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Abstract. In this work, we focus on the development of the use of Periodic Boundary Conditions (PBC) with
sources at oblique incidence in a nanophotonics context. In particular, we concentrate on the field transform tech-
nique used for time dependent electromagnetic wave propagation problems. We especially supplement the existing
references with an analysis of the continuous model equations. Furthermore, we propose to use a Discontinuous
Galerkin Time Domain (DGTD) discrete framework and study stability issues. In order to consider realistic test
cases, we also provide additional details about sources, observables (reflectance, transmittance and diffraction effi-
ciency), and the use of Complex Frequency-Shifted Perfectly-Matched Layers (CFS-PMLs). Finally, after academic
numerical validations, two engineering relevant test cases are considered in the precise physical context of nanopho-
tonics with the Diogenes DGTD solver (http://diogenes.inria.fr).
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1. Introduction

A considerable amount of structures studied numerically in the nanophotonics field can be modeled
using Periodic Boundary Conditions (PBC). Thus, only a unit cell of the computational domain needs
to be considered, the PBC mimicking an infinite repetition of the pattern in space. Periodic structures
in nano-optics cover a vast range of applications, such as color filters [13], reflectarrays for wireless
communications [20], or sensing devices [9]. In many situations, a wide-band plane wave analysis at
normal incidence provides enough information about the structure. However, some applications also
require the knowledge of the device response for a range of incidence angles.

For a better understanding, let us suppose a 2D rectangular domain periodic in direction x̂ and of
lateral size δx. Then, suppose a plane wave propagating in the ẑ direction (i.e. at normal incidence)
in the domain. In this case, the PBC for any field U can be written as:

U(x, z, t) = U(x+ δx, z, t).
This situation is represented in figure 1.1(a), where the two matching periodic points (green dots)

can update their field informations using each other’s data at the same time-step. In the case of oblique
incidence (figure 1.1(b)), the update of the left green dot would require information of the right green
dot, which is located in an area that has not yet been hit by the incident field. In other words, this
means that the field update at the left point requires the knowledge of the fields at the right point at
a future time-step:

U(x, z, t) = U
(
x+ δx, z, t+ δx sin θ

c0

)
, (1.1)
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where c0 is the speed of light in vacuum. Because of this causality issue, standard numerical methods
such as Finite Difference Time Domain (FDTD) or Discontinuous Galerkin Time Domain (DGTD)
applied to the governing Maxwell’s equations fail to use PBC as is to simulate structures in the case
of an oblique excitation. Over the years, numerous techniques have been developed in the FDTD field
to deal with this modeling issue:

(1) The sine-cosine method [5], where fields are split on two separate grids corresponding to its
sine- and cosine-dependent components. In this case, a generalized PBC can be used, although
this restricts the computation to single-frequency sources;

(2) The sliding unit cell method [4], in which the unit cell itself is slided as the excitation pro-
gresses in the domain. This method presents several restrictions on the frequencies that can
be analyzed, and several values of the field must be stored at boundaries of the domain for
future updates;

(3) The multiple unit cell method [10], where several unit cells are used at the same time in order
to separate the correct field propagating in the periodic structure from the error due to the
causality issue. On top of requiring field storing for future updates, this method requires two
unit cells in 2D, and four in 3D, which mitigates the interest of PBC;

(4) The angle-updated method [16], in which the time-domain update scheme is rearranged in order
to compute a part of the fields in the domain before starting the actual FDTD computation.
This method suffers from a severe limitation in the incidence angles that can be used (θ < 45°
in 2D, and θ < 35° in 3D);

(5) The field-transform and the split-field techniques [14]: first, a field transformation is applied
to the continuous Maxwell’s equation that cancels out the causality problem. Then, for com-
patibility with the staggered grid inherent to Finite Difference, the fields are split before
discretization. This method is well spread among the FDTD community, since it allows for
any incidence angle below 90° [16]. However, its counterpart is a reduction of the maximal
stable time-step in the time discretization with the incidence angle (see next section).

Although a large amount of references are available for such techniques in the FDTD framework
(see [17] and references therein), for the DGTD method the literature remains very shallow. To the
best knowledge of the authors, the only methodological contribution on this topic is from Miller
et al. [11], although the method has been exploited afterwards [19]. In [11], the authors revisit the
field transform method, and then present its discretization in the DGTD framework. No analysis is
provided, neither for the continuous nor for the discrete equations. Regarding domain truncation,
only first-order Absorbing Boundary Conditions (ABC) are covered, and very little is said about the
incident fields or the observables.

In this paper, we focus on developing the field transform technique in the context of nanophotonics
periodic structures. We use a DGTD discretization framework for the discretization of the governing
Maxwell’s equation and provide a stability analysis. We extend the technique to incorporate the
possibility of using PML’s and finally, we give several numerical results from academical to more
applied test cases.

In the following section, we shortly sum up the field transform technique, and the continuous
system is analyzed with the method of characteristics and an energy estimate is provided. Then, its
discretization with the DGTD method is covered, and a stability proof is given in this context. Along
the way, insights about the transformation of sources, observables (reflectance, transmittance and
diffraction efficiency), and the use of CFS-PMLs for the transformed system are given and included in
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Figure 1.1. 2D configurations of normal and oblique incidence with PBC.
The domain is periodic in the lateral directions and is infinite in the vertical direction.
Here the notation PML at top and bottom already refers to the artificial numerical
truncation of the domain that will be used in the sequel. The incident plane wave is
oriented toward the bottom of the domain. Numerically, this will be imposed at an arti-
ficial interface called the Total-Field/Scattered-Field interface (see later for details). In
normal incidence, the PBC applies naturally, and at each discretization point match-
ing information is available from the periodic neighbor point (green dots). In oblique
incidence, a causality issue appears, since the matching information for the left green
dot is located in a zone that has not been illuminated by the incident field yet.

the analysis. We then consider the numerical implementation and validate the latter on a textbook case
for which an analytical solution is known. Finally, we consider two realistic cases: (i) a silicon-based
color filter, which response is analyzed under various incidence angles, and (ii) a diffraction grating,
for which we compare the diffraction efficiencies at normal and oblique incidences.

2. The field transform technique

2.1. Transformed equations

We denote by ε0, µ0, c0 respectively the permittivity, permeability and wave speed in vacuum and
follow [11] for the setting of the equations. We now consider a 3D setting and a plane wave of angular
frequency ω defined by a wave vector k = t (kx, ky, kz) traveling in a background material (see figure 2.1)
with wavefront speed is c (with ω

|k| = c). We introduce cb the relative speed of the wave in this material,
such that c = cbc0, and denote εb and µb the corresponding relative electromagnetic parameters. The
permittivity and permeability of the background material are thus respectively given by ε = εbε0,
µ = µbµ0. In the following, we consider that permittivity and permeability εb and µb are scalar
positive constants. We define a normalized wave vector:

k̂ = k
|k| = t (κx, κy, κz) = t (sin θ cosφ, sin θ sinφ, cos θ) ,
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Figure 2.1. Oblique incidence configuration with a scattering structure em-
bedded in a background material. An incident incoming oblique plane wave is
imposed in the background material. It is reflected and diffracted by the scatterer
(here, a sphere on a substrate). The domain is periodic in the x and y directions and
unbounded in the z direction.
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θ

Figure 2.2. Definition of (θ, φ) angles in the cartesian coordinate system.

where |k| = ω
c , and (θ, φ) are defined as the classical spherical angles, see figure 2.2. The vector k̂ is

decomposed in k̂ = k̂‖ + k̂⊥, where k̂⊥ is oriented in the common direction of the periodicity planes,
which is here taken to be z-axis for the sake of simplicity. Then:

k̂‖ = t (κx, κy, 0) and k̂⊥ = t (0, 0, κz) .

We then consider a bi-periodic structure (in x and y directions, see figure 2.1) with electromagnetic
positive constants ε = ε0εs and µ = µ0µs (εs and µs being the relative parameters) embedded in the
background material. The permittivity and permeability εs and µs are scalar piecewise constants. We
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denote cs = 1√
εsµs

the relative speed in the structure. Let us now recall the source-free frequency-
domain Maxwell’s equations in a media of electromagnetic constants (ε, µ):

jωεE(r, ω) = ∇×H(r, ω),
jωµH(r, ω) = −∇×E(r, ω).

(2.1)

The field transform technique consists in formally considering the following transformation:

P(r, ω) = E(r, ω) exp
(
jk‖ · r

)
,

S(r, ω) = H(r, ω) exp
(
jk‖ · r

)
.

(2.2)

This transformation generates the transformed fields P and S that are not anymore affected by the
tilting of oblique incidence, and are therefore periodic in x and y directions.

Applying transformation (2.2) to system (2.1), a few lines of calculations along with the identity
∇× (ψV) = (∇ψ)×V + ψ (∇×V) lead to:

jωεP(r, ω) = ∇× S(r, ω)− jk‖ × S(r, ω),
jωµS(r, ω) = −∇×P(r, ω) + jk‖ ×P(r, ω).

Formally transforming back to time-domain with the identity jω ↔ ∂
∂t and recalling that k‖ = k̂‖ |k|

yields the following system in the time dependent equations:

ε
∂P
∂t

(r, t) +
k̂‖
c0cb

× ∂S
∂t

(r, t) = ∇× S(r, t),

µ
∂S
∂t

(r, t)−
k̂‖
c0cb

× ∂P
∂t

(r, t) = −∇×P(r, t).

Finally, for the sake of simplicity, we classically normalize the latter system following [18] to obtain:

εr
∂P
∂t

(r, t) +
k̂‖
cb
× ∂S
∂t

(r, t) = ∇× S(r, t),

µr
∂S
∂t

(r, t)−
k̂‖
cb
× ∂P

∂t
(r, t) = −∇×P(r, t).

(2.3)

with εr = εs, µr = µs in the structure and εr = εb, µr = µb in the background material. Forming the
vector U = t (P,S), one can recast system (2.3) under a more general form:

Q
∂U
∂t

+ A
∂U
∂x

+ B
∂U
∂y

+ C
∂U
∂z

= 0, (2.4)

where A,B,C are the usual coefficient matrices (see definition in [15]), and Q is defined as:

Q = 1
cb



cbεr 0 0 0 0 κy
0 cbεr 0 0 0 −κx
0 0 cbεr −κy κx 0
0 0 −κy cbµr 0 0
0 0 κx 0 cbµr 0
κy −κx 0 0 0 cbµr


.

Note that system (2.3) both depends (i) on the local material, through εr and µr, and (ii) on the
background material, through its relative speed of light cb. The background material is the material
of the infinite surrounding, where the incident field is imposed. Its introduction in the transformation
allows to tackle cases where the considered structure is not embedded in vacuum. The latter system
can be analyzed on the structure (i.e. in the part of the domain occupied by the structure, r = s)
using an eigenvalue study.
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Table 2.1. Characteristic speeds for system (2.4), with c = cb
cs
.

λi Multiplicity

κx +
√
c 2 − κ2

y

c 2 − κ2
x − κ2

y
cb 2

κx −
√
c 2 − κ2

y

c 2 − κ2
x − κ2

y
cb 2

κy +
√
c 2 − κ2

x

c 2 − κ2
x − κ2

y
cb 2

κy −
√
c 2 − κ2

x

c 2 − κ2
x − κ2

y
cb 2

cb√
c 2 − κ2

x − κ2
y

2

−cb√
c 2 − κ2

x − κ2
y

2

0 6

2.2. Characteristics analysis

For a hyperbolic system, we can follow the method of characteristics [15], use the characteristic vari-
ables (which are not detailed here) and conclude that they will travel along trajectories which slopes
are the eigenvalues of Q−1A, Q−1B and Q−1C. These eigenvalues are shown in table 2.1. They play
a central role when considering space time approximation of the system and using an explicit time
integration scheme. In this subsection, we thus also exploit the information given by the eigenvalues to
have an insight on the possible stability of a future explicit time integration scheme (through a fictive
time-step and CFL type condition). Let us now analyze the behavior of these eigenvalues in a few
basic cases. For the sake of simplicity, in this section, we restrict ourselves to non-magnetic materials
(µb = µs = 1).

2.2.1. φ = 0, c = 1

Having φ = 0 (i.e. the wave will propagate parallel to the {y = 0} plane) yields κx = sin θ and κy = 0.
Additionally, c = 1 indicates that we are looking at the behavior of the eigenvalues of system (2.3) in
the background material. In this case, their expressions reduce to:

λx+,x−(θ) = ±cb
1∓ sin θ ,

λy+,y−(θ) = ±cb√
1− sin2 θ

,

λz+,z−(θ) = λy+,y− .

For θ = 0°, one recovers the regular eigenvalues λ = ±cb (which is true even for φ 6= 0). The
latter expressions show that, in vacuum, the speed of some characteristic variables of the transformed
system (2.3) is superior to that of light as soon as θ > 0°. This fact is coherent with the reduction of
the largest stable time-step with increasing θ noted in [11], and with our own theoretical predictions
and numerical experiments that will be presented in next sections. As shown in figure 2.3, the most
constraining speed in terms of CFL value is λx+(θ), meaning that the maximal stable time-step will
be expected to decrease as 1

λx+ (θ) .

136



Simulating 3D periodic structures at oblique incidences

0 45 90
0

2

4

6

8

10

θ

λ
(θ

)
c
b

λx+

λy+

Figure 2.3. Normalized characteristic speeds of system (2.4) for φ = 0 and
c = 1, with respect to the angle θ in degree.

2.2.2. φ = 0, c 6= 1

Having c 6= 1 means that we are considering the solutions of system (2.3) in a material that is not
the background material. The eigenvalues then have the following expressions:

λx+,x−(θ) = ±cb
c ∓ sin θ ,

λy+,y−(θ) = ±cb√
c 2 − sin2 θ

,

λz+,z−(θ) = λy+,y− ,

The speed of the characteristic variables is still superior to that of the background material. However,
two cases now need to be distinguished:

(1) c > 1, i.e. εs > εb (for example, a dielectric slab embedded in vacuum). All values of θ in the
range [0°, 90°[ are acceptable;

(2) c < 1, i.e. εs < εb (for example, a vacuum slab between two dielectric half-spaces). In this
case, λx+(θ) is singular for a critical value θc:

θc( c ) = sin−1 c , (2.5)

while λy+(θ) and λy−(θ) become imaginary with opposite signs for θ > θc. A plot of θc as a
function of c is given in figure 2.4. Following Snell’s law, it should be noted that θc is nothing
else than the angle of total internal reflection, for which all the light will end up travelling
along the materials interface. A direct consequence is that we do not expect to find a stable
time step for the discretization of system (2.3) for θ ≥ θc if c < 1. This will be confirmed
with the rest of our study.

2.2.3. General case

For any φ values, we recover the critical angle. Indeed, to have a well defined positive square root
in the eigenvalue expression (which will allow for selecting a possible stable time-step in the discrete
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Figure 2.4. Plot of the critical value θc as a function of c in the range [0, 1[.
For c > 1, θ can take all values in [0, 90°[.

setting), we have to impose that:
c 2 − κ2

x − κ2
y > 0,

which implies:
sin2(θ) < c 2.

Imposing this condition suffices to have both c 2 − κ2
y ≥ 0 and c 2 − κ2

x ≥ 0.

2.3. Energy principle and well-posedness

In this section, we investigate the energy of the system and give a well defined mathematical setting.
We truncate the physical domain in the z direction and denote the resulting open bounded domain
by Ω ⊂ R3 (see figure 2.5). The boundary of Ω, Γ, thus consists of several parts: Γext the exterior
artificial boundary and ΓP , the periodic boundary. On Γext using a scattered field formulation, will
be either imposed absorbing boundary conditions or a layer of PML’s (see next section). The domain
Ω itself consists in the background material Ωb (with physical parameters εr = εb and µr = µb) and
the structure Ωs (with physical parameters εr = εs and µr = µs).

We denote by L2(Ω), the space of vectorial functions that are real valued and square integrable on
Ω, H(curl,Ω) the space of L2(Ω) fields with square integrable curl, 〈·, ·〉D and ‖·‖D respectively the
L2 scalar product and L2 norm on a given set D. Finally we define H = L2(Ω)× L2(Ω).

We consider the equations on a fixed time interval [0, T ], T > 0. To summarize, we consider the
following system of equations, for all t ∈ [0, T ]:

εr
∂P
∂t

(·, t) +
k̂‖
cb
× ∂S
∂t

(·, t) = ∇× S(·, t), on Ω,

µr
∂S
∂t

(·, t)−
k̂‖
cb
× ∂P

∂t
(·, t) = −∇×P(·, t), on Ω.

(2.6)

These equations are supplemented with initial and boundary conditions. For the latter, we impose
PBC on the lateral boundaries of the domain (see figure 2.5). The outer boundaries are not specified
right now to be able to envisage several truncation alternatives.
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Figure 2.5. Notations. The domain is periodic in the lateral directions, truncated on
Γext. The incident plane wave is imposed at the Total-Field/Scattered-Field (TF/SF)
interface, and is oriented toward the bottom of the domain. The artificial truncation
can be handled via e.g. a layer of Perfectly Matched Layers (PML’s), see later

We begin our study by an a priori analysis. In other words, we suppose that there exists a unique
smooth solution (P,S) and provide an energy study in the next two propositions. This study will be
the basis for a discussion on well-posedness.

We define V a subspace of H(curl,Ω) for which an integration by part formula

∀ (f, g) ∈ V × V, 〈∇ × f, g〉 − 〈f,∇× g〉 = b∂Ω(f, g) (2.7)

holds, with b∂Ω a bilinear boundary term such that b∂Ω = bΓext + bΓP
. If V is a space of fields with

well defined L2 tangential traces, one has b∂Ω = 〈f ×n, g〉∂Ω which can be understood in the usual L2

sense. If V consists of less regular fields (e.g. only H(curl,Ω)), using e.g. the general theory developed
in [1, Chapter 3], one can give a rigorous sense to b∂Ω.

Proposition 2.1. Assume that (P,S) ∈ C1 (0, T, V )2 and that (P,S) verify (2.6). If for all t ∈ [0, T ],

E(t) := 1
2 ‖
√
εrP(t, ·)‖2Ω + 1

2 ‖
√
µrS(t, ·)‖2Ω +

〈
k̂‖
cb
× S(t, ·),P(t, ·)

〉
Ω
.

Then E(t) = E(0) +
∫ t

0
bΓext(S,P).

Proof. We take the L2-scalar product of (2.6) with test function (S,P). We obtain:〈
εr
∂P
∂t
,P
〉

Ω
+
〈
k̂‖
cb
× ∂S
∂t
,P
〉

Ω
= 〈∇ × S,P〉Ω,

〈
µr
∂S
∂t
,S
〉

Ω
−
〈
k̂‖
cb
× ∂P

∂t
,S
〉

Ω
= −〈∇×P,S〉Ω,
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which is equivalent to:
1
2
∂

∂t
〈εrP,P〉Ω +

〈
k̂‖
cb
× ∂S
∂t
,P
〉

Ω
= 〈∇ × S,P〉Ω,

1
2
∂

∂t
〈µrS,S〉Ω −

〈
k̂‖
cb
× ∂P

∂t
,S
〉

Ω
= −〈∇×P,S〉Ω.

We can make use of the integration by part formula (2.7) to obtain:
1
2
∂

∂t
〈εrP,P〉Ω +

〈
k̂‖
cb
× ∂S
∂t
,P
〉

Ω
= 〈S,∇×P〉Ω + b∂Ω(S,P),

1
2
∂

∂t
〈µrS,S〉Ω −

〈
k̂‖
cb
× ∂P

∂t
,S
〉

Ω
= −〈∇×P,S〉Ω.

One distinguishes contributions on Γext and ΓP :
b∂Ω(S,P) = bΓP

(S,P) + bΓext(S,P).
Using the periodic boundary conditions on ΓP , we deduce that bΓP

(S,P) = 0. Summing the two
equations:

1
2
∂

∂t
〈εrP,P〉Ω + 1

2
∂

∂t
〈µrS,S〉Ω +

〈
k̂‖
cb
× ∂S
∂t
,P
〉

Ω
−
〈
k̂‖
cb
× ∂P

∂t
,S
〉

Ω
= bΓext(S,P)

Using the properties of the mixed product, one has:
1
2
∂

∂t
〈εrP,P〉Ω + 1

2
∂

∂t
〈µrS,S〉Ω +

〈
k̂‖
cb
× ∂S
∂t
,P
〉

Ω
+
〈
k̂‖
cb
× S, ∂P

∂t

〉
Ω

= bΓext(S,P).

Thus,

1
2
∂

∂t
〈εrP,P〉Ω + 1

2
∂

∂t
〈µrS,S〉Ω + ∂

∂t

〈
k̂‖
cb
× S,P

〉
Ω

= bΓext(S,P),

and the result follows.

We now prove that the energy E is positive under some assumption on k̂ and apply this result in
the special cases considered in this paper.

Proposition 2.2. Under the hypotheses and notations of Proposition 2.1, one has for all t ∈ [0, T ]:

E(t) ≥ 1
2

1−

∥∥∥k̂‖∥∥∥
c

 ‖√εrP(t, ·)‖2Ωs
+ 1

2

1−

∥∥∥k̂‖∥∥∥
c

 ‖√µrS(t, ·)‖2Ωs

+ 1
2
(
1−

∥∥∥k̂‖∥∥∥) ‖√εrP(t, ·)‖2Ωb
+ 1

2
(
1−

∥∥∥k̂‖∥∥∥) ‖√µrS(t, ·)‖2Ωb
.

(2.8)

If one supposes that min( c , 1) > ‖k̂‖‖, then E(t) is positive quadratic form for t ∈ [0, T ]. Furthermore,
if the exterior boundary conditions are chosen such that there exists M ≥ 0 such that for all t ∈ [0, T ],∫ t

0
bΓext(S,P) ≤M , then:

E(t) ≤ E(0) +M, (2.9)

i.e. the positive energy is bounded.
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Proof. One has: ∣∣∣∣∣〈 k̂‖cb × S,P〉Ωs

∣∣∣∣∣ ≤
∥∥∥k̂‖∥∥∥

cb
√
εs
√
µs
‖√µrS‖Ωs

‖
√
εrP‖Ωs

,

≤

∥∥∥k̂‖∥∥∥
c
‖√µrS‖Ωs

‖
√
εrP‖Ωs

.

Using Young’s inequality, we obtain∣∣∣∣∣
〈
k̂‖
cb
× S,P

〉
Ωs

∣∣∣∣∣ ≤ 1
2

∥∥∥k̂‖∥∥∥
c
‖
√
εrP‖2Ωs

+ 1
2

∥∥∥k̂‖∥∥∥
c
‖√µrS‖2Ωs

.

This implies that: 〈
k̂‖
cb
× S,P

〉
Ωs

≥ −

1
2

∥∥∥k̂‖∥∥∥
c
‖
√
εrP‖2Ωs

+ 1
2

∥∥∥k̂‖∥∥∥
c
‖√µrS‖2Ωs

 .
In a similar manner, we obtain〈

k̂‖
cb
× S,P

〉
Ωb

≥ −
(1

2

∥∥∥k̂‖∥∥∥ ‖√εrP‖2Ωb
+ 1

2

∥∥∥k̂‖∥∥∥ ‖√µrS‖2Ωb

)
.

Combining these last two estimates with the definition of E , we obtain (2.8). The conclusions then
follow from (2.8) and Proposition 2.1.

Remark 2.3. If one considers absorbing boundary conditions (first order Silver-Müller) or perfect
electric conductor boundary condition on Γext, then we expect bΓext(S,P) ≤ 0. In this case, the energy
is decreasing.

Remark 2.4. We recover the stability condition inferred in the characteristic analysis through the
condition ‖k̂‖‖ ≤ c .

Remark 2.5. We would like to point out that this study naturally extends to classical dispersion
models such as the Drude model or even generalized dispersion laws that are commonly used in
nanophotonics. Indeed, these models consist only in adding auxiliary ordinary differential equations
(see [8] for details on the models) that are linearly coupled to Maxwell equations via a source current.
For readability, we do not detail this extension here, since it is straightforward. We refer the reader to
the discussion on this topic in section 3.5).

This first a priori study set the basis for possible results of well posedness. To this end, we introduce
the following bilinear form on H×H:

aQ : (u = (u1, u2), v = (v1, v2)) 7→ 1
2

(
〈εru1, v1〉Ω + 〈µru2, v2〉Ω +

〈
k̂‖
cb
× u1, v2

〉
Ω

+
〈
k̂‖
cb
× v1, u2

〉
Ω

)
.

This bilinear form is symmetric. Furthermore, if min( c , 1) > ‖k̂‖‖, aQ is positive definite. Indeed,
first for all u = (u1, u2) ∈ H on has

aQ(u, u) = 1
2

(
〈εru1, u1〉Ω + 〈µru2, u2〉Ω + 2

〈
k̂‖
cb
× u1, u2

〉
Ω

)
.

Following the proof of Proposition 2.2, we have,

aQ(u, u) ≥ 1
2 min

1−

∥∥∥k̂‖∥∥∥
c

, 1−
∥∥∥k̂‖∥∥∥

(‖√εru1‖2Ω + ‖√µru2‖2Ω
)
.
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This yields that aQ is positive definite and thus is a scalar product, if min( c , 1) > ‖k̂‖‖. We define
‖·‖Q, the associated norm. This norm is equivalent to the canonical H norm. Thus (H, aQ) is a Hilbert
space.

Let us now define the unbounded Maxwell operator AM with domain D(AM ) as follows: for all
u = (u1, u2) ∈ D(AM ), AM (u) is given by

AM (u) =
(
∇× u2
−∇× u1

)
. (2.10)

Remark 2.6. At this step, we do not explicitly specify the domain D(AM ) to include more generality
in the results.

Furthermore, we define Q the linear continuous operator on H, defined for all u = (u1, u2) by
Q(u) = Q−1u.

We can rewrite the set of equations (2.6) as a Cauchy problem{
∂tu = Q ◦ AM (u),
u(0) = u0,

(2.11)

with u0 ∈ D(AM ).
Direct computations lead to the following.

Proposition 2.7. One has for all u, v in D(AM )
aQ(Q ◦ AM (u), v) = 〈AM (u), v〉Ω, (2.12)

This proposition implies that well-posedness study of (2.11) is closely related to the study of well-
posedness of Maxwell’s equation. Indeed, from this proposition, we deduce in particular that if AM
has an adjoint A∗M (with domain D(AM )) in (H, 〈·, ·〉), then so does Q◦AM in (H, aQ) and this adjoint
is Q ◦A∗M . Furthermore, if AM (resp. A∗M ) is monotone in (H, 〈·, ·〉), so is Q ◦AM (resp. (Q ◦AM )∗)
in (H, aQ). The same holds for skew-adjointness property. By specifying the domain D(AM ), well-
posedness results can therefore be obtained from results of well-posedness for the classical Maxwell
case (i.e. with unbounded operator AM , with domain D(AM )) using e.g. theorems as in [1, §4.3,
p. 162]. As an example, considering periodic condition on ΓP and perfect electric conducting boundary
condition (u1×n = 0) on Γext lead to skew adjointness of the operator, and Stone theorem (see e.g. [1,
p. 164]) help to conclude. In other words, under suitable assumptions, one would be able to address
well-posedness of(2.11).

3. The DGTD method

We now turn to the numerical approximation. The discretization framework is based on a DGTD
scheme. Since the type scheme that we use is well described in a significant number of references
(among them see e.g. [11] in the context of PBC, [18, 8] in a nanophotonics context), we choose
to give the reader a brief presentation of it and refer to the above mentioned references for a more
thorough description.

3.1. Numerical scheme and stability

The steps of the derivation of the DGTD scheme of system (2.3) are well described in [11]. An important
point is that the numerical flux, that is introduced through the DGTD scheme, does not need to be
modified for the transformed equations. This makes the derivation straightforward.

We consider that Ω ⊂ R3 is a bounded convex domain (in fact here, even parallelipipedic as
described previously), and n the unitary outward normal to its boundary ∂Ω. Let Ωh be a discretization
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of Ω, relying on a quasi-uniform triangulation Th verifying Ωh =
⋃N
i=1 Ti, where N ∈ N∗ is the

number of mesh elements, and (Ti)i∈[[1,N ]] the set of simplices. For each cell Ti, Vi is the set of indices
{k ∈ [[1, N ]] | Ti

⋂
Tk is a triangular face}, (ail)l∈Vi

the corresponding faces and nil is the unit normal
to the face, oriented from Ti to Tl for l ∈ Vi. Then, let us fix k > 0 and introduce Vh, the subspace
of L2(Ω) fields that are polynomial of degree at most k, on each element of the mesh. For each
Wh = (W x

h ,W
y
h ,W

z
h ) ∈ Vh, we denote by Wi, the vector of degrees of freedom on Wh restricted to

the element Ti on the classical Lagrange nodal basis. We suppose that the triangulation is aligned
with the various physical media, i.e. an element of the mesh is included in one and only one physical
medium.

We use an element-wise weak formulation for (discontinuous) unknowns in Vh, where communication
within two cells of the mesh is recovered by introducing fluxes. The semi-discrete DG scheme reads in
a matricial form: find (Ph,Sh) ∈ Vh × Vh such that for all i ∈ {1, . . . , N},

∂

∂t

[
Pi

Si

]
= Q−1M−1

i

[
−KiSi +

∑
l∈Vi

SilS∗
KiPi −

∑
l∈Vi

SilP∗

]
, (3.1)

where, if we denote for i ∈ {1, . . . , N}, (φil)l∈{1,...,d} the local Lagrange vectorial basis function on the
element Ti:

• Mi is the local mass matrix on the element Ti (of size d × d) with (Mi)jl :=
∫
Ti

εrφij · φil,

(j, l) ∈ {1, . . . , d}2,

• Ki the rigidity matrix on the element Ti (of size d × d), with (Ki)jl =
∫
Ti

φij · ∇ × φil,

(j, l) ∈ {1, . . . , d}2,

• Sil the interface matrix, with (Siq)jl =
∫
aiq

φij · φil × niqds, (j, l) ∈ {1, . . . , d}2, q ∈ Vi.

Furthermore, P∗ and S∗ represent the numerical fluxes on the interfaces [18]:

P∗ = 1
Yi + Yl

({YP}il + αnil × [[S]]il) , S∗ = 1
Zi + Zl

({ZS}il − αnil × [[P]]il) . (3.2)

on Ti ∩ Tl, i ∈ {1, . . . , N}, l ∈ Vi. The quantities Y =
√

εr
µr

and Z = 1
Y are respectively the material

admittance and impedance. Here Yi, Zi denote their restriction on a triangle Ti. The parameter α is
a given real in [0, 1]. When α = 0, one obtains the so-called centered flux. When α = 1, one obtains
the fully upwind flux.

Semi-discrete initial conditions are chosen in accordance with the continuous ones such as Ph(0, ·) =
Πh(P(0, ·)) and Sh(0, ·) = Πh(S(0, ·)), with Πh a well-chosen projection operator such as the L2 one.

Proposition 3.1. Let us suppose that (Sh,Ph) ∈ C1([0, T ],Vh) × C1([0, T ],Vh) is a solution of sys-
tem (3.1) for a given α ∈ [0, 1]. If one defines:

Eh(t) := 1
2 ‖
√
εrPh(t, ·)‖2Ω + 1

2 ‖
√
µrSh(t, ·)‖2Ω +

〈
k̂‖
cb
× Sh(t, ·),Ph(t, ·)

〉
, (3.3)

then Eh is a positive quadratic form under the assumption that
∥∥∥k̂‖∥∥∥ < min( c , 1). Furthermore,

Eh(t) ≤ Eh(0) +
∫ t

0
〈Sh × n,Ph〉Γextds (3.4)
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Proof. We rewrite (3.1) in its variational form. Then the proof is a direct combination of the
arguments that appeared in Propositions 2.1 and 2.2 and classical arguments, depending on the fluxes
used (see e.g. [8]). We choose not to reproduce it here and will rather focus on the added difficulty of
the time discretization.

We directly conclude to the following
Corollary 3.2. If boundary conditions are chosen such that there exists M > 0 (independent of the

discretization parameters) such that ∀ t ∈ [0, T ],
∫ t

0
〈Sh × n,Ph〉Γext ≤ M , then the semi-discrete

scheme is stable.
Remark 3.3. As for the continuous case, the semi-discrete scheme is thus in particular stable if one
chooses absorbing boundary conditions or perfect electric conducting boundary conditions.

Regarding the time integration of (3.1), we first propose to investigate the stability of a simple
classical explicit scheme (leap-frog with centered fluxes with perfect electric conducting boundary
conditions on Γext, i.e. P × n = 0 on Γext). in order to understand the impact of the field transform
technique on the CFL condition. In the numerical simulations, for accuracy reasons, we would prefer-
ably use the well-known five-stages fourth-order Low-Storage Runge-Kutta (LSRK) method described
in [2] combined with upwind fluxes (α = 1).

We consider a given uniform subdivision of the time interval [0, T ] of J + 1 points (J ∈ N∗) and
∆t > 0 the corresponding time-step. A leap-frog time integration of (3.1) with centered fluxes (i.e.
α = 0 in the expression of the fluxes (3.2)) gives the fully discrete problem: For all n ∈ {0, . . . , J},
find (Pn,Sn+ 1

2 ) ∈ Vh × Vh such that on each element Ti (i ∈ {1, . . . , N}): εr
Pn+1

i −Pn
i

∆t + k̂‖
cb
× S

n+ 3
2

i −S
n+ 1

2
i

∆t

µr
S

n+ 3
2

i −S
n+ 1

2
i

∆t − k̂‖
cb
× Pn+1

i −Pn
i

∆t

 =
[
−KiS

n+ 1
2

i +
∑
l∈Vi

SilS
n+ 1

2∗
KiPn+1

i −
∑
l∈Vi

SilPn+1
∗

]
, (3.5)

We define the modified total energy at time-step n as follows:

Enh := 1
2‖
√
εrPn‖2Ω + 1

2〈µrS
n+ 1

2 ,Sn−
1
2 〉Ω + 1

2

〈
k̂‖
cb
× Sn+ 1

2 ,Pn + Pn−1
〉

Ω
. (3.6)

Proposition 3.4. Assume that min( c , 1)−‖k̂‖ > 0. The energy Enh is positive under a CFL condition
given as

∆t
h
≤M

min( c , 1)− ‖k̂‖‖
cb

,

with M a positive generic constant independent of the discretization parameters.
Proof. First we decompose the total energy in a sum of local energies on each element of the mesh.
Thus, we denote

Eni := 1
2‖
√
εrPn‖2Ti

+ 1
2〈µrS

n+ 1
2 ,Sn−

1
2 〉Ti + 1

2

〈
k̂‖
cb
× Sn+ 1

2 ,Pn + Pn−1
〉
Ti

,

and we have Enh =
∑
i Eni . And

Eni = 1
2‖
√
εrPn‖2Ti

+ 1
2‖
√
µrSn+ 1

2 ‖2Ti
− 1

2〈µrS
n+ 1

2 ,Sn+ 1
2 − Sn−

1
2 〉Ti

+ 1
2

〈
k̂‖
cb
× Sn+ 1

2 ,Pn + Pn−1
〉
Ti

(3.7)
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Using (3.5), we find
1
2〈µrS

n+ 1
2 ,Sn+ 1

2 − Sn−
1
2 〉Ti

= 1
2

〈
k̂‖
cb
× (Pn −Pn−1),Sn+ 1

2

〉
Ti

+ 1
2∆t〈Pn,∇× Sn+ 1

2 〉Ti −
1
2∆t〈Pn

∗ × n,Sn+ 1
2 〉∂Ti

(3.8)

Combining (3.7) and (3.8), we find

Eni = 1
2‖
√
εrPn‖2Ti

+ 1
2‖
√
µrSn+ 1

2 ‖2Ti
− 1

2

〈
k̂‖
cb
× (Pn −Pn−1),Sn+ 1

2

〉
Ti

− 1
2∆t〈Pn,∇× Sn+ 1

2 〉Ti

+ 1
2∆t〈Pn

∗ × n,Sn+ 1
2 〉∂Ti

+ 1
2

〈
k̂‖
cb
× Sn+ 1

2 ,Pn + Pn−1
〉
Ti

(3.9)

Thus using boundary conditions,

Eni = 1
2‖
√
εrPn‖2Ti

+ 1
2‖
√
µrSn+ 1

2 ‖2Ti
+
〈
k̂‖
cb
× Sn+ 1

2 ,Pn

〉
Ti

− 1
2∆t〈Pn,∇× Sn+ 1

2 〉Ti

+ 1
2∆t

∑
l∈Vi

〈Pn
∗ × n,Sn+ 1

2 〉ail
(3.10)

In a similar manner as in the proof of Proposition 2.8, we have

∑
i

1
2‖
√
εrPn‖2Ti

+ 1
2‖
√
µrSn+ 1

2 ‖2Ti
+
〈
k̂‖
cb
× Sn+ 1

2 ,Pn

〉
Ti


≥ 1

2

1−

∥∥∥k̂‖∥∥∥
c

 ‖√εrPn‖2Ωs
+ 1

2

1−

∥∥∥k̂‖∥∥∥
c

∥∥∥√µrSn+ 1
2

∥∥∥2

Ωs

+ 1
2
(
1−

∥∥∥k̂‖∥∥∥) ‖√εrPn‖2Ωb
+ 1

2
(
1−

∥∥∥k̂‖∥∥∥) ∥∥∥√µrSn+ 1
2

∥∥∥2

Ωb

. (3.11)

For the last two terms of (3.10), one makes use of Young’s inequality and inverse inequalities stating
that there exists C > 0 independent of the discretization parameters such that for all Uh ∈ Vh,

‖∇ ×Uh‖Ti ≤
C

hi
‖Uh‖Ti

and

‖Uh‖∂Ti
≤ C√

hi
‖Uh‖Ti

(here hi denotes the diameter of Ti). Using that either Ti ⊂ Ωs or Ti ⊂ Ωb, that εs is constant on Ωs

and Ωb and that µr ≡ 1, we have that there exists C > 0 such that

− 1
2∆t〈Pn,∇× Sn+ 1

2 〉Ti + 1
2∆t

∑
l∈Vi

〈Pn
∗ × n,Sn+ 1

2 〉ail

≥ −1
4C

ci,r∆t
hi
‖
√
εrPn‖2Ti

− 1
4C

ci,r∆t
hi
‖√µrSn+ 1

2 ‖2Ti
−
∑
l∈Vi

(
1
8C

ci,r∆t
hi
‖
√
εrPn‖2Ti

+ 1
8C

ci,r∆t
hi
‖√µrSn+ 1

2 ‖2Ti
+ 1

8C
cl,r∆t
hi
‖
√
εrPn‖2Tl

+ 1
8C

cl,r∆t
hi
‖√µrSn+ 1

2 ‖2Tl

)
, (3.12)

with ck,r = cs or ck,r = cb with k ∈ {l, i} depending on the physical domain where Tk is included.
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Finally, summing over all mesh elements and using quasi-uniformity of the mesh, one has that there
exists M > 0 such that∑

i

−1
2∆t〈Pn,∇× Sn+ 1

2 〉Ti + 1
2∆t

∑
l∈Vi

〈Pn
∗ × n,Sn+ 1

2 〉ail


≥ −1

2M
cb∆t
h
‖
√
εbPn‖2Ωb

− 1
2M

cb∆t
h
‖√µbSn+ 1

2 ‖2Ωb

− 1
2M

cs∆t
h
‖
√
εsPn‖2Ωs

− 1
2M

cs∆t
h
‖√µsSn+ 1

2 ‖2Ωs
. (3.13)

Combining this last estimate with (3.11) leads to

En ≥ 1
2

(
1−M cb∆t

h
− ‖k̂‖‖

)
‖
√
εbPn‖2Ωb

+ 1
2

(
1−M cb∆t

h
− ‖k̂‖‖

)
‖√µbSn+ 1

2 ‖2Ωb

+ 1
2

(
1−M cs∆t

h
−
‖k̂‖‖
c

)
‖
√
εsPn‖2Ωs

+ 1
2

(
1−M cs∆t

h
−
‖k̂‖‖
c

)
‖√µsSn+ 1

2 ‖2Ωs
.

This implies that if

∆t
h
≤M−1 min( c , 1)− ‖k̂‖‖

cb
,

then the energy is positive.

Proposition 3.5. For all n ∈ {0, . . . , J − 1}, the modified energy En+ 1
2

h verifies a discrete energy
principle,

En+1
h − Enh = 0. (3.14)

Proof. Let n ∈ {0, . . . , J − 1}. Using the scheme with the adequate test functions Pn+1 + Pn and
Sn+ 1

2 in respectively the first and second equation (at time n and n + 1 for the second equation)
of (3.5), one obtains:

‖
√
εrPn+1‖2Ti

− ‖
√
εrPn‖2Ti

+
〈
k̂‖
cb
× (Sn+ 3

2 − Sn+ 1
2 ),Pn+1 + Pn

〉
Ti

= ∆t〈−Sn+ 1
2 ,∇× (Pn+1 + Pn)〉Ti + ∆t

∑
l∈Vi

〈Sn+ 1
2∗ × n,Pn+1 + Pn〉ail

,

〈µr(Sn+ 1
2 − Sn−

1
2 ),Sn+ 1

2 〉Ti −
〈
k̂‖
cb
× (Pn −Pn−1),Sn+ 1

2

〉
Ti

= ∆t〈Pn,∇× Sn+ 1
2 〉Ti −∆t

∑
l∈Vi

〈Pn
∗ × n,Sn+ 1

2 〉ail

〈µr(Sn+ 3
2 − Sn+ 1

2 ),Sn+ 1
2 〉Ti −

〈
k̂‖
cb
× (Pn+1 −Pn),Sn+ 1

2

〉
Ti

= ∆t〈Pn+1,∇× Sn+ 1
2 〉Ti −∆t

∑
l∈Vi

〈Pn+1
∗ × n,Sn+ 1

2 〉ail
.

(3.15)
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We add the three resulting equations and rewrite them using the properties of the mixed product:

‖
√
εrPn+1‖2Ti

+
〈
k̂‖
cb
× (Sn+ 3

2 − Sn+ 1
2 ),Pn+1 + Pn

〉
Ti

+ 〈µrSn+ 3
2 ,Sn+ 1

2 〉Ti

− ‖
√
εrPn‖2Ti

−
〈
k̂‖
cb
× (Pn+1 −Pn−1),Sn+ 1

2

〉
Ti

− 〈µrSn+ 1
2 ,Sn−

1
2 〉Ti

= −∆t〈Sn+ 1
2 ,∇× (Pn+1 + Pn)〉Ti + ∆t

∑
l∈Vi

〈Sn+ 1
2∗ × n,Pn+1 + Pn〉ail

+ ∆t〈Pn + Pn+1,∇× Sn+ 1
2 〉Ti −∆t

∑
l∈Vi

〈Pn
∗ + Pn+1

∗ × n,Sn+ 1
2 〉ail

. (3.16)

Let Ii be the right hand side of this equality and using integration by part formula and the expression
of the centered flux, we obtain ∑

i

Ii := 0.

Furthermore〈
k̂‖
cb
× (Sn+ 3

2 − Sn+ 1
2 ),Pn+1 + Pn

〉
Ti

−
〈
k̂‖
cb
× (Pn+1 −Pn−1),Sn+ 1

2

〉
Ti

=
〈
k̂‖
cb
× Sn+ 3

2 ,Pn+1 + Pn

〉
Ti

〈
k̂‖
cb
× Sn+ 1

2 ,Pn + Pn−1
〉
Ti

(3.17)

Summing over all the elements, taking into account all the contributions, we find:
En+1
h − Enh = 0. (3.18)

The last result together with Proposition 3.4, leads to the stability of the scheme under the CFL
condition of Proposition 3.4.

The same kind of analysis can be adapted to take into account for the upwind fluxes and absorbing
boundary conditions (the latter have only negative contributions in the energy principle), and to more
complicated schemes such as explicit Runge-Kutta type time discretization scheme. This could be
obtained by adapting the arguments of this paper and those of [8]. However, this would end up in a
lengthy, tedious and technical proof that we choose not to reproduce here. In the simulations, we will
mostly use explicit LSRK schemes with fully upwind fluxes (as mentioned earlier) and we will verify
empirically the accuracy of the above CFL condition.

Remark 3.6. As a side note, we would like to notice that one could be tempted to discretize sys-
tem (3.1) as follows with a LSRK scheme:[

∂tPi

∂tSi

]n+1
= M−1

i

[
−KiSi +

∑
l∈Vi

SilS∗
KiPi −

∑
l∈Vi

SilP∗

]n
+
[
−k̂‖ × ∂tPi

k̂‖ × ∂tSi

]n
,

the additional time-derivative term being stored at each time-step and acting a source on the right-
hand side for the computation of the next time-derivative of the fields. Although this method leads
to a stable and valid discretization, the stability constraints with increasing angles are much worse
than that obtained with time integration of the scheme (3.1) using LSRK4, leading to unbearably long
computation times.

We now specify the type of sources and boundary conditions that we are using.
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3.2. Incident field

When implementing the field transform equations into a time-domain solver, care must be taken to
adapt the expressions of the source fields to the new formulation. Here, we cover the well-known case
of the wide-band plane wave source in a background material. It reads for respectively the electric and
magnetic fields

Einc(r, t) = E0 sin
(
ω0

(
t− k̂ · r

cb

))
exp

−
(
t− k̂·r

cb

)2

2σ2

 ,
Hinc = k̂×Einc

Zb
,

k̂ ·E0 = 0,

(3.19)

where ω0 is the central frequency of the pulse, σ controls the width of the Gaussian (and hence the spec-
tral range), and Zb is the optical impedance of the background material. The third equation expresses
that the polarization and the wavevector must be orthogonal. Applying transformation (2.2) to the
frequency-domain version of system (3.19) and transforming back to time-domain is straightforward:

Pinc(r, t) = P0 sin
(
ω0

(
t− k̂⊥ · r

cb

))
exp

−
(
t− k̂⊥·r

cb

)2

2σ2

 ,
Sinc = k̂×Pinc

Zb
,

k̂ ·P0 = 0.

Care must be taken that the transformation does not affect the second and third relations, where the
full wavevector still appears.

3.3. CFS-PML

We now turn to the treatment of the exterior boundary. As mentioned earlier, we have to artificially
truncate the domain in the non-periodic directions. We could have used absorbing boundary conditions,
but we rather choose to add a PML layer at the artificial boundary that will absorb the field scattered
by the structure. Initially designed by Kuzuoglu et al. [7], the first adaptation of CFS-PMLs to the
DGTD framework was recently proposed in [6]. These PMLs rely on a complex stretching of the spatial
coordinates:

∂

∂k
→ 1

sk(ω)
∂

∂k
with sk(ω) = 1− σk

iω − αk
and k ∈ {x, y, z} . (3.20)

In the latter expression, σk represents the damping rate of the PML, while αk is the actual frequency
shift. In the original expression of the CFS-PMLs, a real stretch was also present, but it was removed
here for the sake of simplicity. The reader is referred to [6] for additional details about the CFS-PML.
On the PML layer, the modified Maxwell’s equations for the scattered field under this stretch are given
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by (see [6]):

εr
∂E
∂t

= ∇×H−GE
+ −GE

−,

∂GE
+

∂t
= σ+ �∇+ ×H− (α+ + σ+)�GE

+,

∂GE
−

∂t
= −σ− �∇− ×H− (α− + σ−)�GE

−,

µr
∂H
∂t

= −∇×E−GH
+ −GH

− ,

∂GH
+

∂t
= −σ+ �∇+ ×E− (α+ + σ+)�GH

+ ,

∂GH
−

∂t
= σ− �∇− ×E− (α− + σ−)�GH

− ,

(3.21)

where the following notations are used:

∇+ ×U =

 ∂yUz
∂zUx
∂xUy

 ,∇− ×U =

 ∂zUy
∂xUz
∂yUx

 ,σ+ =

 σy
σz
σx

 ,σ− =

 σz
σx
σy

 ,
and similarly for α+ and α−. The notation � designates the element-wise multiplication for vectors,
while GU

+ and GU
− are additional fields required for the resolution of the field damping within the

PML region. Applying the field transformation (2.2) to the full system of Maxwell’s equations with
CFS-PMLs would lead to a very large, tangled system with 18 equations, thus considerably enlarging
the size of matrix Q. To get around this problem, it is however possible to apply the coordinate
stretching (3.20) directly to the transformed system (2.3). Since the modifications brought by the
stretching only impact the spatial derivatives, the standard derivation can be followed as in [6], and
the final continuous system of equations reads (again for the scattered field):

εr
∂P
∂t

+
k̂‖
cb
× ∂S
∂t

= ∇× S−GP
+ −GP

−,

∂GP
+

∂t
= σ+ �∇+ × S− (α+ + σ+)�GP

+,

∂GP
−

∂t
= −σ− �∇− × S− (α− + σ−)�GP

−,

µr
∂S
∂t
−
k̂‖
cb
× ∂P

∂t
= −∇×P−GS

+ −GS
−,

∂GS
+

∂t
= −σ+ �∇+ ×P− (α+ + σ+)�GS

+,

∂GS
−

∂t
= σ− �∇− ×P− (α− + σ−)�GS

−.

(3.22)

After discretization, the CFS-PML equations can be solved as they are with the standard Maxwell’s
scheme (see [18]), while the damping fields GU

+ and GU
− (for U ∈ {P,S}) only need to be incorporated

to the RHS of the P and S update equations. The reader is referred to [6] and [18] for the details of
the DG discretization of CFS-PMLs.
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3.4. Total Field/Scattered Field (TF/SF) formulation.

The combination of the absorbing PML layer and the incident field is dealt with by using a classical
TF/SF strategy that exploits the possibility of splitting the contribution of the fields in their incident
and scattered parts. In this manner, the computational domain is split into two parts: one containing
the main scatterer where the total field is computed and the other complementary part where only the
scattered field is computed (thus including the CFS PML zone). The incident field is in consequence
imposed through the TF/SF interface that delimits these two zones (see e.g. [18] for more details) and
figure 1.1 for the whole picture.

3.5. Incorporation of dispersion models

At the frequency range considered in nanophotonics, the impact of dispersion can not be neglected in
metallic media. The electrons don’t instantaneously react to the applied electric field. This is rendered
via frequency dependent permittivity laws, and thus frequency dependent speed of propagation of a
given incident wave. In the temporal domain, this behavior is expressed via the introduction of one (or
possibly multiple) polarization current(s). In the simplest version of a dispersion model (that is the
framework used in this work), the evolution of the polarization currents is driven by auxiliary ODE’s
that are linearly coupled to Maxwell’s equation as source currents.

For the sake of clarity, we recall the most classical version of such dispersion models called the
generalized dispersion model.

µ0∂tH = −∇×E,
ε0εs∂tE = ∇×H− Jf − Jb,

∂tJf = −γJf + ω2
Pε0E,

Jb = J 0 +
∑
i∈L1

J i +
∑
i∈L2

J i,

J 0 =

σ +
∑
i∈L2

J i

E,

J i = aiE− biPi, ∀ i ∈ L1,

∂tP i = J i, ∀ i ∈ L1,

∂tJ i = (ci − difi)E− fiJ i − eiP i, ∀ i ∈ L2,

∂tP i = diE + J i, ∀ i ∈ L2.

(3.23)

The fields Jf and Jb are the polarization currents of respectively the free and bound electrons. The
parameters γ, ω2

P and σ are given physical parameters. The bound polarization decouples into several
polarization currents. Their evolution is given using the set of parameters (ai, bi)i∈L1 , (ci, di, ei, fi)i∈L2 ,
that are given parameters, used to design the model according to experimental data. The classical
Drude model, as referred to in this paper, corresponds to the case where Jb = 0.

We refer the reader to [18, 8] for more details.
In the sequel for realistic numerical simulations, we will rely on such models. The extension of the

field-transform technique is straightforward in this case.
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4. Numerical results

We now concentrate on the numerical results. We will first provide some useful observables. Then, we
illustrate the behavior inferred from the theoretical results and then tackle several nanophotonic test
cases.

4.1. Observables

A few observables are usually at the heart of the analysis of periodic structures. In this section, we
shortly review some of them, and see how they transform in the case of oblique incidence.

4.1.1. Reflection and tranmission

The most common quantities of interest for periodic structures are certainly the reflectance R and
the transmittance T , which are frequency-dependent quantities that provide informations about the
capability of a structure to reflect or let power flow through it. They are usually computed from the
time-averaged Poynting vector:

π = 1
2<

(
Ê× Ĥ∗

)
, (4.1)

where we denote by ·̂ the Fourier transform.
Integrated over proper monitoring surfaces, this leads to the knowledge of R and T :

R (ω) =

∫
Si

πsca · n∫
Si

πinc · n
, T (ω) =

∫
So

πtot · n∫
Si

πinc · n
,

where the subscripts refer to scattered, incident and total field.
Thanks to the conjugate in expression (4.1), applying the field transform (2.2) simply leads to:

π = 1
2<

(
P̂× Ŝ∗

)
. (4.2)

4.1.2. Diffraction efficiency

A particularly important class of periodic structures is that of gratings, which have the ability to
diffract incident light in a discrete set of beams, each one propagating in a specific direction. The
functioning of a grating is usually characterized by the computation of its diffraction efficiencies
ηn,m, which describe how the transmitted (or reflected) power divides between the existing diffraction
orders [12]. Assuming a doubly periodic domain with lateral sizes ax and ay, the propagative scattered
far field at a fixed height z0 above the grating can be decomposed on a Fourier basis:

Êsca(r, ω) =
∑

(n,m)∈Z2

en,m(ω) exp
[
i
(
ksca
x x+ ksca

y y
)]

=
∑

(n,m)∈Z2

en,m(ω) exp [i ((kx + kn)x+ (ky + km) y)] ,
(4.3)

where we defined kn = 2πn
ax

, km = 2πm
ay

. In expression (4.3), each couple (n,m) contributes to the sum
under the condition that:

ksca
z =

√
|k|2 − (kx + kn)2 − (ky + km)2 ∈ R, (4.4)
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meaning that only propagative modes can contribute to the far field. The complex Fourier coefficients
are defined by:

en,m(ω) = 1
axay

∫
ax

∫
ay

Ê(r, ω)|z0 exp [−i ((kx + kn)x+ (ky + km) y)] dxdy. (4.5)

Analogous steps apply for theH field, leading to a similar expression for hn,m(ω). For each propagative
mode, an associated Poynting vector can be computed:

πn,m (ω) = 1
2<

(
en,m (ω)× h∗n,m (ω)

)
, (4.6)

from which the mode-wise diffraction efficiency can be defined:

ηn,m(ω) = axay πn,m(ω). (4.7)

The diffraction efficiency is related to the reflectance as follows, under condition (4.4):

R(ω) =
∑

(n,m)∈Z2

ηn,m(ω), (4.8)

As can be seen from expressions (4.6) and (4.7), the definition of ηn,m remains unchanged under
transformation (2.2):

πn,m (ω) = 1
2<

(
pn,m (ω)× s∗n,m (ω)

)
, (4.9)

where pn,m and sn,m are respectively defined using expression (4.5) replacing Ê with respectively P̂
and Ŝ.

Remark 4.1. All these quantities are here defined as functions of frequency. However, in the numer-
ical results sections, these latter will be instead represented as functions of wavelength. Abusing the
notations, we will still write R(λ), ηn,m(λ) etc.

4.2. Time-step reduction

As a first validation of the results of section 2.2, we consider a bi-periodic domain of lateral size 75
nm that consists of vacuum, terminated with CFS-PMLs regions at the top and bottom. A broadband
plane wave with significant intensity in the range λ ∈ [150, 600] nm is injected through a Total-
Field/Scattered-Field (TF/SF) interface, and the quantity ∆t = ∆t(θ=0°)

∆t(θ) for θ ∈ [0°, 90°[ is computed,
where ∆t(θ) denotes the maximal stable time-step found for a given angle θ. The scheme used is
LSRK4 with upwind fluxes (α = 1). The results, obtained for piecewise P3 polynomial approximation,
are shown in figure 4.1 along with λx+ . Although there is not a perfect match, the general trend
confirms our previous analysis. The deviation observed for large incidence angles can be attributed to
the dissipation induced by the fully upwind scheme that stabilizes the numerical algorithm.

4.3. Critical angle with dielectric background

We now consider a slab of vacuum (cr = 1) embedded in a dielectric background for which cb = 1√
2 ,

i.e. εb = 2. In this case, the expected critical angle is θc = 45°. The rest of the configuration is similar
to that of last section. In figure 4.2, we plot the figure of merit ∆t : as before, although the match
is not perfect, the trend of the numerical results decently follows the theory. As it was suggested in
section 2.2, no stable time-step can be found for θ > θc, confirming the previous analysis.
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Figure 4.1. Relative maximal stable timestep ∆t = ∆t(θ=0°)
∆t(θ) for θ ∈ [0°, 90°[

compared to λx+ in vacuum.
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Figure 4.2. Relative maximal stable timestep ∆t = ∆t(θ=0°)
∆t(θ) for θ ∈ [0°, 45°[

compared to λx+ for a slab of vacuum embedded between two dielectric half-spaces.

4.4. Bi-periodic gold slab

We consider the case of a bi-periodic gold slab of thickness 50 nm embedded in vacuum and illuminated
by a wide-band plane wave pulse with TM polarization. As before, the lateral size of the domain is 75
nm, and the incident field is injected through a TF/SF interface. The gold is described by a simple
Drude model, and the wavelength range of interest is [150, 600] nm. In this problem, the observable of
interest is the reflectance, whose analytical solution can be computed with a transfer matrix method.
Regarding the DGTD discretization, a P3 polynomial approximation is used along with a fourth-order
scheme in time with upwind fluxes (α = 1), leading to an overall fourth-order accuracy in both space
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and time. Results are shown in figure 4.3. A perfect match is observed between the numerical and the
exact solution, both for normal and oblique incidences.
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R
(λ
)

0°
20°
50°

Figure 4.3. Reflectance of a bi-periodic 50 nm thick gold slab under nor-
mal and oblique incidence computed with third-order polynomial basis (full line)
compared to exact solution (dots).

4.5. Dielectric color filter

We now consider optical color filters composed of silicon nanodisks deposited on a glass substrate
and embedded in PMMA, as presented in [13] (see figure 4.4). In this contribution, the authors
present a set of substractive filters, for which they compute and measure the transmission in normal
incidence. In this section, we reproduce the results for a magenta filter under normal incidence, before
exploring its response under oblique incidence using the field transform technique, for various angles
and polarizations. Results are shown in figure 4.5. As can be seen, at oblique incidences, the filter
response is altered: in TM polarization, the filtered wavelength is blue-shifted for θ = 20°, while the
quality factor of the filter is seriously decreased once 40° of incidence is reached. In TE polarization,
the filtered wavelength is red-shifted for θ = 20° with new resonances appearing for longer wavelengths.
For θ = 40°, the filter efficiency is seriously compromised. As an illustration, we show in figure 4.6 a
field map of the Fourier transform of Ex at the operating wavelength of the color filter, illuminated by
a monochromatic plane wave with incidence angle θ = 30°. For clarity, the fields are not represented
in the PML regions (at the bottom and the top of the domain).

4.6. Two dimensional silicon grating

We now consider a two dimensional silicon grating on a silicon substrate of infinite depth as depicted
in figure 4.7. The lateral periodic unit cell length is dG = 700 nm, the height of the grating hG = 350
nm, and the substrate infinitely extended in the negative z direction. For silicon, we used the material
parameters from [3]. As for the previous examples, the incident field is injected through a TF/SF
interface, on which the reflectance R and diffraction efficiencies ηn,m are computed. Results of the
computation for normal (θ = 0°) and oblique (θ = 20°) incidences are shown in figures 4.9 and 4.8.
In normal incidence, it is visible that the normal mode η0,0 is the only contributor to the reflectance
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Figure 4.4. Silicon-based color filter embedded in PMMA, deposited on a
glass substrate. For the magenta filter, the height of the silicon cylinder is 80 nm,
and its diameter is 130 nm. The lateral size of the domain is 330 nm. At the bottom,
the glass is embedded directly in the PML region, thus mimicking an infinitely thick
glass layer.
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Figure 4.5. Transmission of the magenta color filter at normal and oblique
incidences, for both TE and TM polarizations. For both polarizations, the filtering
function is altered, either by diminishing its efficiency, or by shifting the filtered wave-
length.

above 500 nm. At lower wavelengths, a set of four symmetric high-order diffraction modes appear. As
could be expected, the situation is different at oblique incidence, where high-order diffraction modes
appear at larger wavelengths. Only two symmetric modes appear below 600 nm, while a higher-order
asymmetric mode is present below 480 nm.
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Figure 4.6. Field map of the Fourier transform of Ex for the color filter
setup. The device is illuminated from below by a monochromatic plane wave with
incidence angle θ = 30°.

5. Conclusions

In this paper, we complemented the work of [11] on the use of the field transformation technique
to handle oblique incidence with regular PBC on 3D periodic structures in the DGTD framework.
The transformed equations were analyzed with the method of characteristics and energy techniques,
highlighting several limitations that were then confirmed through numerical experiments. The DGTD
discretization of the transformed system was recalled, and the stability of the semi-discrete formulation
was proven. Then, insights were given about the effects of the field transformation on the incident
field, the observables, and the use of CFS-PMLs in this context. Our implementation was validated
on a textbook case, before being applied to the study of two real-life cases: (i) the robustness of a
silicon-based color filter against various incidence angles, and (ii) the computation of the efficiency of
high-order diffraction modes in a silicon grating.

156



Simulating 3D periodic structures at oblique incidences

Figure 4.7. Computational mesh of the grating unit cell. Gray: periodic bound-
ary faces; pink: TF/SF interface; red: silicon grating on infinite substrate; the remaining
domain is air. Both the silicon substrate and the air are truncated by PMLs (not shown
here) in the ẑ direction.
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Figure 4.8. Diffraction efficiencies of the grating at normal incidence (θ =
0°). The reflectance coefficient is shown in gray dots, while the relevant diffraction effi-
ciencies are shown in blue, cyan and orange. As could be expected, the tilted incidence
angle gives rise to different high-order diffraction angles than for the normal incidence
case (figure 4.8). Only two symmetric modes appear below 600 nm, and an additional
asymmetric mode is also present below 480 nm.
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Figure 4.9. Diffraction efficiencies of the grating at oblique incidence (θ =
20°). The reflectance coefficient is shown in gray dots, while the relevant diffraction
efficiencies are shown in dark and light blue. As can be seen, the normal mode η0,0 is
the only contributor to the reflectance above 500 nm, where a set of four symmetric
modes appear.
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