there exists a positive constant CS,d, independent of h and (wh,φh), such that

‖Sh(wh,φh)‖ := ‖uh‖ ≤ CS,d
{
‖φh‖0,4;Ω‖g‖0,∞;Ω +

(
1 + ‖wh‖0,4;Ω

)
‖uD‖1/2,Γ

}
. (4.10)

Proof. Given (wh,φh) ∈ Hu
h ×Hϕ

h , we first recall from (3.26) and (3.28) that Awh,φh
is bounded.

Then, for each →vh := (vh, sh) ∈ Vh we easily deduce from (2.2), (4.7) (cf. Assumption 4.2), and a
simple algebraic manipulation, that

aφh
(→vh,

→vh) =
∫

Ω
γvh · vh +

∫
Ω

2µ(φh)sh,sym : sh,sym ≥ µ1 min
{
1, C2

d
}
‖→vh‖2,

which, together with the fact that c(wh;→vh,
→vh) = 0 ∀→vh ∈ Hh (cf. (3.22)), yields the Vh-ellipticity of

both aφh
and Awh,φh

with constant αd := µ1 min
{
1, C2

d
}
. In turn, it is clear from Assumption 4.1 that

b satisfies the discrete inf-sup condition required by the Babuška–Brezzi theorem in Banach spaces.
Invoking then that theorem we readily obtain both the unique solvability of (4.2) and the a priori
estimate (4.10), with a positive constant CS,d depending on Ω, µ2, ϑ, γ, αd and βd.

Similarly as we did in the continuous case, we remark that the Vh-ellipticity of aφh
, and hence of

Awh,φh
, does not depend on γ, certainly yielding the same appealing features mentioned in Section 3.3.

Next, as consequence of Assumptions 4.3 and 4.4, we provide the well-definedness of S̃j,h, j ∈
{
1, 2
}
,

and hence of S̃h, thus establishing the discrete analogue of Lemma 3.5.
Lemma 4.6. For each wh ∈ Hu

h , and for each j ∈
{
1, 2
}
, (4.3) has a unique solution (→ϕj,h, σ̃j,h) :=(

(ϕj,h, t̃j,h), σ̃j,h
)
∈ H̃h ×Hσ̃

h . Moreover, there exists a positive constant C
S̃,d, independent of h and

wh, such that
‖S̃h(wh)‖ := ‖

(
S̃1,h(wh), S̃2,h(wh)

)
‖ = ‖(ϕ1,h, ϕ2,h)‖

≤ C
S̃,d

{
1 + ‖K‖0,∞;Ω + ‖wh‖0,4;Ω

}
‖ϕD‖1/2,Γ.

(4.11)
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Proof. Given wh ∈ Hu
h , we know from (3.27) and (3.29) that each Ãwh,j is bounded. In addition, it

is easy to see, thanks to the uniform positive definiteness of Kj , the Assumption 4.4, and the fact that
c̃wh

(→ϕj,h,
→
ϕj,h) = 0∀→ϕj,h ∈ H̃h (cf. (3.22)), that ãj and Ãwh,j are Ṽh-elliptic with a positive constant

α̃j,d. In turn, it is clear from Assumption 4.3 that b̃ satisfies an adequate discrete inf-sup condition
and then the Banach version of the Babuška–Brezzi theory implies unique solvability of (4.3) for each
j ∈

{
1, 2
}
. Moreover, a priori estimates for each S̃j,h(wh) imply (4.11) with a positive constant C

S̃,d

depending on α̃d and β̃d.

Proceeding as in the beginning of Section 3.4 but now for Th (cf. (4.4)), we employ the a priori
bounds (4.10) and (4.11), and denote by Wh the closed ball of Hu

h ×Hϕ
h with center at the origin and

radius r. We find that for each (wh,φh) ∈Wh there holds

‖Th(wh,φh)‖ ≤ Cd(r)
{(

1 + ‖ϕD‖1/2,Γ
)(
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
+
(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ

}
,

with Cd(r) := CS,d max
{
1, C

S̃,d

}
(r + 1) + C

S̃,d. It readily follows that, under the assumption{(
1 + ‖ϕD‖1/2,Γ

)(
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
+
(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ

}
≤ r

Cd(r) , (4.12)

the operator Th maps Wh into itself.
At this point we remark that, given a radius r, and once Cd(r) is computed according to the above

defined expression, the constraint (4.12) is clearly satisfied for sufficiently small ‖ϕD‖1/2,Γ, ‖g‖0,∞;Ω,
‖uD‖1/2,Γ, and ‖K‖0,∞;Ω. However, the dependence of CS,d and C

S̃,d (which define Cd(r)) on the
constants and parameters specified at the end of the proofs of Lemmas 4.5 and 4.6, respectively, and
the fact that some of the latter might not be known explicitly, makes it hard to actually verify (4.12)
in practice. Indeed, as aforementioned, we are certain that there do exist data satisfying this condition,
but, unless all the constants and parameters involved are explicitly known, we do not know how small
they are. The same comment applies to other similar constraints along the paper.

In analogy with the continuous case, the continuity of Th follows from that of Sh, S̃j,h, j ∈
{
1, 2
}
, and

hence S̃h. Proceeding as in [22, Lemmas 4.5 and 4.6], we prove the discrete analogues of Lemmas 3.6
and 3.7. More precisely, there exist positive constants LS,d and L

S̃,d, both independent of h, the first
one given by α−1

d (cf. proof of Lemma 4.5), and the second one depending on α̃d and C
S̃,d (cf. proof

of Lemma 4.6), such that

‖Sh(wh,φh)− Sh(zh,ψh)‖ ≤ LS,d
{
‖wh − zh‖0,4;Ω‖Sh(zh,ψh)‖+ ‖φh −ψh‖0,4;Ω‖g‖0,∞;Ω

}
, (4.13)

for all (wh,φh), (zh,ψh) ∈ Hu
h ×Hϕ

h , and

‖S̃h(wh)− S̃h(zh)‖ ≤ L
S̃,d‖zh −wh‖0,4;Ω

{(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ + ‖zh‖0,4;Ω‖ϕD‖1/2,Γ

}
, (4.14)

for all wh, zh ∈ Hu
h . Then, as a straightforward consequence of (4.13) and (4.14), and following the

same steps from the second half of Section 3.4, we arrive at the discrete analogue of (3.38), that is

‖Th(wh,φh)− Th(zh,ψh)‖

≤ LT,d(1 + r)2C(K, g,uD,ϕD)
(
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
‖(wh,φh)− (zh,ψh)‖ (4.15)

for all (wh,φh) ∈ Hu
h ×Hϕ

h , where

LT,d := LS,d max
{
1, L

S̃,d

}(
max

{
1, CS,d

})2
,

and C(K, g,uD,ϕD) is given by (3.39).
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Then, we are in position to establish our main result.

Theorem 4.7. Assume that the data satisfy (4.12) and

LT,d(1 + r)2C(K, g,uD,ϕD)
(
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
< 1. (4.16)

Then, the operator Th has a unique fixed point (uh,ϕh) ∈Wh. Equivalently, the coupled problem (4.1)
has a unique solution (→uh,σh) ∈ Hh×Hσh and (→ϕj,h, σ̃j,h) :=

(
(ϕj,h, t̃j), σ̃j,h

)
∈ H̃h×Hσ̃

h , j ∈
{
1, 2
}
,

with (uh,ϕh) :=
(
uh, (ϕ1,h, ϕ2,h)

)
∈Wh. Moreover, there exist positive constants Ci,d, i ∈

{
1, 2, . . . , 6

}
,

depending on CS,d, r, CS̃,d, ‖K‖0,∞;Ω, |Ω|, γ, µ2, αd, ϑ1, ϑ2, βd, β̃d, and α̃j,d, j ∈
{
1, 2
}
, such that

the following a priori estimates hold

‖→uh‖ ≤ C1,d‖g‖0,∞;Ω + C2,d‖uD‖1/2,Γ, (4.17)
‖σh‖ ≤ C3,d‖g‖0,∞;Ω + C4,d‖uD‖1/2,Γ, (4.18)

‖→ϕj,h‖ ≤ C5,d‖ϕD‖1/2,Γ, (4.19)
‖σ̃j,h‖ ≤ C6,d‖ϕD‖1/2,Γ. (4.20)

Proof. We first recall that, under the assumption (4.12), Th mapsWh into itself. Then, (4.15), (4.16),
and the Banach fixed-point theorem conclude the proof. The a priori estimates (4.17), (4.19), (4.18),
and (4.20) are derived similarly as for [22, eqs. (4.26)-(4.29), Theorem 4.8].

We end this section by remarking that if the viscosity depends on temperature and concentration, it
is not possible to establish the Lipschitz-continuity of Th (cf. (4.15)), but just continuity. Consequently,
instead of the Banach theorem, the Brouwer fixed-point theorem is applied, thus yielding only existence
of the discrete solution. For related details, we refer to [22, Section 4.2].

4.3. Specific finite element subspaces

In this section we specify finite element subspaces Hu
h ⊆ L4(Ω), Ht

h ⊆ L2
tr(Ω), Hσh ⊆ H0(div4/3; Ω),

Hϕ
h ⊆ L4(Ω), Ht̃

h ⊆ L2(Ω), and Hσ̃
h ⊆ H(div4/3; Ω), satisfying the crucial discrete inf-sup conditions

given by Assumptions 4.1, 4.2, 4.3, and 4.4. These discrete spaces arise naturally as consequence
of the same analysis developed in [22, Section 5], which is based on stable finite element subspaces
for the primal formulation of the Stokes problem (see also [12] for the case of linear elasticity). In
particular, here we propose those obtained by considering the Scott-Vogelius pair (cf. [45]). Given a
positive integer ` and a set O ⊆ Rn, P`(O) stands for the space of polynomials of degree ≤ ` defined
on O, with vector and tensorial versions denoted by P`(O) := [P`(O)]n and P`(O) := [P`(O)]n×n,
respectively. In addition, given a regular partition Th of Ω into triangles (in R2) or tetrahedra (in
R3), we denote by T b

h its barycentric refinement, and let RT`(K) := P`(K) ⊕ P`(K)x be the local
Raviart–Thomas space of order ` for each K ∈ T b

h , where x denotes a generic vector in Ω.
We deduce that, in order to guarantee the well-posedness of our Galerkin scheme (4.1), it suffices

to define for each integer k such that k + 1 ≥ n, the finite element subspaces

Hu
h :=

{
vh ∈ L4(Ω) : vh|K ∈ Pk(K) ∀K ∈ T b

h

}
, (4.21)

Ht
h :=

{
sh ∈ L2

tr(Ω) : sh|K ∈ Pk(K) ∀K ∈ T b
h

}
, (4.22)

Hσh :=
{
τ h ∈ H0(div4/3; Ω) : ctτ h|K ∈ RTk(K) ∀c ∈ Rn, ∀K ∈ T b

h

}
, (4.23)

Hϕ
h :=

{
ψh ∈ L4(Ω) : ψh|K ∈ Pk(K) ∀K ∈ T b

h

}
, (4.24)

141



E. Colmenares, G.N. Gatica, et al.

Ht̃
h :=

{
s̃h ∈ L2(Ω) : s̃h|K ∈ Pk(K) ∀K ∈ T b

h

}
, (4.25)

Hσ̃
h :=

{
τ̃ h ∈ H(div4/3; Ω) : τ̃ h|K ∈ RTk(K) ∀K ∈ T b

h

}
. (4.26)

We end this section by collecting next the approximation properties of the finite element subspaces
Hu
h , Ht

h, Hσh , Hϕ
h , Ht̃

h, and Hσ̃
h , which basically follow from interpolation estimates of Sobolev spaces

and the approximation properties provided by the projector Pk
h (see [22, eq. (5.37)]), and the Raviart–

Thomas interpolation operator (see [22, eq. (5.41)] and also [13, 15, 30]).

(APu
h) there exists C > 0, independent of h, such that for each l ∈ [0, k+1], and for each v ∈Wl,4(Ω)

there holds
dist(v,Hu

h) := inf
vh∈Hu

h

‖v− vh‖0,4;Ω ≤ Chl‖v‖l,4;Ω. (4.27)

(APt
h) there exists C > 0, independent of h, such that for each l ∈ [0, k + 1], and for each s ∈

Hl(Ω) ∩ L2
tr(Ω) there holds

dist(s,Ht
h) := inf

sh∈Ht
h

‖s− sh‖0,Ω ≤ Chl‖s‖l,Ω. (4.28)

(APσ
h ) there exists C > 0, independent of h, such that for each l ∈ [0, k + 1], and for each τ ∈

Hl(Ω) ∩H0(div4/3; Ω) with div(τ ) ∈Wl,4/3(Ω), there holds

dist(τ ,Hσh ) := inf
τh∈Hσ

h

‖τ − τ h‖div4/3;Ω ≤ Chl
{
‖τ‖l,Ω + ‖div(τ )‖l,4/3;Ω

}
. (4.29)

(APϕ
h) there exists C > 0, independent of h, such that for each l ∈ [0, k+1], and for each ψ ∈Wl,4(Ω)

there holds
dist(ψ,Hϕ

h) := inf
ψh∈Hϕ

h

‖ψ − ψh‖0,4;Ω ≤ Chl‖ψ‖l,4;Ω. (4.30)

(APt̃
h) there exists C > 0, independent of h, such that for each l ∈ [0, k + 1], and for each s̃ ∈ Hl(Ω)

there holds
dist(s̃,Ht̃

h) := inf
s̃h∈H̃t

h

‖s̃− s̃h‖0,Ω ≤ Chl‖s̃‖l,Ω. (4.31)

(APσ̃
h ) there exists C > 0, independent of h, such that for each l ∈ [0, k + 1], and for each τ̃ ∈

Hl(Ω) ∩H(div4/3; Ω) with div(τ̃ ) ∈Wl,4/3(Ω), there holds

dist(τ̃ ,Hσ̃
h ) := inf

τ̃h∈Hσ̃
h

‖τ̃ − τ̃ h‖div4/3;Ω ≤ Chl
{
‖τ̃‖l,Ω + ‖div(τ̃ )‖l,4/3;Ω

}
. (4.32)

5. A priori error analysis

The first objective here is to derive a Céa estimate. Let (→u,σ) ∈ H × H0(div4/3; Ω) and (→ϕj , σ̃j) :=(
(ϕj , t̃j), σ̃j

)
∈ H̃×H(div4/3; Ω), j ∈

{
1, 2
}
, with (u,ϕ) :=

(
u, (ϕ1, ϕ2)

)
∈W , be the unique solution of

the coupled problem (3.6), and let (→uh,σh) ∈ Hh×Hσh and (→ϕj,h, σ̃j,h) :=
(
(ϕj,h, t̃j,h), σ̃j,h

)
∈ H̃h×Hσ̃

h ,
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with (uh,ϕh) :=
(
uh, (ϕ1,h, ϕ2,h)

)
∈ Wh, be a solution of the discrete coupled problem (4.1). Then,

we first rewrite (3.6) and (4.1) in terms of the forms (3.26) and (3.27), that is

Au,ϕ(→u,→v) + b(→v ,σ) = Fϕ(→v) ∀→v ∈ H,

b(→u, τ ) = G(τ ) ∀τ ∈ H0(div4/3; Ω),
(5.1)

Ãu,j(
→
ϕj ,

→
ψj) + b̃(

→
ψj , σ̃j) = 0 ∀

→
ψj ∈ H̃,

b̃(→ϕj , τ̃ j) = G̃j(τ̃ j) ∀τ̃ j ∈ H(div4/3; Ω),
(5.2)

Auh,ϕh
(→uh,

→vh) + b(→vh,σh) = Fϕh
(→vh) ∀→vh ∈ Hh,

b(→uh, τ h) = G(τ h) ∀τ h ∈ Hσh ,
(5.3)

and

Ãuh,j(
→
ϕj,h,

→
ψj,h) + b̃(

→
ψj,h, σ̃j,h) = 0 ∀

→
ψj,h ∈ H̃h,

b̃(→ϕj,h, τ̃ j,h) = G̃j(τ̃ j,h) ∀τ̃ j,h ∈ Hσ̃
h .

(5.4)

Applying the Strang lemma stated in [22, Lemma 6.1] to the context given by problems (5.1) and (5.3)
(resp. problems (5.2) and (5.4)), and bearing in mind similar consistency estimates to those provided
in [22, eqs. (6.16) and (6.18)] (resp. [22, eq. (6.17)]), we find, respectively, that

‖(→u,σ)− (→uh,σh)‖ ≤ C̄S,1 dist
(→u,Hh

)
+ C̄S,2 dist

(
σ,Hσh

)
+ C̄S,3c(g,uD)

{
‖ϕ1 − ϕ1,h‖0,4;Ω + ‖ϕ2 − ϕ2,h‖0,4;Ω + ‖u− uh‖0,4;Ω

}
, (5.5)

and for each j ∈
{
1, 2
}
, the bound

‖(→ϕj , σ̃j)− (→ϕj,h, σ̃j,h)‖ ≤ ĈS,1 dist
(→
ϕj , H̃h

)
+ ĈS,2 dist

(
σ̃j ,Hσ̃

h

)
+ ĈS,3c(ϕD)‖u− uh‖0,4;Ω. (5.6)

For the remaining expressions in (5.5)-(5.6), note that c(g,uD) depends linearly on ‖g‖0,∞;Ω and
‖uD‖1/2,Γ, whereas C̄S,1, C̄S,2, and C̄S,3 are positive constants computed using [22, eq. (6.4)] and
depending on µ2,ϑ, r, αd, βd. After using (3.28), these constants are used to bound both ‖Au,ϕ‖ and
‖Auh,ϕh

‖ by
(
|Ω|1/2γ + 2µ2 + r

)
. In turn, c(ϕD) is a constant multiple of ‖ϕD‖1/2,Γ, and ĈS,1, ĈS,2.

Also, ĈS,3 are positive constants defined in terms of ‖K‖0,∞;Ω, r, α̃d, and β̃d, which are computed
according to [22, eq. (6.4)], after using (3.29) to bound both ‖Ãu,j‖ and ‖Ãuh,j‖ by

(
‖K‖0,∞;Ω + r

)
.

Next we can insert (5.6) into (5.5), which leads to

‖(→u,σ)− (→uh,σh)‖ ≤ C̄S,1 dist
(→u,Hh

)
+ C̄S,2 dist

(
σ,Hσh

)
+ C̄S,3c(g,uD)ĈS,1

2∑
j=1

dist
(→
ϕj , H̃h

)
+ C̄S,3c(g,uD)ĈS,2

2∑
j=1

dist
(
σ̃j ,Hσ̃

h

)
+ C̄S,3c(g,uD)

{
1 + 2ĈS,3c(ϕD)

}
‖u− uh‖0,4;Ω.

(5.7)

Imposing the constant multiplying ‖u − uh‖0,4;Ω in (5.7) to be sufficiently small, say ≤ 1/2, we
derive the a priori upper bound for ‖(→u,σ) − (→uh,σh)‖. Hence, employing this latter estimate to
bound the third term on the right-hand side of (5.6), we deduce the corresponding upper bound for
‖(→ϕj , σ̃j)− (→ϕj,h, σ̃j,h)‖, j ∈

{
1, 2
}
. We have thus demonstrated the following result.
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Theorem 5.1. Assume that the data g, uD, and ϕD satisfy

C̄S,3c(g,uD)
{
1 + 2ĈS,3c(ϕD)

}
≤ 1

2 .

Then, there exists a positive constant C, independent of h, but depending on µ2, ϑ, r, αd, βd, ‖K‖0,∞;Ω,
α̃d, β̃d, ‖g‖0,∞;Ω, ‖uD‖1/2,Γ, and ‖ϕD‖1/2,Γ, such that

‖(→u,σ)− (→uh,σh)‖+
2∑
j=1
‖(→ϕj , σ̃j)− (→ϕj,h, σ̃j,h)‖

≤ C
{

dist
(→u,Hh

)
+ dist

(
σ,Hσh

)
+

2∑
j=1

(
dist

(→
ϕj , H̃h

)
+ dist

(
σ̃j ,Hσ̃

h

))}
. (5.8)

We are now able to provide the rates of convergence of the Galerkin scheme (4.1) when the finite
element subspaces specified in Section 4.3 are employed.

Theorem 5.2. Assume that there exists l ∈ [0, k + 1] such that u ∈ Wl,4(Ω), t ∈ Hl(Ω) ∩ L2
tr(Ω),

σ ∈ Hl(Ω)∩H0(div4/3; Ω), div(σ) ∈Wl,4/3(Ω), ϕj ∈Wl,4(Ω), t̃j ∈ Hl(Ω), σ̃j ∈ Hl(Ω)∩H(div4/3; Ω),
and div(σ̃j) ∈Wl,4/3(Ω), for j ∈

{
1, 2
}
. Then, there exists C > 0, independent of h, such that

‖(→u,σ)− (→uh,σh)‖+
2∑
j=1
‖(→ϕj , σ̃j)− (→ϕj,h, σ̃j,h)‖

≤ Chl
{
‖u‖l,4;Ω + ‖t‖l,Ω + ‖σ‖l,Ω

+ ‖div(σ)‖l,4/3;Ω +
2∑
j=1

{
‖ϕj‖l,4;Ω + ‖t̃j‖l,Ω + ‖σ̃j‖l,Ω + ‖div(σ̃j)‖l,4/3;Ω

}}
. (5.9)

Proof. It follows straightforwardly from (5.8) and the approximation properties from Section 4.3.

We end this section with the derivative-free postprocessing of the pressure. From the orthogo-
nal decomposition for the pseudostress tensor (3.3) (which yielded the new tensor unknown σ ∈
H0(div4/3; Ω)), we deduce that (2.5) becomes

p = − 1
2ntr

(
2σ + 2cI + u⊗ u

)
, with c := − 1

2n|Ω|

∫
Ω

tr
(
u⊗ u

)
.

And therefore the discrete pressure will be defined as

ph := − 1
2ntr

(
2σh + 2chI + uh ⊗ uh

)
, with ch := − 1

2n|Ω|

∫
Ω

tr
(
uh ⊗ uh

)
.

Moreover, it is easy to prove that there exists a positive constant C, independent of h, such that

‖p− ph‖0,Ω ≤ C
{
‖σ − σh‖div4/3;Ω + ‖u− uh‖0,4;Ω

}
,

whence the rate of convergence of ph coincides with the one established by (5.9).
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6. A posteriori error estimator

In this section we propose a reliable and efficient residual-based a posteriori error estimator for the
Galerkin scheme (4.1) in both the 2D and 3D cases. To this end, we first recall from Section 4.3 that,
given a regular partition Th of Ω into triangles (in R2) or tetrahedra (in R3), its barycentric refinement
is denoted by T b

h .

6.1. The 2D case

We let Eh be the set of all edges of T b
h , and denote by Eh(K) the set of edges of a given K ∈ T bh .

Then, we split Eh = Eh(Ω) ∪ Eh(Γ), where Eh(Ω) := {e ∈ Eh : e ∈ Ω} and Eh(Γ) := {e ∈ Eh : e ∈ Γ}.
In turn, he stands for the length of a given edge e, and for each edge e ∈ Eh we fix a unit normal
vector νe := (ν1, ν2)t, and let se := (−ν2, ν1)t be the corresponding fixed unit tangential vector along
e. However, when no confusion arises, we simply write ν and s instead of νe and se, respectively. Now,
let v ∈ L2(Ω) such that v|K ∈ C(K) on each K ∈ T bh . Then, given K ∈ T bh and e ∈ E(K)∩ Eh(Ω), we
denote by [[v · s]] the tangential jump of v across e, that is, [[v · s]] := (v|K − v|K′)|e) · s, where K and
K ′ are the triangles of T bh having e as a common edge. A similar definition holds for the tangential
jump of a tensor field τ ∈ L2(Ω) such that τ |K ∈ C(K). Finally, given sufficiently smooth scalar,
vector and matrix valued fields φ, v = (v1, v2)t and τ := (τij)2×2, respectively, we set

curl(φ) :=
(
∂φ

∂x2
,− ∂φ

∂x1

)t
, curl(v) :=

(
curl(v1)
curl(v2)

)
,

rot(v) := ∂v2
∂x1
− ∂v1
∂x2

, and rot(τ ) :=
(

rot(τ11, τ12)
rot(τ21, τ22)

)
.

Then, recalling that the solution of the discrete coupled problem (4.1) is given by (→uh,σh) ∈ Hh×Hσh
and (→ϕj,h, σ̃j,h) :=

(
(ϕj,h, t̃j,h), σ̃j,h

)
∈ H̃h × Hσ̃

h , with (uh,ϕh) :=
(
uh, (ϕ1,h, ϕ2,h)

)
∈ Wh, and

assuming that the data uD and ϕD belong to H1(Γ), we introduce for each K ∈ T b
h the local a

posteriori error indicators:

Ψ̃4/3
K :=

∥∥γuh − divσh + 1
2thuh − (ϑ ·ϕh)g

∥∥4/3
0,4/3;K +

2∑
j=1

∥∥div σ̃j,h −
1
2uh · t̃j,h

∥∥4/3
0,4/3;K , (6.1)

Ψ̂2
K :=

∥∥2µ(ϕh)th,sym −
1
2(uh ⊗ uh)d − σd

h

∥∥2
0,K + h2

K‖rot(th)‖20,K

+
∑

e∈Eh(K)∩Eh(Ω)
he
∥∥[[ths]]

∥∥2
0,e +

∑
e∈Eh(K)∩Eh(Γ)

he‖ths−∇uDs‖20,e

+
2∑
j=1

{∥∥Kj t̃j,h −
1
2ϕj,huh − σ̃j,h

∥∥2
0,K + h2

K‖rot(t̃j,h)‖20,K

+
∑

e∈Eh(K)∩Eh(Ω)
he
∥∥[[t̃j,h · s]]

∥∥2
0,e +

∑
e∈Eh(K)∩Eh(Γ)

he‖t̃j,h · s−∇ϕj,D · s‖20,e

}
,

(6.2)

and

Ψ̄4
K := h4

K‖th −∇uh‖40,4;K +
∑

e∈Eh(K)∩Eh(Γ)
h2
e‖uD − uh‖40,e

+
2∑
j=1

{
h4
K‖t̃j,h −∇ϕj,h‖40,4;K +

∑
e∈Eh(K)∩Eh(Γ)

h2
e‖ϕj,D − ϕj,h‖40,e

}
. (6.3)
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It is important to stress here the residual character of each one of the terms defining the foregoing indi-
cators, which follows from the equations defining the strong coupled problem (2.8) and the regularity
of the solution of the continuous formulation (3.6).

Next, we define the global, and fully computable, a posteriori error estimator as

Ψ =
{ ∑
K∈T b

h

Ψ̃4/3
K

}3/4

+
{ ∑
K∈T b

h

Ψ̂2
K

}1/2

+
{ ∑
K∈T b

h

Ψ̄4
K

}1/4

. (6.4)

In this way, recalling now that the solution of the continuous coupled problem (3.6) is given by
(→u,σ) ∈ H × H0(div4/3; Ω) and (→ϕj , σ̃j) :=

(
(ϕj , t̃j), σ̃j

)
∈ H̃ × H(div4/3; Ω), j ∈

{
1, 2
}
, with

(u,ϕ) :=
(
u, (ϕ1, ϕ2)

)
∈W , we are able to establish the following main result.

Theorem 6.1. Assume for simplicity that uD and ϕD are piecewise polynomials. Then there exist
positive constants Crel and Ceff, independent of h, such that

CeffΨ + h.o.t. ≤ ‖(→u,σ)− (→uh,σh)‖+
2∑
j=1
‖(→ϕj , σ̃j)− (→ϕj,h, σ̃j,h)‖ ≤ CrelΨ, (6.5)

where h.o.t. stands for one or several terms of higher order, including the oscillation of the forcing
terms and the Dirichlet data.

The proof of Theorem 6.1 will be reported with full details in the forthcoming work [31]. For the
moment we mention that the upper bound in (6.5) (known as the reliability estimate), is derived using
global inf-sup conditions, suitable Helmholtz decompositions in Banach spaces, the approximation
properties of the Raviart–Thomas and Clément interpolants, and regularity and smallness assumptions
on the data. On the other hand, the lower bound in (6.5) (efficiency), is proved by means of inverse
inequalities and localization techniques based on bubble functions.

6.2. The 3D case

Given a tetrahedron K ∈ T b
h , we now let E(K) be the set of its faces, and let Eh be the set of all

faces of the triangulation T dh with the corresponding analogue decomposition Eh = Eh(Ω) ∪ Eh(Γ).
Then, for each face e ∈ Eh we fix a unit normal νe to e. As before, when no confusion arises, we
simply write ν instead of νe. In this way, given v ∈ L2(Ω) such that v|K ∈ C(K) for each K ∈ T b

h ,
and e ∈ E(K) ∩ Eh(Ω), we denote by [[v × ν]] the tangential jump of v across e, that is, [[v × ν]] :=
(v|K − v|K′)|e × ν, where K and K ′ are the tetrahedron of T b

h having e as a common face. Similarly,
given τ ∈ L2(Ω) such that τ |K ∈ C(K), we let [[τ × ν]] be the tangential jump of τ across e, that is
[[τ × ν]] := (τ |K − τ |K′)|e

}
× ν. Next, we recall that the curl of a 3-D vector v := (v1, v2, v3) is the

3-D vector
curl(v) = ∇× v :=

(
∂v3
∂x2
− ∂v2
∂x3

,
∂v1
∂x3
− ∂v3
∂x1

,
∂v2
∂x1
− ∂v1
∂x2

)
,

and that, given a tensor function τ := (τij)3×3, the operator curl(τ ) is the 3 × 3 tensor whose rows
are given by

curl(τ) :=

curl(τ11, τ12, τ13)
curl(τ21, τ22, τ23)
curl(τ31, τ32, τ33)

 .
In turn, τ × ν stands for the 3× 3 tensor whose rows are given by the tangential components of each
row of τ . In addition, the tangential curl operator curls and a tensor version of it, denoted curls,
which is defined component-wise by curls, will also be utilized (see. e.g. [18, Section 3] for details).
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Then, the local a posteriori error indicators and the global a posteriori error estimator Ψ are defined
in this case exactly as in the previous section, except that Ψ̂2

K (cf. (6.2)) is replaced for each K ∈ T b
h

by the following slightly modified expression

Ψ̂2
K :=

∥∥2µ(ϕh)th,sym −
1
2(uh ⊗ uh)d − σd

h

∥∥2
0,K + h2

K‖curl(th)‖20,K

+
∑

e∈Eh(K)∩Eh(Ω)
he
∥∥[[th × ν]]

∥∥2
0,e +

∑
e∈Eh(K)∩Eh(Γ)

he‖th × ν − curlsuD‖20,e

+
2∑
j=1

{∥∥Kj t̃j,h −
1
2ϕj,huh − σ̃j,h

∥∥2
0,K + h2

K‖curl(t̃j,h)‖20,K

+
∑

e∈Eh(K)∩Eh(Ω)
he
∥∥[[t̃j,h × ν]]

∥∥2
0,e +

∑
e∈Eh(K)∩Eh(Γ)

he‖t̃j,h × ν − curlsϕj,D‖20,e

}
.

(6.6)

Similarly as we observed in the previous section for all the local a posteriori error indicators, it is easy
to realize that the terms defining the 3D version of Ψ̂2

K (cf. (6.6)) are of residual character as well.
Finally, the analogue of Theorem 6.1 also holds in this 3D case, and the same remark given at the

end of Section 6.1 is valid here for its respective proof.

6.3. The adaptive refinement algorithm

We now turn to define, according to the above local a posteriori error indicators, the following adaptive
refinement algorithm based on the classical procedures of solving→ estimating→ marking→ refining,
provided in, e.g., [47]. Note that we need to deal with the adaptive procedure associated with the initial
triangular/tetrahedral mesh at each refinement step, and still perform an additional step to treat its
Alfeld split.

(1) Start with a coarse mesh Th made of triangles (or tetrahedra) ∆,

(2) Generate the associated barycentric refinement T b
h made of triangles (or tetrahedra) K,

(3) Solve the discrete problem (4.1) for the current mesh T b
h ,

(4) For each K ∈ T b
h compute Ψ̃K , Ψ̂K , and Ψ̄K , and then ΨK := Ψ̃K + Ψ̂K + Ψ̄K ,

(5) For each ∆ ∈ Th compute the local a posteriori error indicator Ψ∆ :=
∑
K∈T b

h
,K⊆∆ ΨK ,

(6) Check the stopping criteria on Th (marking sufficiently many elements so that they represent
a given fraction of the total estimated error) and decide whether to finish or continue to the
next step,

(7) Generate an adapted mesh from Th through a variable metric/Delaunay automatic meshing
algorithm using the local indicators Ψ∆, targeting the equidistribution of the local error indi-
cators in the updated mesh (see e.g. [26]),

(8) Define the resulting mesh as Th and go to step (2).
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Figure 7.1. Example of Alfeld splits for a coarse 2D uniform mesh used in Example 1
(left), a coarse unstructured grid for Example 2 (center), and for a 3D non-uniform
mesh used in Example 3 (crinkle clip on the right panel).

7. Numerical results

In this section we present several computational examples confirming the good performance of the
fully-mixed finite element method (4.1) with the subspaces indicated in Section 4.3. As required for
the stability of the Scott-Vogelius pair, the computations are performed on barycentrically refined
meshes T b

h created from regular partitions Th of Ω, illustrated for 2D and 3D in Figure 7.1. All initial
grids and Alfeld splits (barycentric refinements) are generated with the open-source mesh manipulator
GMSH [33] and the computational implementation has been carried out using the open-source finite
element library FEniCS [8]. A Newton–Raphson algorithm with null initial guesses is used for the
resolution of the nonlinear problem (4.1). As usual, the iterative method is finished when the relative
error between two consecutive iterations of the complete coefficient vector, namely coeffm+1 and
coeffm, is sufficiently small, that is,

‖coeffm+1 − coeffm‖`2
‖coeffm+1‖`2

< tol,

where tol is a specified tolerance and ‖ · ‖`2 is the standard `2−norm in RDoF with DoF denoting the
total number of degrees of freedom generated by the finite element subspaces. The condition of zero-
average pressure (translated in terms of the trace of 2σ + u⊗ u) is imposed through a real Lagrange
multiplier. The solution of all linear systems is carried out with the multifrontal massively parallel
sparse direct solver MUMPS.

Errors between exact and approximate solutions are denoted as
e(u) := ‖u− uh‖0,4;Ω, e(t) := ‖t− th‖0,Ω e(σ) := ‖σ − σh‖div4/3;Ω, e(p) := ‖p− ph‖0,Ω,

e(ϕ) :=
2∑
j=1
‖ϕj − ϕj,h‖0,4;Ω, e(t̃) :=

2∑
j=1
‖t̃j − t̃j,h‖0,4;Ω, e(σ̃) :=

2∑
j=1
‖σ̃j − σ̃j,h‖div4/3;Ω.

In turn, we let r(?) be their corresponding rates of convergence, that is

r(?) := log(e(?)/e′(?))
log(h/h′) ∀? ∈

{
u, t,σ, p,ϕ, t̃, σ̃

}
,

where h and h′ denote two consecutive mesh sizes with errors e(?) and e′(?), respectively.
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Finite Element Family: P1 − P1 − RT1 −P1 − P1 − RT1

DoF h e(u) r(u) e(t) r(t) e(σ) r(σ)
1305 1.4140 0.0902 – 0.5561 – 0.9379 –
5153 0.7071 0.0213 2.222 0.1996 1.682 0.2785 1.752
20481 0.3536 0.0052 2.203 0.0622 1.778 0.0763 1.867
81665 0.1768 0.0016 2.114 0.0184 1.859 0.0205 1.895
326145 0.0884 0.0004 2.054 0.0051 1.949 0.0053 1.936
1303553 0.0442 0.0001 2.003 0.0014 1.984 0.0016 1.979
e(ϕ) r(ϕ) e(t̃) r(t̃) e(σ̃) r(σ̃) e(p) r(p) It.
0.0769 – 0.5343 – 0.7424 – 0.1795 – 4
0.0158 2.278 0.1681 1.668 0.2094 1.826 0.0469 1.934 4
0.0033 2.247 0.0474 1.827 0.0576 1.868 0.0097 2.267 4
0.0007 2.126 0.0127 1.898 0.0151 1.925 0.0021 2.185 4
0.0004 2.048 0.0033 1.938 0.0038 1.965 0.0005 2.081 4
0.0001 2.002 0.0009 1.966 0.0013 1.993 0.0001 2.031 4

Table 7.1. Example 1: Convergence history and Newton iteration count for the fully-
mixed P1 − P1 − RT1 −P1 − P1 − RT1 approximation. DoF stands for the number of
degrees of freedom associated with each barycentric refined mesh T b

h .

Example 1: Convergence against smooth exact solutions

In our first example we study the accuracy of the approximations by manufacturing an exact solution
of (3.6) in the domain Ω := (−1, 1)2 with the constant and variable coefficients

µ(ϕ) = e−ϕ1 , ϑ = (1, 0.5)t, γ = 10−3, K1(x) =
(

exp(−x1) x1/10
x2/10 exp(−x2)

)
,

K2(x) =
(

exp(−x1) 0
0 exp(−x2)

)
, and g(x) = (0,−1)t ∀x := (x1, x2)t ∈ Ω.

Then, the Dirichlet data uD and ϕD, and the terms on the right-hand sides, are imposed according
to the exact solutions given by the smooth functions

u(x) =
(

cos(π2x1) sin(π2x2)
− sin(π2x1) cos(π2x2)

)
, p(x) = (x1 − 0.5)(x2 − 0.5)− 0.25,

ϕ1(x) = exp(−x2
1 − x2

2)− 1
2 , and ϕ2(x) = exp(−x1x2[x1 − 1][x2 − 1]) ∀x := (x1, x2)t ∈ Ω.

Values of errors and corresponding convergence rates associated with the approximations with the
finite element family P1 − P1 − RT1 −P1 − P1 − RT1 are summarized in Table 7.1. As expected, we
observe there that the convergence rates are quadratic with respect to h for all the unknowns in their
respective norms. Sample solutions of approximate velocity magnitude, temperature, concentration,
and postprocessed pressure computed with our fully-mixed method are depicted in Figure 7.2.

Example 2: Manufactured solutions using cross-diffusion

We now perform an accuracy test for (3.48) on the tombstone-shaped domain (see [17])

Ω := {x : −0.5 < x1 < 0.5,−0.5 < x2 < 0.5} ∪ {x : −0.5 < x1 < 0.5, 0.5 < x2 < sin(πx2)},
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Figure 7.2. Example 1: Approximate velocity magnitude, temperature, concentra-
tion, and postprocessed pressure, obtained using k = 1 and a barycentrically refined
mesh with 19110 elements.

and consider the same specification as in Example 1 for viscosity and gravity, while the temperature
and concentration now use cross-diffusion effects encoded in the tensor (3.46)

K =
(

K11 K12
K21 K22

)
,

with K11 = 1,K12 = 0.5,K2,1 = 0.3,K2,2 = 2 + sin(πx1x2), and the thermal and mass expansions and
inverse permeability are also modified with respect to the previous test

ϑ = (0.75, 0.25)t, γ = 1.0678 · 104.

Again, the right-hand sides and the boundary Dirichlet data are adjusted in terms of the manufactured
exact solutions, which are in this case

u(x) =
(

2π cos(πx2) sin2(πx1) sin(πx2)
−2π cos(πx1) sin(πx1) sin2(πx2)

)
, p(x) = 5x1 sin(x2),

ϕ1(x) = exp(−x2− y2)− 1
2 , and ϕ2(x) = 15− 15 exp(−x1x2[x1− 1][x2− 1]) ∀x := (x1, x2)t ∈ Ω.

In Table 7.2 we present errors for each variable with respect to DoF, the experimental convergence
rates, and the number of Newton iterations per mesh refinement. This time the computations were
done with the finite element family P2 − P2 − RT2 − P2 − P2 −RT2 (k = 2). In concordance with
the theoretical estimates from Section 5, the computational results confirm an error decay with rate
O(h3). A total of 5 Newton iterations were required to reach a tolerance tol = 1e-08. In Figure 7.3 we
display the velocity magnitude, the temperature, and the concentration produced with our fully-mixed
scheme on a barycentric refined mesh that, for k = 2, generates 633555 DoFs.

Example 3: A posteriori error estimation and adaptive mesh refinement

Next we test the properties of the residual-based a posteriori error estimator (6.4) by considering an
L-shaped domain Ω = (−1, 1)2 \ (0, 1)2, using the same constitutive relations and exact velocity taken
in Example 1 above, while we use the following exact pressure and concentration fields having steep
derivatives towards the reentrant corner

p = 2 + sin(x1x2)
(x1 − a)2 + (x2 − b)2 , ϕ2 = exp(−100(x1 − a)2 − 100(x2 − b)2),
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Finite Element Family: P2 − P2 − RT2 − P2 −P2 −RT2

DoF h e(u) r(u) e(t) r(t) e(σ) r(σ)
2421 0.7224 0.1468 – 2.0740 – 6.0911 –
10089 0.4234 2.69e-02 2.763 0.45071 2.683 1.0707 2.178
39258 0.2460 2.99e-03 3.106 7.10e-02 2.718 0.1624 2.775
158652 0.1397 3.78e-04 2.963 1.06e-02 2.753 2.56e-02 2.859
633555 0.0763 5.18e-05 2.906 1.69e-03 2.956 3.43e-03 2.938

e(ϕ) r(ϕ) e(t̃) r(t̃) e(σ̃) r(σ̃) e(p) r(p) It.
1.82e-02 – 0.4513 – 0.8263 – 5.3892 – 5
2.65e-03 2.7217 6.80e-02 2.634 0.1247 2.724 0.5072 3.026 5
2.15e-04 3.1620 8.79e-03 2.906 1.43e-02 2.892 7.39e-02 2.908 5
2.84e-05 2.9112 1.42e-03 2.924 2.11e-03 2.930 6.89e-03 2.935 5
3.79e-06 2.9606 1.88e-04 2.951 2.80e-04 2.984 9.75e-03 2.998 5

Table 7.2. Example 2: Convergence history and Newton iteration count for the fully-
mixed P2 − P2 − RT2 − P2 − P2 − RT2 approximation of the Oberbeck–Boussinesq
equations on a tombstone-shaped domain and using cross-diffusion.

Figure 7.3. Example 2: Approximate velocity magnitude, temperature, concentra-
tion, and postprocessed pressure, using k = 2 and a barycentric refinement with 11534
triangular elements.

with a = b = 0.01. The values of the exact solutions are used for boundary conditions. Obtaining
optimal rates of convergence depends on having sufficient regularity of the exact solution, which is not
the case here. The local contributions of the residual-based a posteriori error estimator (6.4) are used
to steer the adaptive mesh-refining algorithm outlined in Section 6.3.

The error history for each field variable and the effectivity index eff(Ψ) := e/Ψ (where e denotes
the total error) are plotted in the top panels of Figure 7.4. We compare the convergence of the method
when following a uniform mesh refinement versus the adaptive case. In all cases we see that the
convergence is suboptimal for the uniform refinement whereas rates much closer to the optimal O(h2)
are generated by the adaptive algorithm. Also, the effectivity index remains stable in the adaptive
case, while it shows large oscillations in the uniform case. In the second row of the same figure we show
examples of locally refined meshes that indicate that additional refinement is effectuated towards the
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Figure 7.4. Example 3. Top: Error history and effectivity index for the fully-mixed
method on a non-convex domain using exact solutions with high gradients and uniform
vs. adaptive mesh refinement. Middle row: Initial triangulation (left) and samples of
intermediate barycentric refinements obtained after three (center) and five (right) steps
of mesh adaptation according to the a posteriori error estimator (6.4). Bottom panels:
samples of approximate solutions on coarse adapted meshes.

reentrant corner. We also show examples of approximate solutions obtained by the adaptive method
on relatively coarse meshes.
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Figure 7.5. Example 4: Approximate velocity magnitude and streamlines, velocity
gradient, Bernoulli tensor, postprocessed pressure, temperature, concentration, temper-
ature gradient, and concentration gradient, obtained using k = 2 and a barycentrically
refined tetrahedral mesh with 24576 elements.

Example 4: Error decay in the 3D case

Verification of the convergence of the method in 3D is provided with a simple test employing the
following closed-form solutions

u(x) =

 sin(πx1) cos(πx2) cos(πx3)
−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 , p(x) = sin(πx1) sin(πx2) sin(πx3),

ϕ1(x) = 1− sin(πx1) cos(πx2) sin(πx3), ϕ2(x) = exp(−(x1 − 0.5)2 − (x2 − 0.25)2 − (x3 − 0.25)2),

for x := (x1, x2, x3)t ∈ Ω. The manufactured velocity is divergence-free and we use it to impose the
Dirichlet condition on Γ. The exact concentration and temperature are uniformly bounded in Ω and
we consider the following constant and variable coefficients

γ = 1, ϑ = (1, 0.5)t, K1(x) =

exp(−x1) 0 0
0 exp(−x2) 0
0 0 exp(−x3)

 , K2 = I,

We recall that the solvability of the discrete problem requires that, for dimension n = 3, the finite
element spaces made precise in (4.21)-(4.26) should use a polynomial degree k ≥ 2. The error history
is shown in Table 7.3, where the tabulated convergence rates with respect to DoF indicate that all
individual fields have optimal error decay as predicted by (5.9). In all cases the number of Newton
iterations needed to reach convergence was 4. The solutions on a coarse mesh with 7521 vertices and
24576 tetrahedral elements (actually representing 957121 DoFs for k = 2), are displayed in Figure 7.5.

Example 5: Simulating exothermic flows

We finalize with a time-dependent problem that has relevance in the modeling of exothermic reaction-
diffusion fronts in porous media. The problem configuration is adapted from that in [39], where apart
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Finite Element Family: P2 − P2 − RT2 − P2 −P2 −RT2

DoF h e(u) r(u) e(t) r(t) e(σ) r(σ)
7621 1.225 0.03165 – 0.55572 – 2.4535 –
15181 0.866 0.01095 3.063 0.18479 3.178 0.8475 3.066
120241 0.433 0.00143 2.935 0.02785 2.829 0.1554 2.773
957121 0.2165 0.00026 2.893 0.00484 2.881 0.0293 2.835
7965323 0.1083 0.00007 2.970 0.00063 2.992 0.0046 2.916
e(ϕ) r(ϕ) e(t̃) r(t̃) e(σ̃) r(σ̃) e(p) r(p) It.

0.01043 – 0.10795 – 0.22103 – 0.23510 – 4
0.00397 2.766 0.03389 3.305 0.06753 3.421 0.03295 2.895 4
0.00049 3.029 0.00518 2.705 0.00932 2.860 0.00464 2.974 4
5.99e-05 3.032 0.00069 2.814 0.00120 2.897 0.00087 3.012 4
7.45e-06 2.989 8.17e-05 2.909 1.62e-04 2.936 1.13e-04 3.003 4

Table 7.3. Example 4: Convergence history and Newton iteration count for the fully-
mixed P2 − P2 − RT2 − P2 − P2 − RT2 approximation of the Oberbeck–Boussinesq
equations on a 3D box.

from advection and diffusion, a reaction term is present in the right-hand sides of the temperature
and concentration equation. More precisely, they are Daf(ϕ2) in the equation for ϕ1 and −Daf(ϕ2)
in the equation for ϕ2, where Da= 0.001 is the dimensionless Darcy number and the concentration-
dependent nonlinear reaction is f(ϕ2) := ϕ2(1+7ϕ2)(1−ϕ2)2. The buoyancy term is characterized by
ϑ = (5,−1)t, and we simply consider a constant viscosity µ = 1 and a constant permeability γ = 1.
The diffusivities are isotropic and constant K1 = 8I,K2 = 2.5I, and the domain is the rectangle Ω =
(0, 2000)× (−1000, 0). Further differences with respect to the original system (2.1) include boundary
conditions: we now set uD = 0 on the whole boundary whereas we put ϕj = 1 on the top edge of
the domain, ϕj = 0 on the bottom surface, and on the vertical walls we impose zero flux conditions,
which in the context of our mixed formulation are implemented as essential conditions for each t̃j . A
barycentric refinement is applied on an unstructured triangulation of the domain and the resulting
grid has 32491 elements. In the bilinear forms Ãu,j we add the term∫

Ω

1
∆t(ϕ

`+1
j − ϕ`)ψj ,

accounting for the backward Euler time discretization of ∂tϕj , j ∈ {1, 2}. The same is done to add an
acceleration term to the momentum equation. We use a uniform partition of the time domain (from
0 to 2000) and use a constant stepsize of ∆t = 20. The fully mixed scheme is defined by (4.21)–(4.26)
with k = 1, and the initial conditions for the solutal concentration and high temperature near the
domain top surface are uniformly distributed random perturbations, whereas the initial velocity is the
zero vector.

We run the system until 2000 time units and show in Figure 7.6 snapshots of concentration of the
solute at three different times, together with the postprocessed pressure. As a result of the nonlinear
interaction between the change of temperature and the high solute concentration, density-driven in-
stabilities start to form and the solute fingers commence to move downwards also due to gravitational
effects. Throughout the computation the Newton–Raphson method took at most five iterations to
reach the desired tolerance.
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Figure 7.6. Example 4: Evolution of the solute concentration (top) and the post-
processed pressure (bottom, showing also line integral contours of velocity) computed
with a method using k = 1, and recorded at adimensional time instants 800 (left), 1200
(center), and 2000 (right panels).
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