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Abstract. In the context of isogeometric analysis, globally C1 isogeometric spaces over unstructured quadrilateral
meshes allow the direct solution of fourth order partial differential equations on complex geometries via their
Galerkin discretization. The design of such smooth spaces has been intensively studied in the last five years, in
particular for the case of planar domains, and is still task of current research. In this paper, we first give a short
survey of the developed methods and especially focus on the approach [28]. There, the construction of a specific C1

isogeometric spline space for the class of so-called analysis-suitable G1 multi-patch parametrizations is presented.
This particular class of parameterizations comprises exactly those multi-patch geometries, which ensure the design
of C1 spaces with optimal approximation properties, and allows the representation of complex planar multi-patch
domains. We present known results in a coherent framework, and also extend the construction to parametrizations
that are not analysis-suitable G1 by allowing higher-degree splines in the neighborhood of the extraordinary vertices
and edges. Finally, we present numerical tests that illustrate the behavior of the proposed method on representative
examples.

2010 Mathematics Subject Classification. 65N30.
Keywords. Isogeometric Analysis, C1 isogeometric functions, geometric continuity, extraordinary vertices,
planar multi-patch domain.

1. Introduction

Isogeometric analysis (IgA) is a framework for numerically solving partial differential equations (PDEs)
whose basic idea is to bridge the gap between geometric modeling (that is, Computer-Aided Design)
and numerical analysis (that is, Finite Element Analysis) by using the same (rational) spline function
space for representing the geometry of the computational domain and for describing the solution of
the PDE (cf. [5, 16, 23]). In contrast to finite elements, IgA allows a simple integration of smooth
discretization spaces for the numerical simulation. While the design of such smooth spaces is trivial
for single patch geometries, it is a challenging task for the case of multi-patch or manifold geometries.

The scope of this paper is to give a survey of the different existing methods for the construction of
strongly enforced C1 isogeometric spline spaces over planar, unstructured quadrilateral meshes (that is,
planar multi-patch geometries composed of quadrilateral patches with possibly extraordinary vertices),
see Section 2, with a special focus on the approach [28], see Section 4. We consider unstructured
quadrilateral meshes allowing regular as well as extraordinary vertices and do not allow T-junctions
in the mesh. Note that such a configuration can always be interpreted as a multi-patch geometry. The
common goal of the developed techniques is to generate isogeometric spline spaces, which are not only
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exactly C1-smooth within the single patches but also across the patch interfaces. The design of the C1

isogeometric spaces is mainly based on the observation that an isogeometric function is C1-smooth if
and only if the associated graph surface is G1-smooth (that is, geometric continuous of order 1), cf. [21].
The resulting global C1-smoothness of the spaces then enables the solution of fourth order PDEs just
via its weak form using a standard Galerkin discretization, see for example [4, 15, 25, 29, 44, 54] for
the biharmonic equation, [3, 6, 34, 35, 36] for the Kirchhoff-Love shell formulation, [18, 19, 38] for the
Cahn-Hilliard equation and [17, 46] for plane problems of first strain gradient elasticity.

A further possible strategy to impose C1-smoothness across the interfaces of general multi-patch
geometries is the use of subdivision surfaces (e.g., [11, 13, 14, 24, 43, 53, 58]). The surfaces are recur-
sively generated via refinement schemes, and are described in the limit as the collection of infinitely
many polynomial patches, e.g., in the case of Catmull-Clark subdivision of bicubic patches. We refer
to [50] for further reading. Challenges of dealing with subdivision surfaces in IgA include the need for
special techniques for the numerical integration [24] and the often reduced approximation power in
the neighborhood of extraordinary vertices [43].

Instead of enforcing the C1-continuity across the patch interfaces in a strong sense, the C1-smooth-
ness could also be achieved by coupling the neighboring patches in a weak sense. We do not cover
this approach here, which is typically based on adding penalty terms to the weak formulation of the
PDE [1, 22], or using Lagrange multipliers [1, 7]. These techniques are applicable to quite general
multi-patch geometries with even non-matching meshes, but at the cost of obtaining an approximate
C1 solution. Moreover, the formulation of the problem, and as a result the system matrix, have to be
adapted accordingly.

The outline of this paper is as follows. Section 2 describes the state of the art of such construc-
tions over planar multi-patch domains. Section 3 further discusses the case of multi-patch parame-
terizations which are regular (that is, non-singular) and C0 at the patch interfaces, and specifically
describes so-called analysis-suitable G1 parametrizations. In this setting we review the construction of
C1 isogeometric spaces, and their properties, in Section 4. Section 5 extends the construction beyond
analysis-suitable G1 parametrizations, by allowing higher-order splines around the extraordinary ver-
tices. Numerical evidence of the optimal order of convergence of the proposed method is reported in
Section 6.

2. The design of C1 isogeometric spaces

We give an overview of existing strategies for the design of strongly enforced C1 isogeometric spline
spaces over unstructured quadrilateral meshes on planar domains. Such quadrilateral meshes can be
understood in the context of multi-patch domains or spline manifolds. In the language of manifolds,
we have given local charts, which usually overlap. The global smoothness is then determined by the
smoothness within every chart. In the multi-patch framework, the patches do not overlap but share
common interfaces. Hence, the smoothness is determined by the smoothness within the patches as well
as the smoothness across interfaces. Since most CAD systems are built upon multi-patch structures
we focus on this point of view.

The different techniques can be roughly classified into three approaches depending on the smooth-
ness of the underlying parameterization F for the multi-patch domain Ω across its interfaces. Note
that the smoothness of the isogeometric space depends on the smoothness of the underlying param-
eterization as well as on additional smoothness constraints in physical space. In the first case, these
additional constraints need to be satisfied only at the extraordinary vertices, in the second case in
a neighborhood of the vertices; and in the third case globally along the interfaces. Finally, for polar
configurations the additional constraints need to be satisfied at the pole.
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Multi-patch parameterizations which are C1-smooth everywhere: In this setting, the pa-
rameterization of the multi-patch domain is assumed to be C1-smooth everywhere. This immediately
leads to a singularity appearing at every extraordinary vertex (EV). This was first studied in [48].
Consequently, the isogeometric functions are then C1 everywhere away from the EV and possibly
only C0 at the EV, due to the singularity. To circumvent this issue, one has to enforce additional
G1 constraints at the EVs. This technique is based on the use of specific degenerate patches (e.g. D-
patches [52]) in the neighborhood of an extraordinary vertex. These patches are obtained by collapsing
some control points into one point and by a special configuration of some of the remaining control
points which guarantee that the surface is G1-smooth at the EV despite having a singularity there. The
same approach allows to construct isogeometric functions that are C1 everywhere on the multi-patch
domain. Examples of this method are [45, 56, 57]. While the constructions [45, 57] are restricted to
bicubic splines, the methodology [56] can be applied to bivariate splines of arbitrary bidegree (p, p)
with p ≥ 3. All three techniques can be used to construct sequences of nested isogeometric splines
spaces.

A similar approach is to use subdivision surfaces to represent the isogeometric spaces. In subdivi-
sions, the surface around an EV is composed of an infinite sequence of spline rings, where every ring
is (at least) C1 smooth. The shape of the surface at the EVs is guided by the refinement rules of the
control mesh. For example, for Catmull-Clark subdivision this procedure generates a surface that is
C2 smooth everywhere and G1 at the EVs. However, the approach suffers from a lack of approximation
power near the EV. See [11, 43, 53, 58], where subdivision based isogeometric analysis was studied.

Multi-patch parameterizations which are C1-smooth except in the vicinity of an extraor-
dinary vertex: The core idea is to construct a parameterization of the multi-patch domain which is
C1-smooth in the regular regions of the mesh and only C0-smooth in a neighborhood of the extraor-
dinary vertices (see e.g. [10]). To obtain a globally C1 isogeometric space, a G1 surface construction is
employed in the neighborhood of the EV. The same construction is used to generate the C1 isogeomet-
ric functions over the multi-patch domain. This construction leads in general to a multi-patch surface
which is even Cp−1-smooth away from an extraordinary vertex. One possibility is to use so-called
G-splines, see [51]. To obtain surfaces of good shape also in the vicinity of an extraordinary vertex,
the G1-smoothness is obtained by using a suitable surface cap, which requires a slightly higher degree
than the surrounding C1 spline surface. The resulting smooth surfaces are then used to construct C1

isogeometric splines spaces, but which are in general not nested, see e.g. [30, 44]. The method [44]
employs the surface construction [31], which is based on a biquadratic C1 spline surface and on a
bicubic or biquartic G1 surface cap depending on the valency of the corresponding extraordinary ver-
tex. The paper [30] presents a new surface construction, where bicubic splines are complemented by
biquartic splines in the neighborhood of extraordinary vertices. The methodology [33] can be seen
as an extension of the above two techniques, and allows the construction of nested C1 isogeometric
spline spaces for a finite number of refinement steps. Another method which allows the construction
of nested C1 isogeometric spline spaces is [32]. Instead of further refining a G1 surface of already good
quality, the C1 isogometric spline space over the surface is refined to obtain nested C1 spaces but at
the expense of keeping the higher degree in the entire initial neighborhood of an EV.

Multi-patch parameterizations which are (in general) just C0-smooth at all interfaces:
The main idea is to consider multi-patch parametrizations that are everywhere regular (non-singular)
but only C0 at the patch interfaces, and then construct C1 isogeometric spaces over them. Again, the
key issue for application to isogeometric analysis is to guarantee good approximation properties of these
spaces. In [9, 40] the authors gave dimension formulas for meshes of arbitrary topology, consisting of
quadrilateral polynomial patches and specific macro-elements. The techniques in [9, 40] work for splines
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of general bidegree (p, p) for some large enough p, and generate the C1 basis functions by analyzing
the module of syzygies of specific polynomial/spline functions. Extending from polynomials to general
spline patches, dimensions were given and basis functions were constructed for bilinear two-patch
domains in [29]. In [15] the reproduction properties of the C1-smooth subspaces along an interface
were studied for arbitrary B-spline patches. From the presented results, bounds for the dimension of the
C1-smooth subspaces of arbitrary geometries can be derived. Moreover, the specific class of analysis-
suitable G1 parametrizations was identified. In the last few years, a number of methods were developed
which follow this approach, and which allow in most cases the design of nested C1 isogeometric spline
spaces. These techniques use particular classes of C0 regular multi-patch parameterizations to obtain
C1 isogeometric spaces with good/optimal approximation properties:

• (Mapped) bilinear multi-patch parameterizations (e.g. [8, 25, 29, 39]): The aim is to explore
C1 isogeometric spaces over bilinear or mapped bilinear multi-patch geometries. The meth-
ods [8, 39] study the spaces of biquintic and for some specific cases also biquartic C1 isoge-
ometric Bézier functions, and generate basis functions which are implicitly given by minimal
determining sets (cf. [37]) for the involved Bézier coefficients. In contrast to the other tech-
niques using C0 regular multi-patch parameterizations, the resulting spaces are not nested.
In [25, 29], the case of bicubic and biquartic C1 spline elements is considered. The result-
ing basis functions are explicitly given by simple formulae and possess a small local support.
While the paper [29] deals with the case of two patches, the work in [25] is an extension to the
multi-patch case.

• General analysis-suitable parameterizations (e.g. [15, 26, 28]): The previous strategy was based
on simple geometries such as bilinear parameterizations. The following approach uses a more
general class of geometries, called analysis-suitable G1 parameterizations, cf. [15] and Sec-
tion 3.2, which includes the previous types of geometries. The class of analysis-suitable G1

parameterizations contains exactly those geometries which allow the design of C1 isogeometric
spline spaces with optimal approximation properties. In [26], the space of C1 isogeometric
spline functions over analysis-suitable G1 two-patch geometries was analyzed. The developed
method is applicable to splines of general bidegree (p, p) with p ≥ 3 and patch regularity
1 ≤ r ≤ p − 2, and constructs simple, explicitly given basis functions with a small local sup-
port. The work [28] extends the construction [26] to the case of analysis-suitable G1 multi-patch
parameterizations and will be discussed in detail in Section 4

• Non-analysis-suitable parametrizations (e.g. [12]): Instead of using a particular class of multi-
patch parameterizations for the multi-patch domain, the method [12] increases locally along
the patch interfaces the bidegree of the C1 isogeometric spline functions to get spaces with good
approximation properties. The constructed C1 basis functions are implicitly given by means
of minimal determining sets for the spline coefficients and possess in general large supports
over one or more entire patch interfaces. This approach is a direct consequence of the results
presented in [15] and extends the ideas of Theorems 1 and 3 therein. We will present further
theoretical foundations in this paper.

Polar configurations: This approach is outside of the framework of unstructured multi-patch do-
mains, as it can be interpreted as a regular mesh in polar coordinates. However, many ideas to study
and construct smooth polar configurations can be carried over to extraordinary vertices. The approach
is based on the use of polar splines to model the domains and to construct C1 isogeometric spline
spaces over these domains, see e.g. [42, 43, 55]. The method [43] employs the polar surface construction
of [41], which generates a bicubic C1 polar spline surface. In [55], a polar spline technology for splines
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of arbitrary bidegree (p, p) is presented. It can be used to generate polar spline surfaces which are
Cs-smooth (s ≥ 0) everywhere except at the polar point where the resulting surface is discontinu-
ous. Furthermore, it was shown that this surface construction can be used to generate globally Ck
isogeometric function spaces.

3. Multi-patch geometries and their analysis-suitable G1 parameterization

We now focus on multi-patch parameterizations which are regular and C0 at all interfaces. After some
preliminaries and notation on multi-patch geometries, we will consider one specific class of geometries,
called analysis-suitable G1-multi-patch parameterizations (cf. [15]), which will be used throughout the
paper. Furthermore, we will use in the following a slightly adapted notation and definitions mainly
based on our work developed in [28] and [27].

3.1. Multi-patch domain

Let p ≥ 3, 1 ≤ r ≤ p − 2 and n ≥ 1. We denote by Sp,rh the univariate spline space of degree p and
continuity Cr on the parameter domain [0, 1] possessing the uniform open knot vector

( 0, . . . , 0︸ ︷︷ ︸
(p+1)−times

, 1
n . . . ,

1
n︸ ︷︷ ︸

(p−r)−times

, 2
n , . . . ,

2
n︸ ︷︷ ︸

(p−r)−times

, . . . , n−1
n , . . . , n−1

n︸ ︷︷ ︸
(p−r)−times

, 1, . . . , 1︸ ︷︷ ︸
(p+1)−times

)

with the mesh size h = 1
n , and by Sp,r

h with p = (p, p) and r = (r, r) the corresponding bivariate tensor-
product spline space Sp,rh ⊗S

p,r
h on the parameter domain [0, 1]2. In addition, let bj , j = 0, . . . , N − 1,

with N = p+ (n− 1)(p− r) + 1, be the B-splines of Sp,rh , and let bj, j = (j1, j2) ∈ {0, . . . , N − 1}2, be
the tensor-product B-splines of Sp,r

h , that is,

b(j1,j2)(ξ1, ξ2) = bj1(ξ1)bj2(ξ2).

Consider an open domain Ω ⊂ R2, which is given as the union of quadrilateral patches Ω(i), i ∈ IΩ,
interfaces Σ(i), i ∈ I◦Σ, and inner vertices x(i), i ∈ I◦χ, that is,

Ω =

 ⋃
i∈IΩ

Ω(i)

 ∪
 ⋃
i∈I◦

Σ

Σ(i)

 ∪
 ⋃
i∈I◦

χ

x(i)

 .
We assume that all patches are mutually disjoint and that no hanging nodes exist. The boundary Γ of
Ω, that is, Γ = ∂Ω, is given as the collection of boundary edges Σ(i), i ∈ IΓ

Σ, and boundary vertices x(i),
i ∈ IΓ

χ , that is,

Γ =

 ⋃
i∈IΓ

Σ

Σ(i)

 ∪
 ⋃
i∈IΓ

χ

x(i)

 .
In addition, we assume that I◦Σ ∩ IΓ

Σ = ∅ and I◦x ∩ IΓ
x = ∅, and denote by IΣ and Iχ the index sets

IΣ = I◦Σ ∪̇ IΓ
Σ and Iχ = I◦χ ∪̇ IΓ

χ , respectively.
Each quadrilateral patch Ω(i) is the open image of a bijective and regular geometry mapping

F(i) : [0, 1]2 → Ω(i) ⊂ R2,

with F(i) ∈ Sp,r
h × Sp,r

h . We denote by F the resulting multi-patch geometry of Ω consisting of the
single geometry mappings F(i), i ∈ IΩ.
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3.2. Analysis-suitable G1 parameterization: definition

Consider an interface Σ(i), i ∈ I◦Σ. Let Ω(i1) and Ω(i2), i1, i2 ∈ IΩ, be the two neighboring patches with
Σ(i) ⊂ Ω(i1) ∩ Ω(i2). The two associated geometry mappings F(i1) and F(i2) can be always reparame-
terized (if necessary) into standard form (cf. [28]), which just means that the common interface Σ(i)

is given by
F(i1)(0, ξ) = F(i2)(ξ, 0), ξ ∈ (0, 1), (3.1)

see Fig. 3.1 (left).

Ω(i2) Ω(i1)

Σ(i)

. . .
x(i)

Ω(i2)
Σ(i3)

Ω(i4)

. . .

Figure 3.1. Representation in standard form (cf. [28]) of two patches Ω(i1) and Ω(i2)

with the common interface Σ(i) (left) and of the patches Ω(i2), Ω(i4), . . ., Ω(i2ν) possessing
the common vertex x(i) (right).

There exist uniquely determined functions α(i,i1) : [0, 1]→ R, α(i,i2) : [0, 1]→ R and β(i) : [0, 1]→ R
up to a common function γ(i) (with γ(i)(ξ) 6= 0), which are given by

α(i,i1)(ξ) = γ(i)(ξ) det
[
∂1F(i1)(0, ξ) ∂2F(i1)(0, ξ)

]
,

α(i,i2)(ξ) = γ(i)(ξ) det
[
∂1F(i2)(ξ, 0) ∂2F(i2)(ξ, 0)

]
,

β(i)(ξ) = γ(i)(ξ) det
[
∂2F(i2)(ξ, 0) ∂1F(i1)(0, ξ)

]
,

(3.2)

and satisfy for all ξ ∈ [0, 1]
α(i,i1)(ξ)α(i,i2)(ξ) > 0 (3.3)

and
α(i,i1)(ξ)∂2F(i2)(ξ, 0) + α(i,i2)(ξ)∂1F(i1)(0, ξ) + β(i)(ξ)∂2F(i1)(0, ξ) = 0. (3.4)

In addition, there exists non-unique functions β(i,i1) : [0, 1]→ R and β(i,i2) : [0, 1]→ R such that

β(i)(ξ) = α(i,i1)(ξ)β(i,i2)(ξ) + α(i,i2)(ξ)β(i,i1)(ξ), (3.5)

see e.g. [15, 49]. The functions α(i,i1), α(i,i2), β(i,i1) and β(i,i2) are called the gluing data1 for the
interface Σ(i).

In the remainder of the paper, we will restrict ourselves to a specific class of multi-patch geometries,
called analysis-suitable G1 multi-patch parameterizations, which are needed to generate C1 isogeo-
metric spaces with optimal approximation properties, cf. [15].

1In the context of CAGD, these functions have been also called e.g. “shape parameters” [20] or “weight functions” [47].
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Definition 3.1 (Analysis-suitable G1 multi-patch parameterization, cf. [15, 28]). A multi-patch ge-
ometry F is called analysis-suitable G1 (in short, AS-G1), if for every interface Σ(i), i ∈ I◦Σ there
exist linear polynomials α(i,i1), α(i,i2), β(i,i1) and β(i,i2), with α(i,i1) and α(i,i2) relatively prime, such
that (3.3), (3.4) and (3.5) hold.

Furthermore, for each interface Σ(i), i ∈ I◦Σ, the linear gluing data α(i,i1), α(i,i2), β(i,i1) and β(i,i2) is
selected by minimizing the terms

‖α(i,i1) − 1‖2L2([0,1]) + ‖α(i,i2) − 1‖2L2([0,1])

and
‖β(i,i1)‖2L2([0,1]) + ‖β(i,i2)‖2L2([0,1]),

see [28], which implies in case of parametric continuity (that is, β(i) ≡ 0 and α(i,i1) = α(i,i2)) β(i,i1) =
β(i,i2) ≡ 0 and α(i,i1) ≡ α(i,i2) ≡ 1.

Remark 3.2. Given a C1 isogeometric function space (as defined in Section 4.1) over a regular C0

multi-patch parametrization. Then, analysis-suitable G1 multi-patch parameterizations are the only
configurations that allow optimal approximation properties under h-refinement with respect to the
underlying norm of the considered problem. Note that optimal approximation is only possible under
the additional condition that the spline space has reduced continuity r ≤ p− 2.

The reason for this is, that when the degree of the gluing data is assumed to be larger than one,
there exist configurations such that the approximation order of function values and/or gradients along
the interface is reduced. This is a direct consequence of Theorem 3 in [15].

Piecewise bilinear multi-patch parameterizations are one simple example of AS-G1 multi-patch
geometries (cf. [25, 29]), but the class of AS-G1 multi-patch parameterizations is much wider, see
e.g. [27]. It is interesting to note that similar linear gluing data also appear in the context of triangular
meshes, see e.g. [47]. In Section 3.3, we will present two possible strategies to construct from given
non-AS-G1 multi-patch geometries parameterizations which are AS-G1-continuous.

3.3. Analysis-suitable G1 parameterization: construction

We describe the two approaches [27, 29] to generate from a given initial non-AS-G1 multi-patch
geometry F̃ an AS-G1 multi-patch geometry F. We assume that the associated parameterizations F̃(i),
i ∈ IΩ, of the non-AS-G1 geometry F̃ belong to the space

(
S p̃,̃r
h̃

)2
and are regularly parameterized.

The goal is to construct a multi-patch geometry F consisting of parameterizations F(i) ∈
(
Sp,r
h

)2,
i ∈ IΩ, with Sp,r

h ⊇ S p̃,̃r
h̃

, possessing B-spline representations of the form

F(i)(ξ1, ξ2) =
N−1∑
j1=0

N−1∑
j2=0

c(i)
i1,i2

b(j1,j2)(ξ1, ξ2), (ξ1, ξ2) ∈ [0, 1]2,

with control points c(i)
i1,i2
∈ R2, such that F is AS-G1-continuous and that F approximates F̃ as good

as possible. Below, we assume that for each edge Σ(i), i ∈ IΣ, and for each vertex x(i), i ∈ Iχ,
the associated geometry mappings F(ik) are always given in standard form as shown in Fig. 3.1 and
formally defined in (3.1) and (4.6). This is valid as well for the corresponding parameterizations F̃(ik)

of F̃.
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3.3.1. The piecewise bilinear fitting approach [29]

Given a non-AS-G1 multi-patch geometry F̃ with the associated parameterizations F̃(i), i ∈ IΩ, we
first choose a multi-patch geometry F̂ consisting of bilinear parameterizations F̂(i), i ∈ IΩ, which
roughly describes the initial geometry F̃. Then, following [29], we look for a suitable approximation F
of F̃, of the form F = u ◦ F̂, where u is a C1 isogeometric vector field representing a mapping of
the bilinear geometry into the final one. By the construction of Section 4, an explicit basis for u is
available. Since F̂ is AS-G1, and F has the same gluing data by construction, F is AS-G1 as required.
An example of a mapped piecewise bilinear multi-patch parameterization is given in [25, Example 6]
or in [15, Appendix A], where the resulting domain is a multi-patch NURBS.

A drawback of the method is the limitation to multi-patch geometries which have to allow a rough
estimation by a piecewise bilinear multi-patch parameterization. Furthermore, the approach cannot
be used to generate AS-G1 multi-patch geometries determining multi-patch domains with a smooth
boundary. A more advanced technique, which provides amongst others the design of such multi-patch
geometries, cf. [27, Example 3], is described in the following subsection.

3.3.2. The AS-G1 fitting approach [27]

This method allows the construction of an AS-G1 multi-patch geometry F, which interpolates the
boundary, the vertices and the first derivatives at the vertices of the initial non-AS-G1 multi-patch
geometry F̃, and which is as close as possible to F̃. The construction of F is divided into the following
steps:

Step 1: For each interface Σ(i), i ∈ I◦Σ, of the desired multi-patch geometry F, we precompute the
gluing data of F at the interface Σ(i), that is, α(i,i1), α(i,i2), β(i,i1) and β(i,i2), by linearizing
the corresponding non-linear gluing data of F̃. Let α̃(i,i1), α̃(i,i1) and β̃(i) be the gluing func-
tions (3.2) for the parameterizations F̃(i1) and F̃(i2) for γ̃(i)(ξ) ≡ 1. Then, the linear functions
α(i,i1) and α(i,i2) are obtained by

α(i,ik)(ξ) = α̃(i,ik)(0) (1− ξ) + α̃(i,ik)(1) ξ, k = 1, 2,
and the linear functions

β(i,ik)(ξ) = b
(i,ik)
0 (1− ξ) + b

(i,ik)
1 ξ, b

(i,ik)
0 , b

(i,ik)
1 ∈ R, k = 1, 2,

are computed by minimizing the term∫ 1
0 ‖β̃(i) − (α(i,i1)β(i,i2) + α(i,i2)β(i,i1))︸ ︷︷ ︸

β(i)

‖2dξ

+λβ
(∫ 1

0 ‖β((i,i1))‖2dξ +
∫ 1
0 ‖β(i,i2)‖2dξ

)
→ min(b(i,i1)

0 ,b
(i,i1)
1 ,b

(i,i2)
0 ,b

(i,i2)
0 )

with respect to the linear constraints
β(i)(0) = β̃(i)(0) and β(i)(1) = β̃(i)(1),

using a non-negative weight λβ.

Step 2: We determine for the spline coefficients c(i)
j1,j2

of the multi-patch geometry F three different
types of linear constraints, denoted by L◦Σ, LΓ

Σ and Lχ, which will be used in Step 3 to construct
the AS-G1 multi-patch geometry F. The constraints L◦Σ are called AS-G1 constraints and
will ensure that the resulting multi-patch geometry F will be AS-G1-continuous. For each
interface Σ(i), we require that the geometry mappings F(i1) and F(i2) have to satisfy the
condition (3.4) for the precomputed gluing data α(i,i1), α(i,i2), β(i,i1) and β(i,i2) from Step 1.
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The so-called boundary constraints LΓ
Σ will guarantee that the multi-patch geometry F will

coincide with F̃ on each boundary edge Σ(i), i ∈ IΓ
Σ. Finally, the so-called vertex constraints Lχ

will ensure that F will interpolate the vertices and the first derivatives of F̃ at each vertex x(i),
i ∈ Iχ. All these constraints are linear, and are compatible with each other.

Step 3: Let c be the vector of all control points c(i)
j1,j2

of the multi-patch geometry F. Then, the AS-G1

multi-patch geometry F is finally constructed by minimizing the objective function
F2(c) + λLFL(c) + λUFU (c)→ min

c

with respect to the linear constraints L◦Σ, LΓ
Σ and Lχ, using non-negative weights λL and λU .

While the quadratic functional F2 given by

F2(c) =
∑
i∈IΩ

∫
[0,1]2

‖F(i) − F̃(i)‖2 dξ1 dξ2,

will ensure that the resulting geometry F approximates F̃, the so-called parametric length
functional FL and the so-called uniformity functional FU given by

FL(c) =
∑
i∈IΩ

∫
[0,1]2

(
‖∂1F(i)‖2 + ‖∂2F(i)‖2

)
dξ1 dξ2,

and
FU (c) =

∑
i∈IΩ

∫
[0,1]2

(
‖∂2

1F(i)‖2 + 2‖∂1∂2F(i)‖2 + ‖∂2
2F(i)‖2

)
dξ1 dξ2,

respectively, will be needed to construct parameterizations of good quality.

In case that the quality of the resulting AS-G1 multi-patch geometry F is not good enough, and some
of the single parameterizations F(i), i ∈ IΩ, are even singular, the use of a sufficiently refined spline
space Sp,r

h solves this issue. In practice, the necessary refinement level of the spline space depends on
the desired quality criteria specified by the user, hence it also depends on the choice of the parameters
λL and λU . Two instances of constructed AS-G1 multi-patch geometries using this approach are given
in Fig. 6.1.

4. An isogeometric C1 space

We first introduce the concept of C1 isogeometric spline spaces over (general) multi-patch geometries,
and then present the construction [28] to generate a particular C1 isogeometric spline space over a
given AS-G1 multi-patch geometry.

4.1. Space of C1 isogeometric functions

The space of C1 isogeometric functions with respect to the multi-patch geometry F is defined as

V1 =
{
ϕh ∈ C1(Ω) | for all i ∈ IΩ, f

(i)
h = ϕh ◦ F(i) ∈ Sp,r

h

}
. (4.1)

This space can be characterized by the equivalence of the C1-smoothness of an isogeometric function
and the G1-smoothness of its associated graph, or more precisely, ϕh ∈ V1 if and only if the graph of
ϕh is G1-smooth at all interfaces Σ(i), i ∈ I◦Σ, cf. [15, 21, 29]. Note that for an isogeometric function ϕh,
its graph Φ ⊂ Ω× R is the collection of the single graph surface patches

Φ(i) : [0, 1]2 → Ω(i) × R, Φ(i)(ξ1, ξ2) =
[

F(i)(ξ1, ξ2)
f

(i)
h (ξ1, ξ2)

]
, i ∈ IΩ,
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with f
(i)
h = ϕh ◦ F(i). Then, an isogeometric function ϕh belongs to the space V1, if and only if for

each interface Σ(i), i ∈ I◦Σ, assuming that the two associated neighboring geometry mappings F(i1)

and F(i2) are given in standard form (3.1), there exist gluing data satisfying (3.3) and (3.5) such that
conditions (3.1) and (3.4) are satisfied not only for the parametrizations F(i1), F(i2) but also for the
graph surfaces Φ(i1), Φ(i2).

Since the two geometry mappings F(i1) and F(i2) already uniquely determine (up to a common
function γ(i)) the functions α(i,i1), α(i,i2) and β(i), compare Section 3.2, we obtain that ϕh ∈ V1 if and
only if the last component of the graph surfaces satisfies the equations (3.1) and (3.4), that is, for
ξ ∈ [0, 1]

f
(i1)
h (0, ξ1) = f

(i2)
h (ξ, 0) = (ϕh|Σ(i)) ◦ F(ik)

and
α(i,i1)(ξ)∂2f

(i2)
h (ξ, 0) + α(i,i2)(ξ)∂1f

(i1)
h (0, ξ) + β(i)(ξ)∂2f

(i1)
h (0, ξ) = 0, (4.2)

or equivalently to (4.2)

∂1f
(i1)
h (0, ξ) + β(i,i1)(ξ)∂2f

(i1)
h (0, ξ)

α(i,i1)(ξ)
= −∂2f

(i2)
h (ξ, 0) + β(i,i2)(ξ)∂1f

(i2)
h (ξ, 0)

α(i,i2)(ξ)
= (∇ϕh · d|Σ(i)) ◦ F(ik),

(4.3)
where d is a suitable vector that is not tangential to the interface, see e.g. [15, 26]. These C1-conditions
were used to generate C1 isogeometric spline spaces over general analysis-suitable G1 multi-patch
geometries, see [26] for the case of two-patches and [28] for the multi-patch case. In the following
subsection, we will summarize the construction [28].

4.2. The Argyris isogeometric space

We give a survey of the method [28] for the design of a specific C1 isogeometric spline space over
a given AS-G1 multi-patch geometry F. The proposed C1 space A is called Argyris (quadrilateral)
isogeometric space, since it possesses similar degrees-of-freedom as the classical Argyris finite element
space [2]. The Argyris triangular element enforces C2 at all vertices and C1 across edges. Hence, for
degree five the degrees-of-freedom are six per vertex and one per edge. For higher degrees, there are
more degrees-of-freedom per edge and some related to the triangle (interior) as well. This setting carries
over to tensor-product spline patches as described in more detail in [28]. The space A is a subspace of
the entire C1 isogeometric space V1 maintaining the optimal order of approximation of the space V1

for the traces and normal derivatives along the interfaces, and is much easier to investigate and to
construct than the space V1. E.g., the dimension of A does not depend on the geometry, which is in
contrast to the dimension of the space V1, cf. [26] for the two-patch case. For the construction of A,
we need a minimal resolution within the patches given by h ≤ p−r−1

4−r .
The C1 isogeometric space A is constructed as the direct sum of subspaces referring to the single

patch-interior, edge and vertex components, that is,

A =

⊕
i∈IΩ

A◦Ω(i)

⊕
⊕
i∈IΣ

A◦Σ(i)

⊕
⊕
i∈Iχ
Ax(i)

 .
The spaces A◦Ω(i) , A◦Σ(i) and Ax(i) are called patch-interior, edge and vertex function space, respectively.
The patch-interior functions are completely supported within one patch, the edge functions have
support along the edge and are restricted to two patches, whereas the vertex functions have support
in a neighborhood of the vertex. The different types of functions are defined as follows:
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Patch-interior function space A◦Ω(i). Let i ∈ IΩ. The space A◦Ω(i) is given as

A◦Ω(i) = span{B(i)
j : j ∈ {2, . . . , N − 3}2}

with

B(i)
j (x) =

{(
bj◦
(

F(i) )−1) (x) if x ∈ Ω(i),

0 otherwise.

The patch-interior functions B(i)
j , j ∈ {2, . . . , N − 3}2, are the “standard” isogeometric function with

a support entirely contained in Ω(i) and have vanishing function values and vanishing gradients at the
patch boundary ∂Ω(i). This directly implies that B(i)

j ∈ C1(Ω) for j ∈ {2, . . . , N − 3}2. The dimension
of the space A◦Ω(i) , i ∈ IΩ, is given by

dim(A◦Ω(i)) = ((p− r)(n− 1) + p− 3)2.

Edge function space A◦Σ(i). We consider first the case of an interface Σ(i), which means that i ∈ I◦Σ,
and assume without loss of generality that the two associated neighboring geometry mappings F(i1) and
F(i2) are given in standard form (3.1). Let b+j , j = 0, . . . , N0− 1, with N0 = p+ (n− 1)(p− r− 1) + 1,
be the B-splines of the univariate spline space Sp,r+1

h , and let b−j , j = 0, . . . , N1 − 1, with N1 =
p+ (n−1)(p− r−1), be the B-splines of the univariate spline space Sp−1,r

h . The space A◦Σ(i) is defined
as

A◦Σ(i) = span{B(i)
(j1,j2) : j1 = 0, . . . , Nj2 − 1, j2 = 0, 1}

with

B(i)
(j1,j2)(x) =


(
f

(i,k)
(j1,j2)◦

(
F(k) )−1) (x) if x ∈ Ω(k), k = i1, i2,

0 otherwise,
where

f
(i,i1)
(j1,0)(ξ1, ξ2) = b+j1(ξ2)(b0(ξ1) + b1(ξ1))− β(i,i1)(ξ2)(b+j1)′(ξ2)h

p
b1(ξ1),

f
(i,i2)
(j1,0)(ξ1, ξ2) = b+j1(ξ1)(b0(ξ2) + b1(ξ2))− β(i,i2)(ξ1)(b+j1)′(ξ1)h

p
b1(ξ2),

(4.4)

and
f

(i,i1)
(j1,1)(ξ1, ξ2) = α(i,i1)(ξ2)b−j1(ξ2)b1(ξ1),

f
(i,i2)
(j1,1)(ξ1, ξ2) = −α(i,i2)(ξ1)b−j1(ξ1)b1(ξ2).

(4.5)

In case of a boundary edge Σ(i), i ∈ IΓ
Σ, the space A◦Σ(i) can be defined in a similar way. Assume that

the associated geometry mapping is F(i1), and is parameterized as in (3.1) for the case of two patches.
The gluing data α(i,i1) and β(i,i1) can be simplified to α(i,i1)(ξ) = 1 and β(i,i1)(ξ) = 0, which leads to
functions

B(i)
(j1,j2)(x) =


(
f

(i,i1)
(j1,j2)◦

(
F(i1) )−1) (x) if x ∈ Ω(i1),

0 otherwise,
with

f
(i,i1)
(j1,0)(ξ1, ξ2) = b+j1(ξ2)(b0(ξ1) + b1(ξ1)),

and
f

(i,i1)
(j1,1)(ξ1, ξ2) = b−j1(ξ2)b1(ξ1).

The edge functions B(i)
(j1,j2), j1 = 0, . . . , Nj2 − 1, j2 = 0, 1, are constructed in such a way that they are

C1-smooth across the interface Σ(i), and that they span function values and cross derivative values
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along the edge, see [28] for details. In addition, the edge functions B(i)
(j1,j2) possess a support, which is

entirely contained in Ω(i1) ∪ Ω(i2) (Ω(i1) if Σ(i) is a boundary edge) in an h-dependent neighborhood
of Σ(i), and have vanishing derivatives up to second order at the endpoints (vertices) of the edge. This
implies that B(i)

(j1,j2) ∈ C1(Ω), j1 = 0, . . . , Nj2 − 1, j2 = 0, 1. The dimension of the space A◦Σ(i) , i ∈ IΣ,
is given by

dim(A◦Σ(i)) = 2(p− r − 1)(n− 1) + p− 9.

Vertex function space Ax(i). We consider a vertex x(i), i ∈ Iχ, and denote by ν the patch valence
of the vertex x(i). Let Σ(i1), Ω(i2), Σ(i3), . . ., Ω(i2ν), Σ(i2ν+1), be the sequence of interfaces and patches
around the vertex x(i) in counterclockwise order, assuming in case of an inner vertex x(i), i ∈ I◦χ, that
Σ(i1) = Σ(i2ν+1). The associated geometry mappings F(i2), F(i4), . . ., F(i2ν) containing the vertex x(i)

can be always reparameterized (if necessary) into standard form (cf. [28]), just meaning that we have

F(i2k)(0, ξ) = F(i2k+2)(ξ, 0), ξ ∈ [0, 1], (4.6)

for k ∈ {1, . . . , ν − 1}, and additionally

F(i2ν)(0, ξ) = F(i2)(ξ, 0), ξ ∈ [0, 1],

in case of an inner vertex x(i), see Fig. 3.1 (right). This implies that

x(i) = F(i2)(0, 0) = F(i4)(0, 0) = . . . = F(i2ν)(0, 0).

Considering a boundary vertex x(i), i ∈ IΓ
χ , we assume that the edges Σ(i1) and Σ(2iν+1) are the two

boundary edges, for which the gluing data α(i1,i2), α(i2ν+1,i2ν) and β(i1,i2), β(i2ν+1,i2ν) can be simplified
to α(i1,i2)(ξ) = α(i2ν+1,i2ν)(ξ) = 1 and β(i1,i2)(ξ) = β(i2ν+1,i2ν)(ξ) = 0.

Before defining the space Ax(i) , i ∈ Iχ, we need further tools and definitions. We consider the basis
transformations {b0, b1} to {c0, c1}, {b+0 , b

+
1 , b

+
2 } to {c

+
0 , c

+
1 , c

+
2 } and from {b−0 , b

−
1 } to {c

−
0 , c
−
1 }, with

∂jξci(0) = δji for j = 0, 1, ∂jξc
+
i (0) = δji for j = 0, . . . , 2, and ∂jξc

−
i (0) = δji for j = 0, 1,

where δji is the Kronecker delta. For each edge Σ(ik), k ∈ {1, 3, . . . , 2ν + 1}, we use the abbreviated
notations

t(ik) = ∂2F(ik−1)(0, ξ) = ∂1F(ik+1)(ξ, 0)

and

d(ik)(ξ) = 1
α(ik,ik−1)(ξ)

(
∂1F(ik−1)(0, ξ) + β(ik,ik−1)(ξ) ∂2F(ik−1)(0, ξ)

)
= − 1

α(ik,ik+1)(ξ)

(
∂2F(ik+1)(ξ, 0) + β(ik,ik+1)(ξ) ∂1F(ik+1)(ξ, 0)

)
.

The vector d(ik) plays the role of the transversal vector d in (4.3). Note that in case of a boundary
edge in each case one term does not exist. Given the vector Φ = (φ0,0, φ1,0, φ0,1, φ2,0, φ1,1, φ0,2), which
describes the C2 interpolation data of an isogeometric function φ at the vertex x(i) determined by the
function value φ(x(i)) = φ0,0, the gradient ∇φ = (φ1,0, φ0,1) and the Hessian

Hφ =
(
φ2,0 φ1,1
φ1,1 φ0,2

)
,
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we define for each patch Ω(ik), k ∈ {2, 4 . . . , 2ν}, the functions

?

f
(ik+1,ik)
Φ (ξ1, ξ2) =

2∑
j=0

d
(ik+1,ik)
0,j

(
c+
j (ξ2)c0(ξ1)− β(ik+1,ik)(ξ2)(c+

j )′(ξ2)c1(ξ1)
)

+
1∑
j=0

d
(ik+1,ik)
1,j α(ik+1,ik)(ξ2)c−j (ξ2)c1(ξ1),

?

f
(ik−1,ik)
Φ (ξ1, ξ2) =

2∑
j=0

d
(ik−1,ik)
0,j

(
c+
j (ξ1)c0(ξ2)− β(ik−1,ik)(ξ1)(c+

j )′(ξ1)c1(ξ2)
)

−
1∑
j=0

d
(ik−1,ik)
1,j α(ik−1,ik)(ξ1)c−j (ξ1)c1(ξ2),

and
?

f
(ik)
Φ (ξ1, ξ2) =

1∑
j1=0

1∑
j2=0

d
(ik)
j1,j2

cj1(ξ1)cj2(ξ2),

with
d

(i`,ik)
0,0 = φ0,0, d

(i`,ik)
0,1 = ∇φ t(i`)(0), d(i`,ik)

0,2 = (t(i`)(0))T Hφ t(i`)(0) +∇φ (t(i`))′(0),

d
(i`,ik)
1,0 = ∇φ d(i`)(0), d(i`,ik)

1,1 = (t(i`)(0))T Hφ d(i`)(0) +∇φ (d(i`))′(0),
for ` = k − 1, k + 1, and

d
(ik)
0,0 = φ0,0, d

(ik)
1,0 = ∇φ t(ik−1)(0), d(ik)

0,1 = ∇φ t(ik+1)(0)

d
(ik)
1,1 = (t(ik−1)(0))T Hφ t(ik+1)(0) +∇φ ∂1∂2F(ik)(0, 0).

Let
Φ(0,0) = (1, 0, 0, 0, 0, 0), Φ(1,0) = (0, 1, 0, 0, 0, 0), Φ(0,1) = (0, 0, 1, 0, 0, 0),

and
Φ(2,0) = (0, 0, 0, 1, 0, 0), Φ(1,1) = (0, 0, 0, 0, 1, 0), Φ(0,2) = (0, 0, 0, 0, 0, 1),

then the space Ax(i) is defined as

Ax(i) = span{
?

B(i)
(j1,j2) : 0 ≤ j1, j2 ≤ 2, j1 + j2 ≤ 2}

with
?

B(i)
(j1,j2)(x)

=

σj1+j2
(( ?

f
(ik−1,ik)
Φ(j1,j2)

+
?

f
(ik+1,ik)
Φ(j1,j2)

−
?

f
(ik)
Φ(j1,j2)

)
◦
(

F(ik) )−1) (x) if x ∈ Ω(ik), k = 2, 4, . . . , 2ν,
0 otherwise,

where the factor

σ =
(
h

p ν

ν∑
`=1
‖∇F(i2`)(0, 0)‖

)−1

is used to uniformly scale the functions with respect to the L∞-norm. The vertex functions
?

B(i)
(j1,j2), 0 ≤

j1, j2 ≤ 2, j1 + j2, are constructed in such a way that they are C1-smooth across all interfaces Σ(i2k+1) ,
k = 0, . . . , ν, and that they span the function value and all derivatives up to second order at the
vertex x(i), see [28] for details. Furthermore, the support of an vertex function

?

B(i)
(j1,j2) is entirely

contained in ∪νk=1Ωi2k in an h-dependent neighborhood of the vertex x(i). Therefore, we obtain that
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?

B(i)
(j1,j2) ∈ C

1(Ω) and
?

B(i)
(j1,j2) ∈ C

2(x(i)) for 0 ≤ j1, j2 ≤ 2, j1 + j2. The dimension of the space Ax(i) ,
i ∈ Iχ, is equal to

dim(Ax(i)) = 6.
As already mentioned above, the dimension of the entire space A does not depend on the geometry
and is finally given by the sum of dimensions of all subspaces AΩ(i) , AΣ(i) and Ax(i) , that is,

dim(A) = |IΩ| · ((p− r)(n− 1) + p− 3)2 + |IΣ| · (2(p− r − 1)(n− 1) + p− 9) + |Iχ| · 6.

Moreover, all constructed patch-interior functions B(i)
(j1,j2), edge functions B(i)

(j1,j2) and vertex functions
?

B(i)
(j1,j2) from above form a basis of the space A. This is a direct consequence of the definition of the

single functions and their supports.

5. Beyond analysis-suitable G1 parameterizations

It is possible to extend the C1 basis construction to domains that are not analysis-suitable G1. This
is done by locally increasing the degree. This approach was employed for interfaces in the multi-patch
framework in [12], based on the findings in [15]. More extensive research was done in [30, 31, 33, 44] for
unstructured quadrilateral meshes, where higher degree elements where used in local regions around
extraordinary vertices.

The mixed degree construction is based on the following observation. The definitions of the edge
basis functions in (4.4) and (4.5) are not confined to the gluing data being linear functions. However,
we have the following lemma.

Lemma 5.1. Given an interface Σ(i) between patches Ω(i1) and Ω(i2). Let α(i,i1), β(i,i1) ∈ Sp
∗,r∗

h and
b∗0, b∗1 be the first two basis functions in Sp

+,r−

h , where p+ = max(p, p + p∗ − 1) and r− = min(r, r∗).
Then the edge functions

f
(i,i1)
(j1,0)(ξ1, ξ2) = b+j1(ξ2)(b∗0(ξ1) + b∗1(ξ1))− β(i,i1)(ξ2)(b+j1)′(ξ2)h

p
b∗1(ξ1)

and
f

(i,i1)
(j1,1)(ξ1, ξ2) = α(i,i1)(ξ2)b−j1(ξ2)b∗1(ξ1)

satisfy
f

(i,i1)
(j1,0), f

(i,i1)
(j1,1) ∈ S

p+,r−

h ,

with p+ = (p+, p+) and r− = (r−, r−). Analogously, we have the same for the patch Ω(i2).

A simple consequence is, that if there exists quadratic gluing data, then all edge functions are in
the space Sp+1,r

h . This significantly increases the flexibility of the multi-patch geometry. Note that
the biquadratic G-splines defined in [51] possess quadratic gluing data. Configurations of suitable
spline-like patches of mixed degree are given in Figure 5.1. The blue dots signify Bézier coefficients
of degree 3, whereas the red dots correspond to Bézier coefficients of degree 4. The blue line are
mesh lines where parametric continuity of order C1 or C2 is described whereas the green edges at
the boundary are of G1 smoothness across patches and the black edges are either boundary edges, or
edges where the patch can be extended with parametric continuity (at least C1). Note that one may
prescribe different continuity for different regions of the patch, e.g., only C1 close to the interfaces and
C2 in the interior.

In this configuration of mixed degree 3 and 4, the coefficients corresponding to the inner elements
(not neighboring the interfaces) do not influence the function value or value of first derivatives at the
interfaces. Hence, the edge and vertex functions are completely determined by the Bézier elements of
degree 4.
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(a) One interface without
special vertex construction.

(b) Two interfaces; coupled
at the top-left vertex.

(c) Four interfaces; coupled
at all vertices.

Figure 5.1. Spline-like patches of mixed degree (coefficients for p = 4 in red, for p = 3
in blue). The G1 interfaces are depicted in green.

Considering a configuration as in Figure 5.1a containing only one interface, the edge basis as pre-
sented in Lemma 5.1 together with the patch interior basis obtained by resolving the Ck conditions
in the interior give a complete basis of the C1 smooth isogeometric function space.

When given configurations as in Figures 5.1b or 5.1c additional vertex functions can be defined by
interpolation of C2 data. The procedure is similar to the construction presented in Subsection 4.2. In
all configurations, the patch interior basis is a tensor-product of suitable univariate basis functions.

The type of patches depicted in Figure 5.1b can be used to construct C1 smooth isogeometric
functions around extraordinary vertices. See Figure 5.2 for a possible construction. We refer to [30,

Figure 5.2. A possible construction for an extraordinary vertex of valency 5.

31, 33, 44], where such constructions were employed.
Another difficulty arises when refining the space. When performing a standard refinement step, the

region where the degree is higher remains the same. Therefore the number of elements of higher degree
scales with O(( 1

h)2). This can be circumvented by locally reducing the degree again, which leads to the
number of higher degree elements scaling as O( 1

h). The process is sketched in Figure 5.3. Note that in
this setting, the final (refined and reduced) space is not a superspace of the initial space. Hence, the
spaces are not nested.

The constructions extend to higher degree as well as to more complex meshes. Many questions arise,
that are worth to study in more detail; such as the definition of a basis forming a partition of unity,
how to obtain nested spaces or how to efficiently construct domains and discretization spaces suitable
for isogeometric analysis.
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refine−−−−→ reduce−−−−−→

Figure 5.3. A mixed degree patch (left), its refinement (middle) and a patch of re-
duced degree (right).

Figure 6.1. Two AS-G1 multi-patch geometries constructed my means of AS-G1 fit-
ting approach [27], cf. Section 3.3.2.

6. Numerical examples

We consider the two multi-patch domains Ω shown in Fig. 6.1, which are described by AS-G1 multi-
patch geometries F consisting of parameterizations F(i) ∈

(
S(3,3),(1,1)

1/2

)2
. The two AS-G1 multi-patch

geometries F have been constructed from initial multi-patch geometries F̃ composed of bicubic Bézier
patches F̃(i) by using the AS-G1 fitting approach [27], cf. Section 3.3.2. While the AS-G1 three-patch
geometry (left) has been used in [28, Section 5], too, the AS-G1 five-patch parameterization (right) is
newly generated for this work. For both multi-patch parameterizations F we generate a sequence of
C1 Argyris spaces Ah, h = 1

4 ,
1
8 ,

1
16 ,

1
32 , for p = (p, p) = (3, 3), (4, 4) and r = (r, r) = (1, 1).

We employ the space family Ah to solve the biharmonic equation
42u(x) = g(x) x ∈ Ω

u(x) = g1(x) x ∈ ∂Ω
∂u
∂n(x) = g2(x) x ∈ ∂Ω

(6.1)

by a standard Galerkin discretization. The functions g, g1 and g2 are selected to obtain the exact
solution

u(x) = u(x1, x2) = −4 cos
(x1

2
)

sin
(x2

2
)
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Example: AS-G1 five-patch geometry

Figure 6.2. Solving the biharmonic equation (6.1) over the two AS-G1 multi-patch
geometries from Fig. 6.1: Exact solutions (first column) and the resulting relative L2,
H1 and H2 errors for p = 3 (second column) and p = 4 (third column).

on both domains. In particular, the boundary Dirichlet data g1 and g2 are L2 projected and imposed
strongly to the numerical solution uh. The resulting relative L2, H1 and H2 errors with their estimated
convergence rates are presented in Fig. 6.2 (second and third column), and indicate rates of optimal
order of O(hp+1), O(hp) and O(hp−1), respectively.

7. Conclusion

In this paper we have listed and classified known methods to construct C1-smooth isogeometric spaces
over unstructured multi-patch domains. This is a research field that is attracting growing interest, at
the confluence of geometric design and numerical analysis of partial differential equations. We have
discussed, with more details, the case of multi-patch parametrizations that are regular and only C0

at the patch interfaces, reviewing in a coherent framework some of the recent results that are more
closely related to our research activity.
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