
SMAI-JCM
SMAI Journal of
Computational Mathematics

Implicit and Semi-implicit
Numerical Schemes for the Gradient
Flow of the Formation of Biological

Transport Networks

Di Fang, Shi Jin, Peter Markowich & Benoît Perthame
Volume 5 (2019), p. 229-249.

<http://smai-jcm.cedram.org/item?id=SMAI-JCM_2019__5__229_0>

© Société de Mathématiques Appliquées et Industrielles, 2019
Certains droits réservés.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://smai-jcm.cedram.org/item?id=SMAI-JCM_2019__5__229_0
http://www.cedram.org/
http://www.cedram.org/


SMAI Journal of Computational Mathematics
Vol. 5, 229-249 (2019)

Implicit and Semi-implicit Numerical Schemes for the Gradient
Flow of the Formation of Biological Transport Networks

Di Fang 1

Shi Jin 2

Peter Markowich 3

Benoît Perthame 4

1 Department of Mathematics, University of Wisconsin-Madison, Madison, WI, USA
E-mail address: di@math.wisc.edu
2 School of Mathematical Sciences, Institute of Natural Sciences, MOE-LSC and SHL-MAC,
Shanghai Jiao Tong University, Shanghai 200240, China
E-mail address: shijin-m@sjtu.edu.cn
3 Mathematical and Computer Sciences and Engineering Division, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia; Faculty of
Mathematics, University of Vienna, Oskar-MorgensternPlatz 1, 1090 Vienna, Austria
E-mail address: peter.markowich@kaust.edu.sa; peter.markowich@univie.ac.at
4 Sorbonne Université, Université Paris-Diderot SPC, CNRS, INRIA, Laboratoire
Jacques-Louis Lions, F-75005 Paris, France
E-mail address: Benoit.Perthame@sorbonne-universite.fr.

Abstract. Implicit and semi-implicit time discretizations are developed for the Cai–Hu model describing the for-
mation of biological transport networks. The model couples a nonlinear elliptic equation for the pressure with a
nonlinear reaction-diffusion equation for the network conductance vector. Numerical challenges include the non-
linearity and the stiffness, thus an explicit discretization puts severe constraints on the time step. We propose an
implicit and a semi-implicit discretizations, which decays the energy unconditionally or under a condition indepen-
dent of the mesh size respectively, as will be proven in 1D and verified numerically in 2D.
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1. Introduction

Biological transport networks have drawn extensive research interests due to their ubiquitous existence
in living organisms and rich phenomenon observed in nature, two common examples of which are the
leaf venations and blood flow. It has been hypothesized in the literature that the branching structures
of the network is governed by an optimization of the energy consumption of the living system, as a
consequence of natural selection (see for example [21, 18, 16, 6, 3, 7]). However, the internal mechanism
may appear rather counter-intuitive from a biological point of view, simply due to the global nature
of the optimization approach in general. One naturally questions how one blood vessel, for example,
with only the “knowledge” of local information, is able to participate in the global energy optimization
task of the entire network. The link in between was made transparent by Hu and Cai in 2013 [15]. In
their work, a global energy functional approach is suggested considering both material and metabolism
costs, but nevertheless the corresponding gradient flow ends up driven by the wall shear stress on the
tube walls, which is a local information and has been observed in experiments that can be sensed
by the tissue [22, 17, 19]. This model unifies the global picture with the local one, and is referred to
later as the Cai–Hu model. The original Cai–Hu model is in ODE form, which unfortunately cannot
describe the growth or initiation of a network. A generalized PDE version is henceforth proposed and

Research supported by NSF grants no. DMS-1522184, DMS-1107291: RNMS KI-Net, and NSFC grant No. 31571071.

229

mailto:di@math.wisc.edu
mailto:shijin-m@sjtu.edu.cn
mailto:peter.markowich@kaust.edu.sa; peter.markowich@univie.ac.at
mailto:Benoit.Perthame@sorbonne-universite.fr


D. Fang, S. Jin, et al.

studied in [13, 14, 1, 11, 4, 12]. To aim at the understanding of the growth and formation of these
biological networks, we consider the PDE version in this work, which is in fact a lot more challenging
in terms of numerical simulations.

In the PDE model, one has a coupled system in terms of the conductance vector m(t, x) ∈ Rd (with
space dimension d ≤ 2) whose direction coincides with the allowable flow direction and whose modulus
indicates how strongly the tissue passes the flow at position x, and the pressure p(t, x) ∈ R as follows:

−∇ · [(r(x)I +m⊗m)∇p] = S, (1.1)
∂m

∂t
= D2∆m+ c2(∇p⊗∇p)m− α|m|2(γ−1)m, (1.2)

where r(x) denotes the background permeability, I is the identity matrix, S(x) is the distribution of
fluid sources, D > 0 the diffusive constant (usually very small), c > 0 the activation constant driving
the network adaptation, α > 0 is the metabolic constant, and γ ∈ [1/2, 1] is the metabolic rate of
the bio-organism according to Murray’s Law [20]. To be specific, it has been shown that for blood
vessels, γ = 1/2 while γ ∈ (1/2, 1] for leaf venation [15]. Notice that choosing the time scale allows
to fix a parameter (for instance α = 1 as later). Also note that the relationship between the pressure
p(t, x) and the conductivity vector m(t, x) follows Darcy’s Law in porous media written as the Poisson
equation (1.1), where r(x)I+m⊗m is the permeability tensor. The second equation (1.2) is a reaction
diffusion equation derived as a gradient flow by minimizing the energy cost functional consumed by
the system. Now let us make explicit the total energy functional

E(m) := 1
2

∫
Ω

(D2|∇m|2 + α

γ
|m|2γ + c2|m · ∇p[m]|2 + c2r(x)|∇p[m]|2) dx, (1.3)

where p[m] is the unique solution of the Poisson equation (1.1) subject to appropriate boundary
conditions, the first term represents the diffusive energy, the second the metabolic cost consumed by
the network (according to the celebrated Murray’s Law in mathematical biology) to keep the tissue
alive, and the last two terms correspond to the energy consumption incurred by the fluid itself –
the former for the network while latter for the background. Again the pressure p(t, x) here is given
according to Kirchoff’s law (1.1), where the flux follows Darcy’s Law. We point out that this is clearly
a non-convex optimization problem in general, where the first two terms are the convex part in the
physical cases γ ≥ 1/2 while the coupling with the Poisson equation gives rise to the non-convexity. We
remark that the reaction term in (1.2) illustrates a competition between the contribution by activation
forces (by flow inside the network) c2(∇p ⊗ ∇p)m and the metabolic part −α|m|2(γ−1)m. And it is
exactly this competition that gives rise to interesting branching phenomena and nontrivial equilibria.

Although model (1.1)-(1.2) may appear “standard” at a first glance in the form of a Poisson equation
coupled with an diffusion-reaction equation, it is by no means easy to compute in practice. The major
numerical difficulty of this system lies in the stiffness of basically all terms in (1.2). Unlike the rather
standard reaction-diffusion equation (such as the Allen–Cahn equation) where the reaction term is
smooth, we point out that with the physical parameter γ ∈ (1/2, 1), the activation term α|m|2(γ−1)m
in (1.2) is not smooth and in fact stiff sincem can be close to zero (to be made more transparent in later
discussions with the 1D case). This feature makes our problem more difficult than well-studied reaction
diffusion equations where the smoothness of the reaction term is guaranteed. Hence a direct application
of the currently-developed tricks for reaction diffusion equations, such as linear penalization [8, 9, 10]
and its resulting Integration Factor (IF) method or Exponential Time Differencing (ETD) method [8, 9]
remain not clear. Before proceeding any further we summarize the main numerical difficulties of this
system as follows

(1) The diffusion term D2∆m is stiff as in any reaction-diffusion system. This is actually not a real
difficulty at all, since the stiffness of the diffusion can be removed by treating the term exactly
or implicitly. Different approximations on the temporal integral involving reaction term in this
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approach result in either Integration Factor (IF) methods or Exponential Time Differencing
(ETD) methods [8, 9].

(2) The metabolism term |m|2(γ−1)m is nonlinear and non-differentiable in general for physical
most relevant cases 1

2 ≤ γ ≤ 1, and is also stiff since m can be close to zero. This term is in
fact much harder to treat than the diffusion.

(3) The activation matrix (in 2D) c2∇p ⊗ ∇p has eigenvalues 0 and c2|∇p|2, which makes the
activation term stiff when |∇p| is large. This is precisely the case “inside” the network.

In the literature, a number of efforts have been devoted to construct effective numerical schemes for
this system. [14] and [1] develop numerical schemes with only the diffusion term implicit formulated in
either a forward Euler or a Crank Nicolson fashion and other terms explicit, and [2] presents a time-
splitting strategy, where the stability of the former remain unclear and the latter has severe time-step
constraints due to the stiffness. The goal of this paper is to develop efficient implicit and semi-implicit
schemes with good stability properties. First, to effectively take care of the stiffness, we propose a fully
implicit scheme for both 1D and 2D Cai–Hu models. For 1D, we prove that the energy dissipation
equation is preserved which gives the unconditional stability of the implicit solver. However, as any
implicit solver to nonlinear equations, the scheme gives rise to a nonlinear algebraic problem and
hence requires the Newton iterations, which makes the implementation for multi-dimensional cases
utterly costly and complicated. Even worse, the convergence of the Newton solver becomes unclear for
the 2D case. To achieve a practical algorithm with only linear algebraic solvers needed, semi-implicit
treatment is desired. However, as is well known, unlike the fully implicit treatment, it is usually
difficult to construct a semi-implicit solver that still decays the energy functional (physical energy) of
the gradient flow. As the second and main part, we propose a semi-implicit scheme for the Cai–Hu
model in both 1D and 2D that does not result in nonlinear algebraic problems. Moreover, we prove for
1D that this scheme indeed decays the physical energy as long as a condition independent of the mesh
size is satisfied. With this new solver, one only needs to deal with linear algebraic problems that can
be easily solved either by conjugate gradient (CG) or preconditioned conjugate gradient (PCG). This
makes the computation in 2D efficient and feasible. Though we only prove the decay of the physical
energy in 1D for the semi-implicit solver, numerically one observes that the physical energy decays in
time for both 1D and 2D cases.

The rest of the paper is organized as follows: In Section 2, we briefly revisit the 1D Cai–Hu model,
and propose an implicit algorithm whose unconditional stability is proved. Motivated by the practical
calculation for higher dimensional cases, we henceforth propose a semi-implicit scheme, and prove that
it decays the physical energy provided the stability condition is satisfied in 1D. Section 3 presents both
the fully implicit and semi-implicit schemes for 2D in analogy to the 1D case. In Section 4, numerical
tests are conducted in 1D with both the implicit and semi-implicit solvers, and 2D with the semi-
implicit one. We observe numerically in both cases the energy decreases in time. The 2D examples
present branching phenomena as occurred in leaf venations in nature. Section 5 contains conclusions.

2. The 1D Cai–Hu Model and Numerical Approximations

2.1. The 1D Cai–Hu Model

As has been shown in [14], the 1D Cai–Hu model has the form

∂tm−D2∂2
xxm =

(
c2B(x)2

(1 +m2)2 − |m|
2(γ−1)

)
m (2.1)
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with proper boundary conditions (see [14] for the detailed derivation), where the parameters are
already chosen as r(x) = α = 1 for simplicity and B(x) is the given function

B(x) :=
∫ x

0
S(y)dy.

The energy in the 1D setting is then simplified as

E(m) = 1
2

∫
Ω
D2|∂xm|2 + 1

γ
|m|2γ + c2B(x)2

1 +m2 dx. (2.2)

As has been pointed out in the introduction, the nonlinear reaction term is also stiff. To see it, simply
defines

H(m) =
(
c2B(x)2

(1 +m2)2 − |m|
2(γ−1)

)
m, (2.3)

where −1 ≤ 2(γ − 1) ≤ 0, since 1
2 ≤ γ ≤ 1, and

H ′(m) =

c
2B(x)2 1−3m2

(1+m2)3 − 2γ−1
|m|2(1−γ) , if m 6= 0,

−∞, if m = 0.
(2.4)

Note that |H ′(m)| is very large as m approaches zero.

2.2. An Implicit Treatment and Energy Decay

Consider the 1d setting in [14], namely, the interval (0, 1) and homogenous Neumann Boundary Con-
ditions for m. We propose the following scheme:

mn+1
j −mn

j

∆t = D2

2∆x2

[
mn+1
j+1 − 2mn+1

j +mn+1
j−1 +mn

j+1 − 2mn
j +mn

j−1

]
+

c2B2
j (mn+1

j +mn
j )

2(1 + (mn+1
j )2)(1 + (mn

j )2)
−

(mn+1
j )2γ − (mn

j )2γ

2γ(mn+1
j −mn

j )
.

m−1 = m1, mN−1 = mN+1. (2.5)
Note that this scheme is second order in time, and the diffusion term is treated by the Crank–Nicolson
method. We define the discrete energy as

En = 1
2

M∑
j=1

[
D2

∆x2

(
mn
j −mn

j−1

)2
+ 1
γ
|mn

j |2γ +
c2B2

j

1 + (mn
j )2

]
, (2.6)

which is a discrete analog of the energy functional (2.2). We shall prove in the following theorem that
our scheme decays the discrete energy and is hence unconditionally stable.

Theorem 2.1. The scheme (2.5) satisfies the discrete energy dissipation equation

En+1 − En = − 1
∆t

M∑
j=1

(mn+1
j −mn

j )2, (2.7)

and hence decays the energy
En+1 ≤ En. (2.8)

Remark 2.2. This result implies that the scheme is unconditionally stable, i.e. there is no restriction
on ∆t. It shows the scheme preserves in the discrete fashion the energy equation given in Lemma 1
of [13]

d

dt
E = −

∫
Ω

(
∂m

∂t

)2
dx. (2.9)
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In fact, one should simply view the scheme as a discretization of the energy equation.

Proof. The lemma follows a straightforward energy estimate, namely, multiply mn+1
j −mn

j on both
sides of the scheme (2.5) and sum over j,

M∑
j=1

(mn+1
j −mn

j )2

∆t = (I) + (II) + (III),

where

(I) =
M∑
j=1

D2

2∆x2

(
mn+1
j+1 − 2mn+1

j +mn+1
j−1 +mn

j+1 − 2mn
j +mn

j−1

)
(mn+1

j −mn
j ),

(II) =
M∑
j=1

c2B2
j

2
(mn+1

j )2 − (mn
j )2

(1 + (mn+1
j )2)(1 + (mn

j )2)
, (III) = −

M∑
j=1

1
2γ
[
(mn+1

j )2γ − (mn
j )2γ

]
.

It follows from summation by parts that∑
j

(
mn+1
j+1 − 2mn+1

j +mn+1
j−1

)
mn+1
j =

∑
j

(
mn+1
j+1 −m

n+1
j

)
mn+1
j −

∑
j

(
mn+1
j −mn+1

j−1

)
mn+1
j (2.10)

= −
∑
j

(
mn+1
j −mn+1

j−1

)2
. (2.11)

Similarly applying summation by parts to other terms, one finds

(I) = D2

2∆x2

M∑
j=1

(
mn+1
j+1 − 2mn+1

j +mn+1
j−1

)
mn+1
j − D2

2∆x2

M∑
j=1

(
mn
j+1 − 2mn

j +mn
j−1

)
mn
j

+ D2

2∆x2

M∑
j=1

(
mn
j+1 − 2mn

j +mn
j−1

)
mn+1
j − D2

2∆x2

M∑
j=1

(
mn+1
j+1 − 2mn+1

j +mn+1
j−1

)
mn
j

= − D2

2∆x2

∑
j

(
mn+1
j −mn+1

j−1

)2
+ D2

2∆x2

∑
j

(
mn
j −mn

j−1

)2
.

A simple calculation shows

(II) =
M∑
j=1

c2B2
j

2
(mn+1

j )2 − (mn
j )2

(1 + (mn+1
j )2)(1 + (mn

j )2)
= −1

2

M∑
j=1

c2B2
j

1 + (mn+1
j )2 + 1

2

M∑
j=1

c2B2
j

1 + (mn
j )2 .

Hence,
(I) + (II) + (III) = −En+1 + En,

which completes the proof.

In numerical implementations, we use the Newton method to solve the implicit algebraic equa-
tion (2.5) in every time step. Note that supposing D = 0, then the algebraic equation has only one
root, and sufficiently away from 0 the function in consideration is actually monotone. Numerically, the
Newton iteration converges just in a few steps taking the initial guess sufficiently away from 0.

2.3. A Semi-implicit Treatment and Energy Decay

To avoid the nonlinear Newton solver, which may become impractical for higher dimension, we propose
the following semi-implicit treatment in preparation for the 2D practical simulations.

mn+1
j −mn

j

∆t − D2

∆x2

[
mn+1
j+1 − 2mn+1

j +mn+1
j−1

]
= c2B(x)2(

1 + (mn
j )2
)2m

n
j − |mn

j |2(γ−1)mn+1
j , (2.12)

233



D. Fang, S. Jin, et al.

m−1 = m1, mN−1 = mN+1.

Note that in (2.12), the activation part on the right hand side is treated fully explicitly, while the
metabolic term is treated in a semi-implicit fashion. Since |mn

j |2(γ−1) is strictly positive, this term
plays the role of stabilizing the scheme. Moreover, one only needs to invert a tri-diagonal matrix
where standard fast algorithms can be used. In the following theorem, we establish the conditional
stability of the semi-implicit solver in the semi-discrete set-up which guarantees the physical energy
does not increase. Note that the semi-discretization is used for a clear presentation, the fully-discrete
stability should be similar, which is omitted here.

Theorem 2.3. Assume B ∈ L∞, consider the semi-implicit scheme (2.12) in the semi-discrete set-up,
i.e.,

mn+1 −mn

∆t −D2∂xxm
n+1 = c2B(x)2

(1 + (mn)2)2m
n − |mn|2(γ−1)mn+1, (2.13)

then the physcial energy as defined in (2.2) decays

E(mn+1) ≤ E(mn),

provided the condition

c2‖B2‖∞∆t ≤ 2, (2.14)

is satisfied.

Proof. Denote

f(m) = c2B(x)2

(1 +m2)2m, F (m) = c2B(x)2

2(1 +m2) ,

then clearly one has F ′(m) = −f(m) and

|f ′(m)| = c2B(x)2
∣∣∣∣∣ 1− 3m2

(1 +m2)3

∣∣∣∣∣ ≤ c2‖B2‖∞. (2.15)

In the following, we use 〈·, ·〉 to denote the inner product and ‖·‖ for the L2 norm in Ω.
On one hand, multiplying the scheme (2.13) by mn+1 −mn and integrating in x, one obtains

1
∆t‖m

n+1 −mn‖2 + D2

2 ‖∂xm
n+1‖2 − D2

2 ‖∂xm
n‖2 + D2

2 ‖∂xm
n+1 − ∂xmn‖2

= 〈f(mn),mn+1 −mn〉 −
∫

Ω
|mn|2γ−2((mn+1)2 −mn+1mn)dx, (2.16)

where integration by parts and the equality 〈a− b, a〉 = 1
2‖a‖

2 − 1
2‖b‖

2 + 1
2‖a− b‖

2 are used. On the
other hand, it holds that

E(mn+1)− E(mn) = D2

2 ‖∂xm
n+1‖2 − D2

2 ‖∂xm
n‖2 +

∫
Ω

1
2γ |m

n+1|2γ − 1
2γ |m

n|2γdx

+
∫

Ω
F (mn+1)− F (mn)dx, (2.17)

by the definition of the physical energy (2.2). Notice that

F (mn+1)− F (mn) = −f(mn)(mn+1 −mn)−
∫ mn+1

mn
f ′(τ)(mn+1 − τ)dτ,
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and hence combining with (2.16), we have

E(mn+1)− E(mn) + 1
∆t‖m

n+1 −mn‖2 + D2

2 ‖∂xm
n+1 − ∂xmn‖2

= −
∫

Ω
|mn|2γ−2((mn+1)2 −mn+1mn)− 1

2γ |m
n+1|2γ + 1

2γ |m
n|2γdx

−
∫

Ω

∫ mn+1

mn
f ′(τ)(mn+1 − τ)dτdx := I1 + I2

By (2.15), clearly

I2 ≤
1
2c

2‖B2‖∞‖mn+1 −mn‖2.

Next, we shall show that I1 ≤ 0.
Case 1: If mn+1mn ≥ 0, it suffices to show that the function

G(x, y) = x2γ−2y2 − x2γ−1y − 1
2γ y

2γ + 1
2γ x

2γ ≥ 0 (2.18)

for all x, y ≥ 0. (Note that I1 corresponds to the case when x = |mn| and y = |mn+1|.) Though one
could prove the result by proving the minimum of G(x, y) is no less than 0, an easier way is to use the
homogeneity of the inequality and convert the problem into a single variable function. To be specific,
note that

G(x, y) = x2γ
((y
x

)2
− y

x
− 1

2γ
(y
x

)2γ
+ 1

2γ
)
. (2.19)

Denote z = y/x ≥ 0, it suffices to show that

A(z) = z2 − z − 1
2γ z

2γ + 1
2γ ≥ 0

for all z ≥ 0. It clearly holds for z = 0 and for γ = 1/2 respectively, hence we only need to consider
z > 0 and γ ∈ (1/2, 1). Straightforward computation gives

A′(z) = 2z − 1− z2γ−1, A′′(z) = 2− 2γ − 1
z2−2γ ,

where A′′(z) is monotone increasing with a unique zero at z = ( 2
2γ−1)2γ−2 := z0, which means A′(z)

decreases in (0, z0) and increases in (z0,∞). On one hand, one has A′(0) = −1 < 0, which implies
that A′(z) has at most one zero. On the other hand, z = 1 is clearly a critical point, and therefore is
the unique critical point of A(z). One could easily check the second derivatives and the limits on the
boundary to see that the critical point z = 1 is the global minimum. It follows that

A(z) ≥ A(1) = 0, G(x, y) ≥ 0.
Case 2: When mn+1mn < 0, it suffices to show that

G̃(x, y) = x2γ−2y2 + x2γ−1y − 1
2γ y

2γ + 1
2γ x

2γ ≥ 0

for all x, y ≥ 0, which clearly holds since
G̃(x, y) = G(x, y) + 2x2γ−1y ≥ 0.

In summary, we have

E(mn+1)− E(mn) + D2

2 ‖∂xm
n+1 − ∂xmn‖2 ≤

(c2‖B2‖∞
2 − 1

∆t
)
‖mn+1 −mn‖2 ≤ 0,

where the stability condition (2.14) is used. This completes the proof.
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3. The 2D Cai–Hu Model and Numerical Schemes

The ideas developed in the 1D case can be extended to treat the spatially discretized 2D Cai–Hu model
when set on a rectangular grid. For completeness, we present both the fully implicit and implicit-
explicit schemes.

3.1. An Implicit Approach and Energy Decay

Similar as the 1D case, an implicit scheme can be constructed as

−∇h ·
[
r

2
(
∇hpn+1 +∇hpn

)
+ 1

4
(
mn+1 · ∇hpn+1 +mn · ∇hpn

) (
mn+1 +mn

)]
= S, (3.1)

mn+1
l −mn

l

∆t = D2

2 ∇
2
h

(
mn+1
l +mn

l

)
+ c2

4
(
mn+1 · ∇hpn+1 +mn · ∇hpn

) (
∇hpn+1

l +∇hpnl
)

(3.2)

− α

2γ
|mn+1|2(γ−1)(mn+1

l )2 − |mn|2(γ−1)(mn
l )2(

mn+1
l −mn

l

) ,

where the subscript l = 1, 2 labels the l-th component of the vectorm or∇hp; the spatial discretizations
are all performed at the grid point with index-pair (k, j) and hence spatial indices are omitted for
simplicity; and ∇2

h denotes the discretized Laplacian operator, and hence the diffusion term is treated
in a Crank–Nicolson matter (similarly as 1D case). This scheme is clearly second order in time.

However, this scheme gives rise to an nonlinear algebra problem, which in practice is very difficult
to solve. Note that a direct application of the Newton iteration may fail to converge depending on
initial guesses. Hence in the next section, we propose a more practical numerical method.

3.2. A Semi-implicit Scheme

The key goal here is to avoid a nonlinear algebraic problem which requires the Newton iterations,
in which case hopefully one only deals with a linear algebra problem that provides enough efficiency
in practical calculation. Following the semi-implicit idea for the 1D Cai–Hu model, we propose the
following scheme for multi-dimensional cases:

−D1 · [(rI +mn ⊗mn)D1p
n+1] = S, (3.3)

mn+1
1 −mn

1
∆t = D2D2m

n+1
1 + c2

(
(Dxpn+1)2mn

1 +Dxpn+1Dypn+1mn
2

)
− α|mn|2(γ−1)mn+1

1 , (3.4)

mn+1
2 −mn

2
∆t = D2D2m

n+1
2 + c2

(
(Dypn+1)2mn

2 +Dxpn+1Dypn+1mn
1

)
− α|mn|2(γ−1)mn+1

2 ,

where Dx and Dy denote the spatial discretizations in x and y directions, respectively, which could be
chosen as either the forward difference or the central difference, D1 = (Dx,Dy), and D2 = D2

x + D2
y.

Note that similarly to the 1D scheme (2.12), the diffusion term is treated implicitly, the metabolism
term semi-implicitly and the activation term explicitly in the sense that the pressure pn+1 used here is
computed from the Poisson equation (3.3) using the information of mn. This semi-implict scheme is a
2D version of scheme (2.12) that has been proven to decay the physical energy in 1D, and is efficient in
actual computations, since the semi-implicit treatment of the last term in (3.4) helps to stabilize the
whole procedure and create positive definite matrices to be inverted. For numerical tests, we use the
staggered grids, as is widely used in computational fluid dynamics to avoid the famous “checkerboard”
problem.
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4. Numerical Results

We now illustrate the theoretical results with numerical simulations. We compare the semi-implicit
scheme and the fully implicit which is more complex due to Newton iterations but avoids the restriction
on time steps. We pay a special attention to the decay of energy as it holds for the continuous model,
and on the ability of the scheme to generate patterns.

4.1. The 1D Cai–Hu Model

In this section, we present our numerical results of the 1D Cai–Hu model (2.1) using the implicit
solver (2.5) and the semi-implicit scheme (2.12), respectively. Denote the nonlinear system of equations
resulting from the implicit scheme as

F (mn+1) :=
mn+1
j −mn

j

∆t − D2

2∆x2

[
mn+1
j+1 − 2mn+1

j +mn+1
j−1 +mn

j+1 − 2mn
j +mn

j−1

]
−

c2B2
j (mn+1

j +mn
j )

2(1 + (mn+1
j )2)(1 + (mn

j )2)
+

(mn+1
j )2γ − (mn

j )2γ

2γ(mn+1
j −mn

j )
= 0, (4.1)

where F : RN → RN . The Newton method reads
JF
(
mn+1(k)

) (
mn+1(k + 1)−mn+1(k)

)
= −F

(
mn+1(k)

)
,

with JF (mn+1) as the N × N Jacobian matrix of F and k as the k-th step of iteration. In order to
solve this linear system, the Thomas algorithm [5] is implemented since the Jacobian is a tri-diagonal
matrix.

Example 4.1 (1D Extinction of Solutions). It has been shown in Lemma 4 of [14] that for 1/2 ≤ γ ≤ 1,
the initial data m0 ∈ L∞(0, 1) and the parameters satisfying

c‖B(x)‖L∞ ≤ Zγ := 2
γ + 1

(1− γ
1 + γ

) γ−1
2
,

one has the extinction of solutions, namely, the solution converges to zero as t→∞. In other words,
the solution converges to zero in infinite time for 1/2 ≤ γ ≤ 1 (in contrast to the case −1 ≤ γ < 1/2
where there exists a finite break down time). In this example, we try to observe the vanishing effect
numerically. Consider γ = 0.75 corresponding to the leaf venation case, D = 0.01, cB(x) = Zγ/2, and
initial datum as

m(0, x) = 10(sin(2πx) + 1) cos(2πx)− 3, (4.2)
which is plotted in Figure 4.1a. We choose this initial datum so that it is a bit more complicated than
simple algebraic functions, and here one has different combinations of monotonicity and convexity
in the sub-intervals. Both the implict and semi-implict solvers are implemented with ∆t = 0.01 and
∆x = 0.005 until the final time T = 10. We first show the results of the implicit solver: Figure 4.1
plots the solutions at various time t = 0, 2, 5, 10 and the discrete physical energy defined in (2.6). It
can be seen that the discrete physical energy decays throughout the simulation in time as is proved
in Theorem 2.1. Next, the solutions computed by the semi-implicit scheme at different time and its
discrete physical energy are plotted in Figure 4.2. In the numerics one indeed can see the decay of the
discrete physical energy as is proved in Theorem 2.3. In both methods, the solution converges finally
to zero and we numerically recover the theoretical results proved in Lemma 4 of [14].

Example 4.2 (1D Non-trivial Equilibrium). In this example, we want to consider the solution with
non-trivial (non-vanishing) equilibrium. First, consider the 1D Cai–Hu model (2.1) with parameters

D = 0.01, cB(x) = 10, γ = 0.75,
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Figure 4.1. Example 4.1 computed by the implicit solver: the solution m at different
times t = 0, 2, 5, 10. It can be seen that the solution converges to 0 eventually, and the
discrete physical energy decreases in time.

which corresponds to the leaf venation case with the initial datum as (4.2), and compute the 1D model
until the final time T = 20, using both the implicit and semi-implicit methods with ∆t = 0.01 and
∆x = 0.005. The numerical results are plotted in Figure 4.3. For both schemes, we observe the decay
of the discrete physical energy. Next, we change the diffusion parameter

D = 0.001,

and repeat above tests. It can be seen in Figure 4.4, the decay of discrete energy can still be observed.

Example 4.3 (Convergence Test). In this example, consider the parameters

D = 0.01, cB(x) = 2, γ = 0.75,
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Figure 4.2. Example 4.1 computed by the semi-implicit solver: the solution m at
different times t = 0, 2, 5, 10. It can be seen that the solution converges to 0 eventually,
and the discrete physical energy decreases.

the initial datum m(0, x) = sin(2πx) + 20 and ∆x = 0.0002. We take various time steps ∆t = 0.08,
0.04, 0.02, 0.01, 0.005, and plot the l2 error of m in a log-log scale in Figure 4.5. The reference solution
is computed via ∆t = 0.0001. It can be seen that the semi-implicit scheme is of first order in time and
the fully implicit one is of second order in time.

4.2. The 2D Cai–Hu Model

In this section, we present a number of numerical examples for the 2D Cai–Hu model, using the
semi-implicit solver. The linear algebraic problems resulting from the scheme are solved using a pre-
conditioned conjugate gradient method. The discrete physical energy considered here is defined as
E(mn) at each time t = tn, with E defined in (1.3).
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(b) Semi-implicit scheme: m at t = 20
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(d) Semi-implicit scheme: discrete energy

Figure 4.3. Example 4.2 with D = 0.01. Left panel: computed by the implicit solver;
right panel: computed by semi-implicit solver. The equilibrium does not vanish and the
discrete physical energy is observed to decay in time.

Example 4.4. Consider the equation with the Neumann boundary condition for p and Dirichlet
boundary condition for m. The background permeability r(x) is chosen as r(x) = 0.1, the activation
constant c = 50, the diffusivity D = 0.01, and α = 1. We choose γ = 0.75, which corresponds to leaf
venations according to [15]. The initial data and source term are given in Figure 4.6.

In this example we use ∆t = 0.005, and ∆x = ∆y = 0.002. We plot the long-time behavior of the
system for various time T = 20, 40, 60, 80. To be specific, Figure 4.7 shows |m|2 in the log-scale, which
corresponds to the structure of the leaf. Note that for m = 0, the log function is not defined, and hence
hereafter log(|m|2 + ε0) is plotted in numerics, where ε0 = 4e−16 is of size of machine precision. In
this example, we also plot the volumetric flux u (proportional to the flow velocity in leaf venations),
defined as

u = (rI +m⊗m)∇p (4.3)
in Figure 4.8. It can be seen that the leaf venation grows as the fluid spreads, and finally achieve a
tree-like structure. Numerically, we see that the discrete physical energy decays with respect to time
through out the simulation as is shown 4.9. In fact, in the last several steps, the energy keeps the decay
behavior even if the first five decimal places in the energy value no longer change. To be specific, the
last seven energy values are

2.40638937, 2.40638876, 2.40638813, 2.40638744, 2.40638683, 2.40638619, 2.40638551.

Example 4.5 (Varying D). In this example, we investigate how the diffusion coefficients may affect
the formation of the biological network. Consider the same set-up as in Example 4.4, but with different
diffusion coefficients D = 0.5, 0.1, 0.02, 0.005, 0.002. The solutions are computed till time T = 40. It
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Figure 4.4. Example 4.2 with D = 0.001. Left panel: computed by the implicit solver;
right panel: computed by semi-implicit solver. The equilibrium does not vanish and the
discrete physical energy is observed to decay in time for both solvers.

can be seen from Figure 4.10 that the smaller the diffusion coefficient is, the more detailed structure
the network tends to exhibit and also the faster it reaches the equilibrium.

Example 4.6 (Varying spatial mesh size). In this example, we test the semi-implicit scheme with
different spatial mesh size. In this example, we first take asymmetric initial datum as in Figure 4.6, and
denote the non-zero region are Ω0. We take with a small perturbation ∼ 0.1Uniform(Ω0) on the initial
datum in the region Ω0. We take D = 0.01 and the number of grid points in each spatial direction
as 500, 800 and 1000. It can been see in Figure 4.11, the differences resulting from the varying of the
spatial mesh size are of small magnitude as can be seen in both the log scale and the regular scale.

Now, we take symmetric initial data and symmetric source S. For γ = 0.75, D = 0.01, the solutions
are computed until T = 20 using the number of grid points in each spatial direction as 500, 800
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Figure 4.5. Example 4.3: l2 error of m versus ∆t in a log-log scale for the fully im-
plicit scheme (solid) and semi-implicit scheme (dashed). The slope for the fully implicit
scheme is approximately 2 while for the semi-implicit is approximately 1.
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Figure 4.6. Plot of initial data in the (x,y) plane and the source term.

and 1000, respectively. It can been see in Figure 4.12, the pattern seems symmetric, and varying
different mesh sizes does not seem to break the symmetry. It can be seen in the middle column of
Figure 4.12 that the differences resulting from the change of the grid size are minor, which are more
clearly illustrated in the log-scale plots (first and last columns) that the difference is of order 1e−4
marked as dark yellow in the color bar.

Example 4.7 (Asymmetric Grids). An interesting phenomenon been pointed out in [14] that for
asymmetric grids, the solution could form an asymmetric pattern even with symmetric initial data
and source. In this last example, we change to an asymmetric grids, namely, dx 6= dy. We consider
the symmetric initial data as in Example 4.6 with γ = 0.75 and D = 0.01, but use 500 grid points
in x direction while 800 grid points in y direction. As can be see in Figure 4.12, the pattern becomes
asymmetric in the log-scale plot, but in fact in the regular scale the solution does not seem to differ
much from the results of symmetric grids as plotted in Figure 11 middle column. We point out that
just as the checkerboard problem in computational fluid dynamics, to avoid some potential instability
caused by the “natural grids”, the choice of grids should certainly be carefully designed. Here we used
the staggered grids, and a better gridding strategy for both finite difference and finite element schemes
of this model is a very interesting problem, which is left for future study.
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Figure 4.7. Example 4.4 computed by the semi-implicit solver: the leaf structure |m|2
in the log scale at different times t = 20, 40, 60, 80. It can be seen that the flow spreads
and finally achieves a tree-like structure.

Example 4.8 (Convergence Test). In this example, consider the same symmetric initial data and
source as Example 4.6 with γ = 0.75, D = 0.01 and ∆x = 0.001. We take various time steps ∆t = 0.01,
0.005, 0.004, 0.0025, 0.002, 0.00125, 0.001 and plot the l2 error of m in a log-log scale in Figure 4.14.
The reference solution is computed via ∆t = 0.00005. It can be seen that the scheme is 1st order in
time.

5. Conclusion

In this work, we propose two possible approaches to the Cai–Hu model for biological transport networks
– the fully implicit treatment and a semi-implicit approach. While the fully implicit one is proven to
be unconditionally stable in 1D, it results in a nonlinear algebraic system that could be difficult and
costly to implement in higher dimension, and convergence of the Newton solver remains unclear. The
semi-implicit scheme avoids the Newton iteration, but has a stability constraint on time step which
depends on some coefficients of the equation (still independent of the mesh size though). For the 2D
model, the semi-implicit scheme is of more practical potential, since it only deals with linear algebraic
problems by inverting positive definite matrices that can be solved efficiently by CG or PCG even in
higher dimensions. Our numerical examples show the stabilities and energy decay of both schemes.
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Figure 4.8. Example 4.4 computed by the semi-implicit solver: the flux u defined
in(4.3) at different times t = 20, 40, 60, 80. It can be seen that the leaf grows and finally
achieves a tree-like structure.
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Figure 4.9. Example 4.4 computed by the semi-implicit solver: The discrete physical
energy decays all the time, and it can be seen in the zoom-in figure (on the right) that
it keeps the decay behavior even if the first two decimal places no longer change.

We remark that it remains interesting to construct higher order schemes. One may consider take
advantage of the backward differencing (BDF) method (or equivalently extrapolation of mn+1 on the
right hand side of schemes (2.12) and (3.4) by the values at previous time steps).
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Figure 4.10. Example 4.5 computed by the semi-implicit solver for various D till
T = 40. From first row to the last row, the values of D are 0.5, 0.1, 0.02, 0.005 and
0.002, respectively. It can be seen that the smaller the diffusion coefficient is, the more
detailed the network structure becomes.
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(a) leaf structure |m|2 in log-scale
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(c) leaf structure |m|2 in log-scale
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(e) leaf structure |m|2 in log-scale
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Figure 4.11. Example 4.6 (asymmetric initial datum) computed by the semi-implicit
solver for D = 0.01 till T = 40 for various grid points in each spatial direction. The
first row: 1000 by 1000; the second row 800 by 800; the third row: 500 by 500. Though
the pattern seem a bit different in the log scale, it can be seen from the plots that the
differences between the three results are in fact minor in the normal scale.
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(a) leaf structure |m|2 in log-scale
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Figure 4.12. Example 4.6 (symmetric initial datum) computed by the semi-implicit
solver for D = 0.01 till T = 20 for various grid points in each spatial direction. The
first row: 1000 by 1000; the second row 800 by 800; the third row: 500 by 500. The
symmetry of the patterns is not broken by varying of the mesh size.
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(a) |m|2 in log-scale
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Figure 4.13. Example 4.7 symmetric initial data with asymmetric grids dx 6= dy.
The pattern becomes asymmetric as well. But as can be seen in the regular scale (on
the right), the solution does not differ much from the results of symmetric grids (see
Figure 11 middle column).
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Figure 4.14. Example 4.8: the l2 error of m versus ∆t in a log-log scale. The slope is
approximately 1.28.
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