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Abstract. An extension and numerical approximation of the shear shallow water equations model, recently
proposed in [25], is considered in this work. The model equations are able to describe the oscillatory nature of
turbulent hydraulic jumps and as such correct the deficiency of the classical non-linear shallow water equations
in describing such phenomena. The model equations, originally developed for horizontal flow or flows occurring
over small constant slopes, are straightforwardly extended here for modeling flows over non-constant slopes and
numerically solved by a second-order well-balanced finite volume scheme. Further, a new set of exact solutions to
the extended model equations is derived and several numerical tests are performed to validate the numerical scheme
and its ability to predict the oscillatory nature of hydraulic jumps under different flow conditions.

Keywords. Shear Shallow Water model, Shallow Water equations, Turbulent Hydraulic jumps, Free surface
flows, Finite Volumes, Well-balancing.

1. Introduction

Hydraulic jumps are commonly observed in laboratory experiments, river flows or coastal areas. The
classical description of this phenomenon uses the shallow water hyperbolic system of equations (SWE)
and assimilates hydraulic jumps to a discontinuity of zero length governed by jump relations between
the supercritical upstream state and the subcritical downstream one as:

[h(u−D)] = 0;[
hu(u−D) + gh2/2

]
= 0

(1.1)

where here [·] stands for the jump (·)R − (·)L between the upstream state (·)L and the downstream
one (·)R, h is the water height, u the flow velocity, g the gravity acceleration and D the jump velocity.
This classical description of hydraulic jumps has well-known shortcomings. As observed in many
laboratory experiments, see e.g [4], hydraulic jumps have a non-zero width and their shapes are
different according to the upstream Froude number. In particular, for large Froude numbers (typically
larger than 1.7) the jump becomes turbulent; the water depth rapidly increases, large scale turbulent
eddies, forming a roller, appear beneath the free surface and intense vorticity generation is observed.
Oscillations with well-defined frequencies of the toe of the hydraulic jump have been also reported [22,
5].

Building on an earlier work devoted to roll waves in [24], and more recently in [16], Richard and
Gavrilyuk have proposed in [25] a new model for turbulent hydraulic jumps, called the Shear Shallow
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Water Equations (SSWE), that attempt to correct most of the deficiencies of the classical shallow
water description of these phenomena. In particular, their model is able to compute the jump’s toe
oscillations with a frequency that compare reasonably well with experiments. This SSWE model was
obtained by taking into account the fluctuation of the horizontal velocity along the vertical direction.
This model is also interesting since it contains only two adjustable parameters with a well-defined
physical interpretations. These two parameters, namely the wall enstrophy φ and the energy dissipation
coefficient Cr have been determined in Richard and Gavrilyuk’s model from the experiments by Hager
and Bremen [13].

The model of [25] has been developed for horizontal flows or flows occurring on a small constant
slope. The main purpose of this work is to investigate, also numerically, a straightforward extension
of this model for flows on non-constant slopes. In particular, no attempts have been made to adjust
the parameters of the model to this new situation hence, we compute these values as proposed in [25].
The remainder of this paper is the following: In Section 2, we recall some salient features of the
model proposed in [25] and describe its extension for flows over a non-constant topography. Then, in
Section 3, we describe the numerical method used to approximate the solutions of the model. Actually,
the model of [25] is a conservative hyperbolic system with a stiff source term whose approximation is not
straightforward. The design of a second-order (in space and time) finite volume numerical scheme used
for its extension on non-constant topography necessitates to integrate some modifications related to the
preservation of equilibrium (lake at rest) solutions. In the last section, we present some numerical tests
and corresponding results. Some new analytic solutions of the SSWE over non-constant topography
are derived, by modifying some well-known benchmark cases used in shallow water and open channel
flow studies. This consists another novel aspect of this work. Finally, a numerical comparison with
experimental data from a forced hydraulic jump is also presented.

2. The shear shallow water model

For a detailed derivation of this model, we refer to [24] and [25] and here briefly summarize the rationale
leading to this model. The shallow water model uses the conservation of mass and momentum and thus
does not consider explicitly the physical principle of energy conservation. In contrast, the SSWE deals
explicitly with the conservation of energy that is split into three components: kinetic, potential and
turbulent energy, the latter being associated with the fluctuation of the horizontal velocity along the
vertical direction. For hydraulic jumps, these fluctuations are themselves associated with the presence
of small scale vortices near the bottom associated to the boundary layer and to the existence of a large
scale roller close to the water surface. Using physical arguments, the turbulent energy is expressed
in term of a variable called enstrophy with two components : a small scale enstrophy φs associated
with the near bottom boundary layer and a large scale enstrophy Ψ associated with the roller flow.
Incorporating in this description, a space varying bottom topography, b ≡ b(x) leads to the following
system written in one-dimensional conservative form [25] :

∂tU + ∂xF(U) = Sb + Sf , (2.1)

where the vectors of conserved variables U, fluxes F and source terms Sb and Sf are defined as

U =

 h
q
E

 , F =


q

q2

h
+ P

q(E + P )/h

 , Sb =

 0
−gh∂xb

0

 , Sf =


0

−Cf
|q|q
h2

−
(
Cf + Cr

Φ− φs

Φ

) |q|3
h3


(2.2)
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with h being the water depth, q = hu the unit discharge, u the average velocity, Φ the total enstrophy
and is E the total energy defined as

E = h
u2

2 + g
h2

2 + ghb+ Φh
3

2 .

In this relation, the first two terms represent, respectively, the kinetic and potential energies while the
last one stands for a turbulent energy defined thanks to the total enstrophy Φ. For more details on
the physical interpretation of the model we refer to [25]. Further, P is the pressure given as

P = gh2

2 + Φh3.

By defining an "internal energy", e, by

e = gh

2 + gb+ Φh
2

2 ,

the following equation of state can be verified

P = 2he− gh2

2 − 2ghb = 2E − hu2 − gh2

2 − 2ghb.

The two source terms in (2.1) Sb and Sf stand, respectively, for the topography and the friction
terms. In the latter, Cf is the friction coefficient, related to the Darcy-Weisbach coefficient f by
Cf = f/8 and Cr is a drag coefficient corresponding to the dissipation of the entrophy in the turbulent
roller generated in a hydraulic jump. Further, the total enstrophy is decomposed as

Φ = Ψ + φs

where φs is the small scale enstrophy describing the intensity of the vortices in the boundary layer
near the bed, and Ψ is the large scale (roller) enstrophy. Moreover, it can be seen that system (2.1)
implies the following equation for the enstrophy

∂tΦ + u∂xΦ = − 2
h3Cr

Φ− φs

Φ |u|3. (2.3)

System (2.1) admits the following quasi-linear form, setting W = (h, u,Φ)T,

∂tW + A∂xW = S̃b + S̃f

where

A =

 u h 0
g + 3hΦ u h2

0 0 u

 , S̃b =

 0
−g∂xb

0

 , S̃f =


0

−Cf
|u|u
h

− 2
h3Cr

Φ− φs

Φ |u|3

 .
The characteristic polynomial of A is then given as

χ(A) = (u− λ)
(
(u− λ)2 − (gh+ 3Φh2)

)
with roots λ1 = u−α, λ2 = u, λ3 = u+α where α =

√
gh+ 3Φh2, verifying the hyperbolic nature

of system (2.1).
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An important property of (2.1), related to the source terms, is that admits non-trivial steady-states.
Following from (2.1), these may be given as

∂xq = 0

q∂xu+ gh∂x(h+ b) + ∂x(Φh3) = −Cf
|q|q
h2

∂x(u(E + P )) = − 2
h3Cr

Φ− φs

Φ
|q|3

h3

From the above equilibria, some classes of steady-state solutions can be derived which can help to
asses the performance of a numerical scheme and will be considered later on in Section 4.3.

An important elementary solution is the so-called flow at rest that is easily obtained assuming
u = q = 0 and h + b = η(x, 0) = η0 (constant). For the SSWE we see that from the momentum
equation a steady equilibrium is obtained in this case if the enstrophy verifies also

∂x(Φh3) = 0.
This relation is verified if Φ = 0 that is consistent with the physical requirement that no large or small
scale enstrophy is created in the stagnant water case. Therefore,W0 = (η0 − b, 0, 0)T defines a class
of exact steady solution of the model.

3. Numerical method

We describe here a relatively simple finite volume (FV) scheme for system (2.1) that is of second-order
accuracy in space and time and is well-balanced in the sense of preserving exactly the flow at rest
solution thus allowing to have an efficient treatment of the topography source term [1, 28]. In practice,
schemes preserving this equilibrium (also called the C-propery) give good results even in unsteady
cases [8]. In this FV scheme a splitting method is adopted where at the first step we solve the system
of equations without the drag term Sf and the well-balanced spatial discretization is utilized. At the
second step in the splitting method, we take into account the friction term and a system of ordinary
equations is to be solved. For this, we will use the fact that due to the special structure of system (2.1)
these ODEs can be solved in an exact way.

3.1. Advection step and well-balancing

At the first step of the splitting, we consider the following semi-discrete form of the FV scheme for
the convection terms and topography source term Sb

∆x∂tUi + Fi+1/2 − Fi−1/2 = Si+1/2
b + Si−1/2

b (3.1)

where i = 1, . . . , N refers to the center of the computational cell Ii = [xi−1/2, xi+1/2] = [xi− 1
2∆x, xi +

1
2∆x], Fi±1/2 are the numerical fluxes at the cell’s interfaces i± 1/2. To design the topography source
terms discretisations at the cell interfaces, Si±1/2

b , we need to specify first the form of the numerical
fluxes. In this work, we consider the classical Rusanov numerical flux which writes as

Fi+1/2 = 1
2
(
F(UR

i+1/2) + F(UL
i+1/2)

)
−
Ci+1/2

2
(
UR

i+1/2 −UL
i+1/2

)
(3.2)

where (·)L
i+1/2 and (·)R

i+1/2 denote the left and right (possibly reconstructed) solution and topography
values at the i+ 1/2 interface and

Ci+1/2 = sup
U=UR,L

i+1/2

(
sup

j=1,2,3
|λj(U)|

)
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with λj being the eigenvalues of the system. For a first-order spatial scheme one has UR
i+1/2 = Ui+1

and UL
i+1/2 = Ui.

Now, plugging the numerical flux expression (3.2) in the scheme (3.1) and after some simple ma-
nipulations, we can write it in the following fluctuation form

∆x∂tUi + 1
2
(
F(UR

i+1/2)− F(UL
i+1/2)

)
+ F(UL

i+1/2)− F(Ui)−
Ci+1/2

2
(
UR

i+1/2 −UL
i+1/2

)
+ 1

2
(
F(UR

i−1/2)− F(UL
i−1/2)

)
− F(UR

i−1/2) + F(Ui) +
Ci−1/2

2
(
UR

i−1/2 −UL
i−1/2

)
= Si+1/2

b + Si−1/2
b .

For the flow at rest equilibrium the above scheme takes the following form, by setting ∂tUi = 0 and
u = q = 0,

1
2

 0
gh̄i+1/2∆hi+1/2

0

−
 0
gh̄−i+1/2∆h−i+1/2

0

− Ci+1/2
2

 ∆hi+1/2
0

gb̄i+1/2∆hi+1/2


+ 1

2

 0
gh̄i−1/2∆hi−1/2

0

+

 0
gh̄+

i−1/2∆h+
i−1/2

0

+
Ci−1/2

2

 ∆hi−1/2
0

gb̄i−1/2∆hi−1/2


= Si+1/2

b + Si−1/2
b

where the following simple notations have been used

(̄·)i±1/2 =
(·)R

i±1/2 + (·)L
i±1/2

2 , (̄·)−i+1/2 =
(·)i + (·)L

i+1/2
2 , (̄·)+

i+1/2 =
(·)i+1 + (·)R

i+1/2
2

and

∆(·)i±1/2 = (·)R
i±1/2 − (·)L

i±1/2, ∆(·)−i+1/2 = (·)i − (·)L
i+1/2, ∆(·)+

i+1/2 = (·)i+1 − (·)R
i+1/2.

We note that for a first-order scheme and following from the above notation the terms gh̄−i+1/2∆h−i+1/2
and gh̄+

i−1/2∆h+
i−1/2 vanish.

Now, the simplest definition of the discrete source terms, guaranteeing that well-balancedness, is
achieved are the following

Si+1/2
b + Si−1/2

b =

− 1
2

 0
gh̄i+1/2∆bi+1/2

0

+

 0
gh̄−i+1/2∆b−i+1/2

0

+
Ci+1/2

2

 ∆bi+1/2
0

gb̄i+1/2∆bi+1/2


− 1

2

 0
gh̄i−1/2∆bi−1/2

0

−
 0
gh̄+

i−1/2∆b+
i−1/2

0

− Ci−1/2
2

 ∆bi−1/2
0

gb̄i−1/2∆bi−1/2

 .
The above discretization exactly preserves the hydrostatic conditions by enforcing at a cell interface
that ∆h = −∆b, while the terms gh̄−i+1/2∆b−i+1/2 and gh̄+

i−1/2∆b+
i−1/2, which vanish for a first order

scheme, enforce the hydrostatic condition by satisfying ∆h± = −∆b±.
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3.2. Friction and drag terms treatment

Concerning the treatment of the source term Sf , at the second splitting step, we use (3.3) as a
prediction without the friction and drag terms, i.e.

U?
i = Un

i −
∆tn

∆x
(
Fi+1/2 − Fi−1/2 + Si+1/2

b + Si−1/2
b

)
(3.3)

where for simplicity the forward Euler time stepping is presented with ∆tn being the current time
step and Un

i the average value at time tn. At the second splitting step the following system of ODEs
has to be solved

dU
dt

= Sf (U) (3.4)

with initial condition U?
i calculated at the first step. Using the same strategy as in [25], the first two

equations of the system can be explicitly solved in each cell Ii as

hn+1
i = h?

i , qn+1
i = q?

i

1 + ∆tn|q?
i |

Cf

(h?
i )2

. (3.5)

The last equation for the energy, following from (2.3), is then

dΨi

dt
= − 2CrΨi

Ψi + φs

(
qi

h2
i

)3

. (3.6)

Integrating it, Ψn+1
i can be found in implicit form:

Ψn+1
i −Ψ?

i + φs ln
(

Ψn+1
i

Ψ?
i

)
= Cr

Cf

(
q?

i

(h?
i )2

)2


1(

1 + ∆tn|q?
i |

Cf

(h?
i )2

)2 − 1

 (3.7)

which is then solved by the Newton-Raphson method.

3.3. Higher-order spatial and temporal discretizations

As it was mentioned in Section 3.1, a second-order spatial discretization can be obtained by properly
define the left and right stated at a cell Ii interface. To this end, we utilize the classical MUSCL
reconstruction technique, we refer for example in [26], which provides the following states at a cell
interface for each of the components of Ui as.

uL
i+1/2 = ui + 0.5s(ri)(ui − ui−1), uR

i+1/2 = ui+1 − 0.5s(ri+1)(ui+1 − ui),
where

ri = ui − ui−1
ui+1 − ui

and s(ri) is a limiter function. In the present work the classical Van Leer slope limiter has been utilized
in the numerical results presented later on in Section 4.

To achieve second-order accuracy in time the optimal, in the sense of the CFL condition, second-
order two-stage Strong Stability Preserving (SSP) Runge-Kutta (RK) method has been implemented.
This reads as follows

U(1)
i = Un

i + ∆tnL(Un
i );

Un+1
i = 1

2Un
i + 1

2U(1)
i + 1

2∆tnL(U(1)
i )
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where L(U) is the spatial operator from (3.3) and ∆tn denoted the time-step. It is noted that, the
friction and drag term treatment is implemented at the end of each RK step. The stability of the
numerical scheme is imposed by the usual CFL condition for explicit schemes and the time-step ∆tn
is adaptively computed from it as

∆tn = CFL · ∆x
maxi{Ci+1/2}

where Ci+1/2 is computed as in Section 3.1 for each Ii computational cell. First-order schemes are
stable if the CFL condition is respected for a CFL number less than one. However, one has to reduce
by two (and sometimes by three) the time step to carry out simulations with the second-order scheme
to preserve stability. Thus, the CFL value was set to 0.4 in all the computations performed in the next
section, unless otherwise stated.

An general algorithmic view of the order that the variables are computed within the numerical
scheme is given below.

Algorithm The splitting method for the SSWE
Step 1. Given the initial data at time level n = 0 for h, q and Ψ compute the total energy E.
Step 2. Compute the advective part (7) to obtain the prediction values h?

i , q?
i and E?

i .
Step 3. Compute the prediction of the roller enstrophy Ψ?

i from E?
i .

Step 4. Solve (9) and (11) to get hn+1
i , qn+1

i and Ψn+1
i to compute En+1

i .

Remark. We note here that, as it is well-known, using the Rusanov numerical flux in our finite
volume approach it is expected to behave in a dissipative way thus, necessitating the use of relative
fine meshes. However, this solver has good stability properties without needing to solve the Riemann
problem and can be considered as a first approach in solving the extended SSWE. Furthermore, as
shown in Section 3.1, it can be extended as to produce a well-balanced scheme. The development
of more elaborate well-balanced finite volume schemes for the SSWE is not in the main scope of
this presentation but it constitutes an interesting research problem which can benefit from further
investigations.

4. Numerical tests and solutions

In this section, we present numerical tests and results to verify the ability of the proposed numerical
scheme to approximate the SSWE model and the phenomena it aims to describe. More precisely, our
main interested is for approximating non-stationary hydraulic jumps over constant and non-constant
topographies which exhibit an oscillatory behavior in their toes and free surface. Further, and of equal
importance, a family of exact solutions to the stationary SSWE is also derived.

4.1. Hydraulic jumps with different Froude numbers

These test cases were presented in [25] and are used here as to demonstrate the ability of the numerical
scheme to reproduce the expected (non-stationary) behavior for non-stationary hydraulic jumps on
a flat bottom. The hydraulic jump features depend on the upstream (of the jump) average Froude
number (Fr1). As it was demonstrated in [25], the jump toe (with position x1(t)) oscillates for all
Froude numbers greater than ∼ 1.5. The main frequency of the oscillations decreases as Fr1 increases
while the oscillation amplitude increases.

In the cases presented here we consider a channel of length L = 10 m and given the values for φs, Cf

and Cr, supercritical inflow conditions, at x = 0 m, are imposed by setting h(0, t) = h0 m, q(0, t) = q0
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m2/s and Ψ(0, t) = 0. At x = L subcritical boundary conditions are obtained by imposing a blockage
by a sharp-crested weir of height dw with the flow given by the empirical relation [15]

q(L, t) = f(h) =

0 if h ≤ dw;
2
3Cd

√
2g(h− dw)3 if h > dw,

(4.1)

where the discharge coefficient Cd is given by

Cd = π

π + 2 + 0.08h− dw

dw
.

To compute the numerical flux F(U)N+1/2 = F(U?
N ) at the outflow boundary cell N we need to

estimate the U?
N values as a function of UN . From (4.1), the discharge value is set to

q?
N = f(hN ).

The second condition stems from the fact that ΦN is the Riemann invariant transported by the flow
at the boundary x = L which give

Ψ?
N = ΨN .

Finally, the water depth h?
N is computed by the outgoing characteristic as

uN − u?
N +

∫ hN

h?
N

√
gh+ 3(φs + ΨN )h2

h
dh = 0.

The initial condition for h given in these test cases corresponds to the approximate description of
the hydraulic jump by the SWE based on the famous Bélanger formula of sequential depths which
results to

h(x, 0) =


h0 if x ≤ L

10;
1
2h0

(
−1
√

1 + 8Fr2
0

)
if x > L

10 ,
(4.2)

where Fr0 = q0/
√
gh3

0 is the inflow Froude number. The rest of the initial conditions are q(x, 0) = q0
and Φ(x, 0) = φs. In Figure 4.1 a schematic view of a hydraulic jump, of length Lr, forming in a wide
rectangular channel is presented. The location of the jump is controlled by the downstream weir.

Figure 4.1. Schematic view of a hydraulic jump on a flat bed controlled by a down-
stream weir of height dw

Following from [25], Table 4.1 gives the parameters values used for three test cases. Table 4.2 gives
the target values for water depth h∗ and large-scale enstrophy Ψ∗, upstream of the jump as derived by
the Rankine-Hugoniot relations corresponding to the three balance equations for a stationary shock
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in a horizontal channel, with h2 being the depth at the end of the roller length Lr. The roller length
can be estimated by the experimentally established empirical law [14]

Lr = h1160 tanh
(
Fr1
20

)
− 12h1, 2.5 < Fr1 < 16. (4.3)

Case HJ2 HJ3 HJ4
Average Fr1 2.0 5.56 11.25
q0(m2/s) 0.0835 0.02286 0.0835
h0(m) 0.05 0.011 0.016
Cf 0.00177 0.00236 0.00177
Cr 0.174 0.682 1.74

φs(s−2) 0.87 4.09 2.76
dw(m) 0.026 0.0344 0.135

Table 4.1. Test cases of non-stationary hydraulic jumps on a flat bed: parameter
values used

Case HJ2 HJ3 HJ4
h1(m) 0.0562 0.012 0.0178
h?(m) 0.0966 0.0236 0.0354
h2(m) 0.1313 0.0852 0.2556

Ψ? 23.23 1658.5 4295.5
Lr(m) (from (4.3)) 0.2218 0.3764 1.3884

Table 4.2. Test cases of non-stationary hydraulic jumps on a flat bed: target values

For the numerical results presented in this section, a relative fine grid is used of N = 2000 grid points
as to capture the fine features of the oscillatory nature of the hydraulic jumps. Figure 4.2 presents
the numerical results for case HJ2 for the water depth, h, and Φ = Ψ + φs. The numerical solution
for water depth h is also compared with the stationary profile obtained, assuming q = uh = cst, by
(numerically) solving the system of ODES

dh

dx
= −Cfq

2 + 2CrΨq2/Φ
gh3 + 3Φh4 − q2 ; (4.4)

dΨ
dx

= −2CrΨq2

Φh5 , (4.5)

that depends only on the upstream given data while the numerical solution is that of the initial
boundary value equations (2.1). System (4.4)-(4.5) can be derived from the steady-state momentum
and energy equations of (3) for a horizontal channel (b = 0) since φs and q = uh are constant.
Figure 4.3 presents the oscillations of the jump toe position x1 around its average value with a
frequency of ∼ 1.1Hz and amplitude ∼ 0.045 m. These results are in almost perfect agreement with
those presented in [25].

Next, and in Figures 4.4 and 4.5 the results for test case HJ3 are presented. The comparison between
the numerical solution and that of the stationary profile is presented for three times the roller length
Lr after the jump. Again the jump toe oscillates around an average value with a frequency of ∼ 0.6Hz
and amplitude ∼ 0.098 m.

In Figures 4.6 and 4.7 the results for test case HJ4 are shown. The comparison between the numerical
solution and that of the stationary profile is presented for almost two times the roller length Lr after the
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Figure 4.2. Numerical results at time t = 650s for water depth h and total enstrophy
Φ for test case HJ2
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Figure 4.3. Oscillations in time of the jump toe position x1 for test case HJ2

jump. The jump toe oscillates around an average value with a frequency of ∼ 0.227Hz and amplitude
∼ 0.28 m.

Finally, in Table 4.3 the numerical values obtained for the target values in all three cases are
presented along with the space width in which the toe position x1 oscillates. For the roller length
estimation, following [25], a good estimation for its end is considered to be when the large scale
(roller) enstrophy Ψ = φs/2. Comparing Tables 4.2 and 4.3 it can be seen that in all tests presented
the expected oscillatory behavior of the hydraulic jump is demonstrated. The values of the water
height obtained from the numerical simulation are very close to the ones predicted in Table 4.2 and
only the values obtained for the enstrophy Φ are underestimated for cases HJ2 and HJ3. Nevertheless,
the enstrophy exhibits the correct behavior with a large and sharp increase at the jump followed by
a rapid decrease after the jump and up to the end of the roller. As such its maximum value is of
relative importance to the obtained results, see for example [16], since all other values are in close
agreement with the target ones. The oscillatory nature of the jump toe position in terms of frequency
and amplitude is in almost perfect agreement with the results presented in [25] for all cases.
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Figure 4.4. Numerical results at time t = 550s for water depth h and total enstrophy
Φ for test case HJ3
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Figure 4.5. Oscillations in time of the jump toe position x1 for test case HJ3

Case HJ2 HJ3 HJ4
h1(m) 0.0565 0.0118 0.0181
h?(m) 0.09862 0.0258 0.0363
h2(m) 0.1308 0.0877 0.2588

Ψ? 21.4 855 3580
Lr(m) 0.215 0.38 1.46
x1(m) [2.868, 2.91] [0.367, 0.465] [0.85, 1.13]

Table 4.3. Test cases of non-stationary hydraulic jumps on a flat bed: numerical values
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Figure 4.6. Numerical results at time t = 350s for water depth h and total enstrophy
Φ for test case HJ4
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Figure 4.7. Oscillations in time of the jump toe position x1 for test case HJ4

4.2. Modified benchmark test problems of [20]

Our aim here is to construct some analytic solutions to the steady SSWE over varying topography.
Although these solutions are not for oscillatory hydraulic jumps (since their corresponding upstream
Froude numbers are less than 1.7) their validity is of importance since they can serve as benchmark
solutions to the model equations and numerical schemes. In [19, 20, 21], a set of realistic steady open
channel flow test cases with analytic solution are given for the Saint-Venant equations. These test
problems are often used for code benchmarking and comparison, we refer for example in [9, 10, 2, 27,
17, 18, 23, 7, 3] among others. Two such cases from [19, 20, 21] are utilized and modified here.

We first recall how these analytic solutions are constructed for the SWE by looking for steady
piece-wise smooth solutions of the SWE characterized by a constant discharge q. Each smooth part
of a solution is connected by a hydraulic jump. On each smooth part of the solution, the momentum
equation becomes

[1− Fr2]h′ + CfFr|Fr| = −b′ (4.6)
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Let x∗ be a point of discontinuity of the solution, the solution hL on the left side of the discontinuity
is arbitrary chosen and (4.6) is used to deduce the left bed slope b′:

[1− Fr2(hL)]h′L + CfFr(hL)|Fr(hL)| = −b′L. (4.7)

By deriving relation (4.7), we can also compute the successive left derivatives of the bed in x∗:
b′L(x∗), b′′L(x∗), . . . , b(n)

L (x∗). Then the Rankine-Hugoniot relation is used to deduce the water height
h∗R on the right side of the discontinuity. The form of the right solution hR(x) is then chosen as a
function defined by n free parameters. These parameters are computed by solving the algebraic system
requiring that h∗R = hR(xR

∗ ) and that the bed at x∗ and its n − 1 successive derivatives are contin-
uous. Using relation (4.6) and its derivatives, gives the n − 1 equations b′R(x∗) = b′L(x∗), b′′R(x∗) =
b′′L(x∗), . . . , b(n−1)

R (x∗) = b
(n−1)
L (x∗) that together with h∗R = hR(xR

∗ ) are solved for the n free parame-
ters.

4.2.1. Flow with a hydraulic jump on a varying bed

The first example of analytic solutions constructed with this strategy is adapted from the Example 4
of [20]. This concerns a 1000 m long channel with a q = 2 m2/s discharge. The flow is supercritical at
inflow with a water depth of h0 = 0.543853 m, it experiences an hydraulic jump at x∗ = 500 m and
then remains subcritical. The water depth is given by the expression:

h(x) =


0.6673794620− 0.1235887893 e−0.004 x for 0 ≤ x < 500

0.7415327355(1.+ a1e−0.02 x+10.0 + a2e−0.04 x+20.0 for 500 ≤ x ≤ 1000
+a3e−0.06 x+30.0) + 0.5932261883 e0.001 x−1

(4.8)

and equation (4.6) allows to compute the corresponding bed slope. The values of the parameters
in (4.8) are a1 = −0.2935698553, a2 = 0.4080344466, a3 = −0.4662074787. Note that the values of the
parameters a1, a2, a3 are slightly different from the values given in [20]. This is due to the fact that
the friction law used in [20] is the Manning one while here the Darcy-Weisbach law with a friction
coefficient Cf = 0.0053125 has been used. We refer in Appendix A for an explanation and the relation
between the two friction formulas.

While (4.8) is an exact solution of the nonlinear SWE it is not an exact solution of the shear shallow
water model (2.1). Instead of (4.6), steady piece-wise smooth solutions of this model are characterized
by the system of equations:

momentum [1− Fr2(h) + 3Φh/g]h′ + h2Φ′/g + CfFr(h)|Fr(h)| = −b′ (4.9.a)

enstrophy h5ΦΦ′ = −2Cr|q|q(Φ− φs) (4.9.b)

The same strategy as the one used in [20] can be employed to construct analytic solutions of (2.1) on
a varying bed. However, this would result in a bed slope different from the one corresponding to the
analytic solution of the shallow water equations. As our objective is also to compare the two models,
we have found more interesting to use the same definition of the bed slope (that is thus computed
as in [20] by (4.6)) and to numerically integrate the system of ordinary differential equation (4.9)
to get the corresponding solution for the shear shallow water model (2.1). For this model the values
of the small scale enstrophy φs and enstrophy dissipation coefficient Cr are constant and have been
computed as recommended in [24, 25]:

φs := 0.005 · g/hL(x∗), Cr := 0.0688 · Fr(hL(x∗))1.337. (4.10)
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In this case the Froude number upstream of the jump is 1.21. Table 4.4 presents the values obtained
by the analytic solutions of the SWE and the SSWE upstream and downstream of the jump as well
as at the end of the channel for the water depth.

hL hR ΦL ΦR h(1000)
SWE 0.6506535382 0.8405137415 – – 1.3347490
SSWE 0.6506535382 0.8124613430 0.07538 0.156428 1.1856609

Table 4.4. Comparison of exact values between the shallow water model (SWE) and
the shear shallow water model (SSWE) for the modified Example 4 of [20]

Figures 4.8 and 4.9 compare the exact results for water depth given by the two models on this bed
slope as well as the numerical solution for the SSWE obtained with N = 1000 mesh points using a
CFL value of 0.2. For the numerical solution of the SSWE the exact solution of the SWE for h is given
as initial condition while the discharge was set to q(x, 0) = 2m2/s. Setting the relative time variation
for water depth as

R(h) =

√√√√ N∑
i

(
hn

i − h
n−1
i

hn
i

)2

where hn and hn−1 are the water depths at the current and previous time levels, the convergence
criterion for a steady state was defined as R(h) < 10−6. The convergence history is shown in Figure 4.9
(left panel) where the convergence criterion can be seen to be satisfied around 400s.
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Figure 4.8. Water depth for the modified Example 4 case of [20]: Comparison be-
tween the shallow water model (SWE), the shear shallow water model (SSWE) and
the numerical solution for SSWE

It can be seen that up to the hydraulic jump, the two analytic solutions cannot be distinguished.
This is due to the fact that the solution for the enstrophy upwind to the discontinuity location x∗ is
given by : Φ ≡ φs; Φ′ ≡ 0 that is an exact solution of (4.9b). Then (4.9a) differs from the momentum
equation of the shallow water model only by the term 3φsh/g that is never larger than 10−6 for x < x∗
(φs = 0.07538574235). On the discontinuity, the SSW model predicts an increase of the enstrophy and
a smaller jump of the water height than in the SWE model. Downwind of the jump, the enstrophy
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Figure 4.9. Residual convergence (left) and zoomed area of water depth for the mod-
ified Example 4 case of [20]: with comparison between the shallow water model (SWE),
the shear shallow water model (SSWE) and the numerical solution for SSWE

relaxes very rapidly to the value of the small scale enstrophy. This is also confirmed numerically in
Figure 4.10 (left panel), although the maximum value of ΦR is slightly underestimated. Nevertheless,
the numerical solution of the SSWE for the water depth is almost identical to the analytic solution.
The water height slowly increases for the two models, with the value computed by the SSW model
being continuously smaller than the value given by the SWE model. Further, the well-balance property
of the numerical scheme is verified numerically on the right panel of Figure 4.10 where the computed
discharge is presented. Only at the position of the jump a small glitch in the expected steady solution
can be observed. This is a common behavior of all well-balanced schemes that satisfy the stagnant
water well-balanced property. Convergence studies, verifying the order of accuracy of the numerical
scheme using the exact solution from this test case are also given in Appendix B.
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Figure 4.10. Numerical solution of the SSWE for total enstrophy (left) and discharge
(right) for modified Example 4 of [20]
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4.2.2. Flow on constant slope followed by a hydraulic jump

This test case is analogous to the one described in [19] (page 120) as problem 5. The domain is 100 m
long and on the left of the discontinuity, located in x∗ = 50 m, water flows with a constant depth of
0.7 m on a bed of constant slope. Then the bed flattens out smoothly and creates an hydraulic jump.
This test case from [19] refers to a prismatic channel and uses the Manning friction law. In order to
get results close to the ones in [19] we first have to estimate the discharge. For that we estimate, from
the results in [19], the jump of the water height at the discontinuity from the Belanger relation

hR/hL = (
√

1 + 8Fr2
L − 1)/2

which gives the jump in the water height as a function of the upwind Froude number. From that we
deduce the Froude number on the left side of the discontinuity. With hR = 1.306421438, this give
a Froude number of 1.635459113 and a discharge of q = 3 m2/s. It remains to compute the friction
coefficient of the Darcy-Weisbach law. First, from the formula given in [19] (p. 117), we compute that
the constant slope on the left is b′L = −0.06119282892. Then using relation (4.7) with h′ ≡ 0 we deduce
the friction coefficient Cf = 0.02287816294. Then, the water depth is given by the expression:

h(x) =


0.7 for 0 ≤ x < 50

exp (−0.5(x− x∗))
4∑

i=0
ki

(
x− x∗

100− x∗

)i

+ r(x) for 50 ≤ x ≤ 100,
(4.11)

where r(x) = 1.9 exp(0.0005(x − 100)). The k0 coefficient has the value of hR(x∗) − r(x∗) in order
for the water height on the right to be continuous while the other coefficients are given as: k1 =
−9.314064506, k2 = −73.51227688, k3 = −225.0402141 and k4 = 359.7904991. The bed slope profile
then results from expression (4.6). This suffices to define the test case for the SWE model. For the
SSWE model we need in addition to define the values of the small scale enstrophy and dissipation
coefficient of the enstrophy. Using again the relations given in [24, 25] we obtain:

φs := 0.005 · g/hL(x∗) = 0.07007142855, Cr := 0.0688 · Fr(hL(x∗))1.337 = 0.1328081433. (4.12)
Then, we numerically integrate the system of ordinary differential equations (4.9) to get the corre-
sponding solution for the SSWE model.

Table 4.5 compare the exact results for the water depth given by the two models for this bed slope.
Again the jump in water height obtained by the SSWE model is smaller than with the plain SWE.
However, on the outflow water depth the difference is relatively small with the difference of water
height between the two models being smaller than 6cm. Figure 4.11 compares these exact solutions
with the numerical solution obtained for the SSWE using N = 1000 grid points. As it can be seen,
also in the area close to the jump, the numerical solution of the SSWE model is again in very close
agreement with its analytic solution. Again, the enstrophy relaxes very rapidly to its pre-shock value,
as shown also in Figure 4.12 (left panel) that displays its numerical solution along with the computed
discharge.

hL hR ΦL ΦR h(100)
SWE 0.7 1.306421438 – – 1.900000001
SSWE 0.7 1.100077788 0.070071428 0.876972679 1.843596552

Table 4.5. Comparison of exact values between the shallow water model (SWE) and
the shear shallow water model (SSWE) for the modified Problem 5 of [19]
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Figure 4.11. Water Depth for Example 5 case of [20]: Water depth for the modified
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Figure 4.12. Numerical solution of the SSWE for total enstrophy (left) and discharge
(right) for modified Problem 5 of [19]

4.3. Flow over a parabolic bump-transcritical flow with a shock

Here we present a modification of a classical test case, from [11], frequently used to asses the per-
formance of well-balanced shock-capturing numerical schemes for approximating steady-state solution
for the SWE with topography. If bottom friction is not considered, an analytic solution is available
for testing the water level calculations for the SWE. Here, we aim to present the numerical solution
obtained by solving the SSWE with all source terms present and asses its behavior. In his test case,
the domain length is L = 25 m with a topography given by:

b(x) =
{

0.2− 0.05(x− 10)2 if 8m < x < 12m,
0 else.
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We choose for initial conditions

h(x, 0) + b(x) = 0.33 m and q(x, 0) = 0 m2/s

and the following boundary conditions{
upstream : q = 0.18m2/s,

downstream : h = 0.33m
.

Due to the steep change in bed elevation, the flow changes from subcritical to supercritical and back
to subcritical.

The Cf = f/8 = 0.001616907601743 friction coefficient in this case was estimate following [25] by
the formula [15]

1√
f

= 2 log10

(
Re
√
f
)
− 0.8

where Re = 4q/ν is the Reynolds number with ν = 1.309 · 10−6 being the kinematic viscosity. For the
SSWE equations the values for φs = 0.005 · g/h1 = 0.607129595246937 and the Cr = 0.0688F 1.337

1 =
0.235228180190780. Since the values h1 and F1 at the jump toe were not known for the SSWE, these
were based on estimates from the numerical results obtained for the SWE solution with friction. The
upstream of the jump average Froude number, Fr1, used to obtain the above values was 2.4 thus, it
is expected that the jump toe will oscillate near some average value.

In Figure 4.13 a comparison is presented between the exact SWE solution (with no friction present)
and that obtained for the SSWE at t = 200 s using a relatively fine mesh of N = 1000 grid points.
For the SSWE the intensity of the jump is lower compared to that of the SWE. The computed total
enstrophy, presented in Figure 4.14 (left panel), exhibits the expected behavior i.e. downwind of the
jump the enstrophy relaxes very rapidly to the value of the small scale enstrophy. In Figure 4.14 (left
panel) the computed discharge is given. More importantly, Figure 4.15 presents the oscillations of the
jump toe position x1 around its average value with an amplitude of ∼ 0.05 m. Finally, the "theoretical"
value of the roller length Lr = 1.1035, obtained from (4.3), closely approximated by the numerical
results which gives a value of 1.180.

Figure 4.13. Water level and topography for the SWE and SSWE (left) and zoom
at the water depth around the hydraulic jump area for the transcritical flow over a
parabolic bump
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Figure 4.15. Position of the jump toe x1(t) for the transcritical flow with a hydraulic
jump over a parabolic bump

4.4. Experimental forced hydraulic jump

Recently, in [6], an experimental and numerical investigation was presented for the developing stages
of forced hydraulic jumps in inclined beds. The main objective of this study was to assess the free
surface and velocity field from a forced hydraulic jump by using nonintrusive measuring techniques
and a mesh-free numerical method. The test case considered here is for an inclination angle of 5o in a
channel of L = 1.14 m long.

A weir of height dw = 0.03 mwas placed at the downstream end of the channel. The inflow conditions
consist of a discharge q0 = 5.608 · 10−3 m2/s and h0 = 0.01 m. The rest of the parameters used for the
SSWE have been computed according to the formulas given in Section 4.3. Based on measured average
values of Fr1 = 3.96 and h1 = 0.005858 at the toe of the hydraulic jump in the experimental data,
this gives Cr = 0.433218407749443, Cf = 0.003369082820920 and φs = 8.373175770887171. Initially,
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the slope is considered dry and numerically an artificially bed wetting with a wetting parameter of
10−6 was implemented [26].

In the experiments, the development of the forced hydraulic jump started after the fluid contacted
the weir and a surge started to develop towards the upstream direction. This backward propagation is
essential to the formation of such jumps. This backward propagation eventually stopped in time and
it was observed that the toe of the jump continuously oscillated but the entire structure of the jump
became gradually approximately consistent. In the experiment the jump is formed around t = 4 s.
Although it cannot be excluded that in the initial stages, the flows exhibits some 3D phenomena, the
agreement between the experimental results and the 2D numerical simulations reported in [6] shows
that this experiment can serve as a concrete test for the 1D model considered here to test its ability
to reproduce some important features of forced hydraulic jumps.

Fig. 4.16 presents the comparison between experimental measurements and the numerical solution
obtained with the SSWE and the SWE at t ≈ 4 s for the water depth using N = 500 mesh points
and a CFL value of 0.25. In Fig. 4.16 approximately the last 30 cm of the channel are shown, since
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Figure 4.16. Water depth for the forced hydraulic jump experiment: comparison be-
tween numerical solution and experimental data (top) and experimental snapshot (bot-
tom) at t ≈ 4s

that was the area where experimental measurements where recorded, along with a snapshot, obtained
with a high-speed camera. As expected, the SWE produce a stationary solution while the SSWE
follows relatively close the experimental data at this time which corresponds to the initial stage of
formation of the hydraulic jump. Although at the initial stages the numerical model is late in describing
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the phenomena, also due to the artificial wetting used, the simulated jump gradually matched the
experimental data. Figure 4.17 presents the total enstrophy and velocity profiles as computed by the
numerical scheme. The predicted roller length was Lr ≈ 0.135 m. Figure 4.18 presents the comparison
for the free surface between the numerical and experimental data at later time instances. The shift
of the jump toe is evident and the numerical solution gives a relatively accurate representation of the
free surface variation. Finally, the oscillatory nature of the computed hydraulic jump is evident from
the recording of the toe position x1 around an average value as presented in Figure 4.19.
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Figure 4.17. Total enstrophy (left) and velocity (right) for the forced hydraulic jump experiment

5. Conclusions

An extension and numerical solution of a previously developed two-parameter mathematical model
describing shear shallow water flows was presented to study its potential of simulating turbulent
hydraulic jumps. The mathematical model called the shear shallow water equations (SSWE) consists
a conservative hyperbolic system with source terms present with two adjustable parameters, that have
a well-defined physical interpretation, the wall enstrophy and energy dissipation coefficient. The SSWE
were extended here in a straightforward manner as to incorporate arbitrary non-constant topographies
without any adjustments to the model’s parameters. To this end, a conservative second-order, in
space and time, finite volume scheme was developed to numerically approximate the extended model.
The proposed scheme satisfies the well-balance property for quiescent flows over topography. Several
numerical test where performed as to access the ability of the numerical model to predict the formation
of turbulent hydraulic jumps for upstream (to the jumps) Froude numbers larger than 1.7. The model
was capable of predicting the oscillatory nature of such jumps, a phenomenon well-documented in
the literature, and several characteristic such as the free surface evolution and jump roller length
satisfactorily. Comparisons with experimental data of a forced hydraulic jump were also presented
with satisfactory results, given the 1D nature of the model. Finally, an important contribution of
this work is the derivation of a set of new analytic steady-state solutions to the SSWE model over
variable topography. These exact solutions, although not for oscillatory hydraulic jumps, can serve
as benchmark solutions for the validation of any numerical scheme aiming to approximate the model
equations.
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Figure 4.18. Water depth for the forced hydraulic jump experiment: comparison be-
tween numerical solution and experimental data at t ≈ 5.5 s (top) and t ≈ 7 s (bottom)
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Appendix A. Friction formulae relation

We first recall that the Saint-Venant (SV) system results from an integration of the SWE along the
cross-section of the channel. In [19, 20, 21] the analytic solutions are derived for the Saint-Venant
(SV) equations for prismatic channels using the Manning friction formula. Instead of this friction
formula, the present work uses the Darcy-Weisbach (DW) formula. Hence, a connection between the
SV equations and SWE also in terms of the Darcy-Weisbach (DW) is given here. Considering a
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Figure 4.19. Oscillations in time of the jump toe position x1 for the experimental
forced hydraulic jump test case

prismatic rectangular channels with constant width B, wetted cross-sectional area A = Bh, wetted
perimeter P = B + 2h and constant discharge Q = Au = Bhu = Bq the resulting SWE with
topography and friction are given as [12]

∂h

∂t
+ ∂q

∂x
= 0 (A.1)

∂q

∂t
+ ∂

∂x

(
q2/h+ gh2/2

)
= −gh(∂xb− SM

f ) (A.2)

where the friction slope in terms of the Manning coefficient is given as

SM
f = Q|Q|n2

mP
4/3

A10/3 = Q|Q|n2
m (B + 2h)4/3

Bh10/3 =
q|q|n2

m

(
1 + 2h

B

)4/3

h10/3 (A.3)

that is, if it is to represent the friction term coming from SV to SWE it should be with a modified
friction constant

ñ2
m = n2

m

(
1 + 2h

B

)4/3
. (A.4)

This may be expanded assuming B � h as

ñ2
m = n2

m

(
1 + 4

3
2h
B

+ 2
9

(2h
B

)2
+ · · ·

)
.

To get a global (in all the channel) estimate for ñm from nm the critical depth can used i.e. from
Fr = u/

√
gh = 1 resulting in

hcr =
(
q2

g

)1/3

.

Thus, for the SWE the Manning friction slope maybe written as

SM
f = q|q|ñ2

m

h10/3 = u|u|ñ2
m

h4/3 (A.5)

Since in the SSWE the DW formula is used i.e.

SDW
f = f

q|q|
8gh3 = f

u|u|
8gh , (A.6)

341



A.I Delis, H. Guillard, et al.

we can approximate f from Manning’s formula above as

f ≈ 8gñ2
m

h1/3 . (A.7)

In the SSWE derivation we use in the momentum equation

−ghSDW
f = −f u|u|8 = −Cf |u|u

which results in the obtained form of Sf in (2.1).
The analytical solutions for the SWE derived in Section 4 for h(x) and slope b′ satisfy then the

following relation for each friction term used

b′ =
(

1− q2

gh3

)
h′(x) + fq2

8gh3 (DW formula).

which corresponds to (4.6).

Appendix B. Mesh convergence study

For the new exact solution from Section 4.2.1 a convergence analysis is performed by first only simu-
lating the smooth part of the solution downstream of the hydraulic jump i.e. for x ∈ (500, 1000] where
the flow regime is smooth and purely subcritical (see Figure 9). For the convergence studies we define
the L1 and L∞ errors for water depth as

L1(h) = ∆x
N∑
1
|hn

i − hex
i | and L∞(h) = max

i=1,...,N
|hn

i − hex
i |

were (hex
i )i=1,...,N and (hn

i )i=1,...,N are, respectively, the exact and the approximate cell mean values at
a final time tn = tf . Computations were carried out, for different meshes, until the final time tf = 500s
with the first- and second-order versions of the numerical scheme with a CFL=0.1. The reduced CFL
value used is justified by the need to ensure that the errors incurred by the temporal integration
are negligible. At this time the L1 and L∞ errors were several orders of magnitude higher that the
corresponding relative variations of the flow variables between consecutive time steps, meaning that,
in practice, a steady-state regime has been reached.

The errors for the different meshes and convergence rates are given in Table B.1. The errors com-
puted point out that the second-order convergence is close to optimal for both norms, while the
corresponding errors for the first-order version of the scheme are much higher. It is noted that, a
similar behavior is obtained for the other flow variables as well.

First-order scheme Second-order scheme
∆x L1(h) Order L∞(h) Order L1(h) Order L∞(h) Order
5 4.162 6.28e-2 1.836 3.89e-2

2.5 2.010 1.05 2.98e-2 1.07 6.49e-1 1.50 1.29e-2 1.59
1.25 1.028 0.96 1.54e-2 0.95 2.12e-1 1.61 4.13e-3 1.64
0.625 5.23e-1 0.97 7.89e-3 0.96 5.75e-2 1.88 1.17e-3 1.82
0.3125 2.65e-1 0.98 4.03e-3 0.97 1.53e-2 1.91 3.19e-4 1.87
0.15625 1.34e-1 0.98 2.05e-3 0.97 4.04e-3 1.92 8.52e-5 1.90

Table B.1. Water depth (h) L1 and L∞ errors and convergence rates for the first-
and second-order schemes for the half domain solution
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Next, in Table B.2, we present convergence results for the full domain solution in terms of the L1

norm for water depth and water discharge q = hu. As expected, due to the presence of the hydraulic
jump the order of the second-order scheme drops to one but the accuracy of the results is much greater
compared to that of the first-order scheme.

First-order scheme Second-order scheme
∆x L1(h) Order L1(q) Order L1(h) Order L1(q) Order
5 30.325 100.06 3.251 1.537

2.5 15.529 0.96 54.630 0.87 1.485 1.13 4.96e-1 1.66
1.25 7.919 0.97 27.740 0.97 7.51e-1 0.98 1.78e-1 1.45
0.625 4.118 0.95 13.975 0.99 3.79e-1 0.98 7.50e-1 1.24
0.3125 2.148 0.95 7.007 0.99 1.92e-1 0.98 3.43e-1 1.13
0.15625 1.112 0.95 3.550 0.98 9.78e-2 0.97 1.68e-1 1.03

Table B.2. Water depth (h) and discharge (q) L1 errors and convergence rates for
the first- and second-order schemes for the full domain solution
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