
SMAI-JCM
SMAI Journal of
Computational Mathematics

FEM and BEM simulations with
the Gypsilab framework

François Alouges & Matthieu Aussal
Volume 4 (2018), p. 297-318.

<http://smai-jcm.cedram.org/item?id=SMAI-JCM_2018__4__297_0>

© Société de Mathématiques Appliquées et Industrielles, 2018
Certains droits réservés.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://smai-jcm.cedram.org/item?id=SMAI-JCM_2018__4__297_0
http://www.cedram.org/
http://www.cedram.org/

SMAI Journal of Computational Mathematics
Vol. 4, 297-318 (2018)

FEM and BEM simulations with the Gypsilab framework

François Alouges 1

Matthieu Aussal 2

1 CMAP - Ecole Polytechnique, Université Paris-Saclay, Route de Saclay, 91128, Palaiseau
Cedex, France
E-mail address: francois.alouges@polytechnique.edu
2 CMAP - Ecole Polytechnique, Université Paris-Saclay, Route de Saclay, 91128, Palaiseau
Cedex, France
E-mail address: matthieu.aussal@polytechnique.edu.

Abstract. Gypsilab is a Matlab framework which aims at simplifying the development of numerical methods
that apply to the solution of problems in multiphysics, in particular, those involving FEM or BEM simulations. The
peculiarities of the framework, with a focus on its ease of use, are shown together with the methodology that have
been followed for its development. Example codes that are short though representative enough are given both for
FEM and BEM applications. A performance comparison with FreeFem++ is provided, and a particular emphasis is
made on problems in acoustics and electromagnetics solved using the BEM and for which compressed H-matrices
are used.

2010 Mathematics Subject Classification. 65N30, 65N38, 65Y99.
Keywords. Finite Element Method, Boundary Element Method, H-matrices, Matlab.

1. Introduction

The finite element method (FEM) is nowadays extremely developed and has been widely used in the
numerical simulation of problems in continuum mechanics, both for linear and non-linear problems.
Many software packages exist among which we may quote free ones (e.g. FreeFem++ [21], FENICS
[13], FireDrake [14], Xlife++ [27], Feel++ [12], GetDP [17], etc.) or commercial ones (e.g. COMSOL
[9]). The preceding list is far from being exhaustive as the method has known many developments
and improvements and is still under active study and use. Numerically speaking, and without entering
into too many details, let us say that the particularity of the method is that it is based on a weak
formulation that leads to sparse matrices for which the footprint in memory is typically proportional
to the number of unknowns. Direct or iterative methods can then be used to solve the underlying
linear systems.

On the other hand, the boundary element method (BEM) is used for problems which can be
expressed using a Green kernel. A priori restricted to linear problems, the method inherently possesses
the faculty of handling free space solutions and is therefore currently used for solving Laplace equations,
wave scattering problems (in acoustics, electromagnetics or elastodynamics) or Stokes equations for
instance. Although it leads to dense matrices, which storage is proportional to the square of the
number of unknowns, the formulation is usually restricted to the boundary of the domain under
consideration (e.g. the scatterer), which lowers the dimension of the object that needs to be discretized.
Nevertheless, due to computer limitations, those methods may require a special compression technique
such as the Fast Multipole Method (FMM) [18, 15], theH-matrix storage [20] or the more recent Sparse
Cardinal Sine Decomposition [2, 3, 4], in order to be applied to relevant problems. In terms of software
packages available for the simulation with this kind of methods, and probably due to the technicality
sketched above, the list is much shorter than before. In the field of academic, freely available software
packages, one can quote BEM++ [24], or Xlife++ [27]. Commercial software packages using the

297

mailto:francois.alouges@polytechnique.edu
mailto:matthieu.aussal@polytechnique.edu

F. Alouges & M. Aussal

method are for instance the ones distributed by ESI Group (VAone for acoustics [26] and E-Field [11]
for electromagnetism), or Aseris [6]. Again, the preceding list is certainly not exhaustive.

Eventually, one can couple both methods, in particular to simulate multiphysics problems that
involve different materials and for which none of the two methods apply directly. This increases again
the complexity of the methodology as the user needs to solve coupled equations that are piecewise
composed of matrices sparsely stored combined with other terms that contain dense operators or
compressed ones. How to express such a problem? Which format should be used for the matrix storage?
Which solver applies to such cases, an iterative or a direct one? Eventually, the writing of the software
still requires abilities that might be out of the user’s field of expertise.

The preceding considerations have led us to develop the framework Gypsilab which, in particular,
aims at simplifying and generalizing the development of FEM-BEM coupling simulation algorithms
and methods. Written as a full Matlab suite of routines, the toolbox can be used to describe and
solve various problems that involve FEM and/or BEM techniques. We have also tried to make the
finite element programming as simple as possible, using a syntax comparable to the one used in
FreeFem++ or FENICS/FireDrake and very close to the mathematical formulation itself which is
used to discretize the problems. It is important to note that to the authors’ knowledge, the only freely
available software package, which uses the BEM and for which the way of programming is comparable
to that of FreeFem++, is BEM++, which has been interfaced to FENICS. The software described
in this paper thus provide the user with a Matlab alternative. Fairly easy to install since it is written
in full Matlab without any piece of C code, the framework contains at the moment several toolboxes:

• openMSH for the handling of meshes;

• openDOM for the manipulation of quadrature formulas and weak formulations that involve
integrals;

• openFEM for the finite element and boundary element methods;

• openHMX that contains the full H-matrix algebra [20], including the LU factorization and
inversion.

In what follows, we will assume that all the preceding librairies are in the user’s path. This could
be done using the following commands, assuming that the librairies have been placed in the parent
directory of the current one.

% Library paths
addpath (' . . / openMsh ')
addpath (' . . / openDom ')
addpath (' . . / openFem ')
addpath (' . . / openHmx ')

Eventually, although the main goal is not the performance, Gypsilab may handle, on classical
computers, problems whose size reaches a few millions of unknowns for the FEM part and a few
hundreds of thousands of unknowns for the BEM when one uses compression. For FEM applications,
this performance is very much comparable to already proposed Matlab strategies [10, 5, 23], though
Gypsilab presents a much higher generality and flexibility.

The present paper explains in some details the capabilities of Gypsilab together with its use.
Explanations concerning the implementation are also provided that give an insight into the genericity
of the approach. In order to simplify the exposition, we focus here on FEM or BEM applications,
leaving coupled problems to a forthcoming paper.

298

The Gypsilab framework

Due to its simplicity of use, we strongly believe that the software library described here could
become a reference in the field. Indeed, applied mathematicians, interested in developing new FEM-
BEM coupled algorithms need such tools in order to address problems of a significant size for real
applications. Moreover, the library is also ideal for the quick prototyping of academic or industrial
applications.

2. Simple examples

We show in this Section a series of small example problems and corresponding Matlab listings.

2.1. A Laplace problem with Neumann boundary conditions

Let us start with the writing of a finite element program that solves the partial differential equation
(PDE)  −∆u+ u = f on Ω ,

∂u

∂n
= 0 on ∂Ω ,

(2.1)

where the right-hand side function f belongs to L2(Ω). Here Ω stands for a domain in R2 or R3.
The variational formulation of this problem is very classical and reads:

Find u ∈ H1(Ω) such that ∀v ∈ H1(Ω)∫
Ω
∇v(x) · ∇u(x) dx+

∫
Ω
v(x)u(x) dx =

∫
Ω
f(x)v(x) dx .

The finite element discretization is also straightforward and requires solving the same variational
formulation where H1(Ω) is replaced by one of its finite dimensional subspaces (for instance the set
of continuous and piecewise affine on a triangular mesh of Ω in the case of linear P 1 elements).

We give here the Gypsilab source code used to solve such a problem in the case where the domain
under consideration is the unit disk in R2, and the function f is given by f(x, y) = x2.

% Mesh o f the d i sk
N = 1000 ;
mesh = mshDisk (N, 1) ;
% In t e g r a t i on domain
Omega = dom(mesh , 3) ;
% F in i t e e lements
Vh = fem (mesh , 'P1 ') ;
% Matrix and RHS
f = @(X) X(: , 1) . ^ 2 ;
K = i n t e g r a l (Omega , grad (Vh) , grad (Vh)) + i n t e g r a l (Omega ,Vh,Vh) ;
F = i n t e g r a l (Omega , Vh, f) ;
% So lv ing
uh = K \ F;
f i g u r e
graph (Vh, uh) ;

We believe that the listing is very clear and almost self-explanatory. The disk is first meshed with
1000 vertices (lines 2-3), then one defines an integration domain (line 5), the finite element space (line
7), the weak formulation of the problem (lines 9-11) and the solution (lines 13). Let us immediately
insist on the fact that the operators constructed by the integral keyword are really matrix and

299

F. Alouges & M. Aussal

vector Matlab objects so that one can use classical Matlab functionalities for the solution (here the
“backslash” operator \). Plotting the solution (lines 14-15) leads to the figure reported in Fig. 2.1.

Figure 2.1. Numerical solution of (2.1) on a unit disk using Gypsilab.

2.2. Fourier boundary conditions

We now consider the problem  −∆u+ u = 0 on Ω ,
∂u

∂n
+ u = g on ∂Ω ,

(2.2)

Again, the weak formulation of the problem is standard and reads as follows

Find u ∈ H1(Ω) such that ∀v ∈ H1(Ω)∫
Ω
∇v(x) · ∇u(x) dx+

∫
Ω
v(x)u(x) dx+

∫
∂Ω
v(s)u(s) ds =

∫
∂Ω
g(s)v(s) ds .

The preceding code is modified in the following way (we have taken the example where g(s) = 1).

% Create mesh d i sk + boundary
N = 1000 ;
mesh = mshDisk (N, 1) ;
meshb = mesh . bnd ;
% In t e g r a t i on domains
Omega = dom(mesh , 7) ;
Sigma = dom(meshb , 3) ;
% F in i t e element space
Vh = fem (mesh , 'P2 ') ;
% Matrix and RHS
K = i n t e g r a l (Omega , grad (Vh) , grad (Vh)) ...

+ i n t e g r a l (Omega , Vh, Vh) ...
+ i n t e g r a l (Sigma , Vh, Vh) ;

g = @(x) ones (s i z e (x , 1) , 1) ;
F = i n t e g r a l (Sigma , Vh, g) ;
% So lu t i on

300

The Gypsilab framework

uh = K \ F;

Figure 2.2. Numerical solution of (2.2) on a unit disk using Gypsilab.

Compared to the preceding example, a boundary mesh and an associated integration domain are
also defined (lines 4 and 7). Let us note the piecewise quadratic (so-called P 2) element used (line 9)
which leads to use more accurate integration formulas, respectively with 7 points for the triangles (line
6) and 3 points per segment for the boundary mesh (line 7). Again, the result obtained is plotted in
Fig. 2.2.

2.3. An eigenvalue problem

We end up this section by showing an example of a 3D problem, namely, the computation of the first
eigenvalues/eigenvectors of the Laplace operator in the parallelepipedic volume [0, 1] × [0, 1

2] × [0, 1
2],

with Dirichlet boundary conditions. Mathematically speaking the problem writes as finding pairs (λ, u)
that are solutions to the eigenvalue problem{

−∆u = λu on Ω ,
u = 0 on ∂Ω ,

(2.3)

where Ω = [0, 1]× [0, 1
2]× [0, 1

2]. Now the problem is posed in 3D, and we need to force (homogeneous)
Dirichlet boundary conditions. The corresponding Matlab listing becomes

% Create mesh o f the cube + boundary
N = 1e4 ;
mesh = mshCube(N, [1 0 . 5 0 . 5]) ;
meshb = mesh . bnd ;
% In t e g r a t i on domains
Omega = dom(mesh , 4) ;
% F in i t e element space
Vh = fem (mesh , 'P1 ') ;
Vh = d i r i c h l e t (Vh, meshb) ;
% Matrix and RHS
K = i n t e g r a l (Omega , grad (Vh) , grad (Vh)) ;

301

F. Alouges & M. Aussal

M = in t e g r a l (Omega , Vh, Vh) ;
% So lu t i on
Neig = 10 ;
[V,EV] = e i g s (K,M, Neig , 'SM') ;

Notice the enforcement of Dirichlet boundary conditions on the finite element space (line 9), the
assembling of the stiffness and mass matrices (lines 11-12). The preceding code computes the first 10
eigenelements of the Laplace operator with Dirichlet boundary condition, and we give the correspond-
ing eigenvalues in Table 2.1.

Number Exact Numeric Relative error
1 88.8264 90.1853 0.0153
2 118.4353 120.5672 0.0180
3 167.7833 171.4698 0.0220
4 207.2617 213.3081 0.0292
5 207.2617 213.4545 0.0299
6 236.8705 243.2719 0.0270
7 236.8705 244.4577 0.0320
8 236.8705 245.0540 0.0345
9 286.2185 296.6374 0.0364
10 286.2185 297.9819 0.0411

Table 2.1. Exact and approximated eigenvalues of the Laplacian with Dirichlet
boundary conditions on the parallelepipedic domain [0, 1] × [0, 1

2] × [0, 1
2]. For each

of the first ten eigenvalues, we give its exact value, the one computed with the program
before and the relative error.

3. Finite element programming in Matlab

Programming the finite element method in Matlab is very attractive and has already been considered
by many people (see for instance [1, 16, 25, 7, 10, 5, 23]), probably because the language is easy to
use and already contains the most recent linear solvers. It is important to notice that Matlab is
usually very powerful when one uses its vectorial capabilities. Therefore, the traditional assembling
of the matrices that come from finite element discretizations, which uses a loop over the elements
with indirect addressing, might lead to prohibitive execution times. This problem was identified a long
time ago and several ways have already been proposed to circumvent it. In particular, we refer the
interested reader to [10], where different alternatives that lead to very efficient assembling are given
and compared. Many languages are also compared (C++, Matlab, Python, FreeFem++), and
it is shown that the C++ implementation only brings a slight improvement in performance. Other
Matlab implementations are proposed in the literature (see e.g. [1, 25, 7, 5, 23]), but they all suffer
from the lack of generality. The problem solved is indeed very often the Laplacian with piecewise linear
finite elements and one needs to adapt the approach for any different problem.

We have followed yet another strategy that has the great advantage to be very general and easily
adaptable to a wide variety of possible operators to build and solve, and which also enables the user
to assemble matrices that come from the coupling between different finite elements. Moreover, we will
see that the method also leads to reasonably good assembling times. To this aim, we give the following

302

The Gypsilab framework

example from which one can understand the generality of the approach and the way Gypsilab is
coded.

Let us consider the case of assembling the mass matrix. To be more precise, we call T a conformal
triangulation1 on which one has to compute the matrix A whose entries are given by

Aij =
∫
T
φi(x)φj(x) dx . (3.1)

Here we have used the notation (φi)1≤i≤N to denote the basis functions of the finite element (dis-
crete) space of dimension N . To gain generality, the preceding integral is usually not computed exactly,
but rather approximated using a quadrature rule. Thus, calling (xk, ωk)1≤k≤M the set of all quadrature
points over T , we write

Aij ∼
M∑

k=1
ωkφi(xk)φj(xk) . (3.2)

Introducing now the two matrices W and C (respectively of size M ×M and M ×N) defined by
Wkk = ωk for 1 ≤ k ≤M , and Bkj = φj(xk) for 1 ≤ k ≤M, 1 ≤ j ≤ N , (3.3)

we may rewrite (3.2) as
A ∼ BtW B , (3.4)

where Bt denotes the transpose of B. Notice that the approximation is coming from the fact that a
quadrature rule has been used instead of an exact formula. In particular, we emphasize that if the
quadrature formula is exact in (3.2), then the approximation (3.4) is in fact an equality.

From the preceding considerations the procedure that enables to assemble the sparse mass matrix
can be summarized as:

• Knowing the triangulation (resp. tetrahedral mesh), and a quadrature formula on a reference
triangle (resp. tetrahedron), build the set of quadrature points/weights (xk, ωk)1≤k≤M . (This
is done in the package openDOM.)

• Knowing the finite element used (or, equivalently, the basis functions (φj)1≤j≤N) and the
quadrature points (xk)1≤k≤M , build the matrices W and B. (This is done in the package
openFEM.)

• Eventually, compute A = BtW B .

Notice that the matrices W and B are usually sparse. Indeed, W is actually diagonal, while B has
a non-zero entry Bjk only for the quadrature points xk that belong to the support of φj . In terms of
practical implementation, the matrix W is assembled using a spdiags command while the matrix B
is built using a vectorized technique.

The preceding procedure is very general and relies only on the chosen finite element or the quadra-
ture formula. Moreover, the case of more complicated operators can also be treated with only slight
modifications. Indeed, if one considers the case of the Laplace operator, for which the so-called stiffness
matrix is given by

Kij =
∫
T
∇φi(x) · ∇φj(x) dx , (3.5)

one may write similarly

Kij ∼
M∑

k=1
ωk∇φi(xk) · ∇φj(xk) , (3.6)

1Triangulation usually means a 2D problem, while we would have to consider a tetrahedral mesh for 3D problems.
This is not a restriction as we can see.

303

F. Alouges & M. Aussal

from which one deduces
K ∼ Ct

xW Cx + Ct
y W Cy + Ct

z W Cz ,

where the matrix W is the same as before and the matrices Cx, Cy and Cz are given for 1 ≤ k ≤
M, 1 ≤ j ≤ N by

Cx,kj = ∂φj

∂x
(xk) , Cy,kj = ∂φj

∂y
(xk) , Cz,kj = ∂φj

∂z
(xk) . (3.7)

4. Quick overview of Gypsilab

This section is not intended to be a user’s manual. We just give the main functionalities of Gypsilab
and refer the interested reader to the website [19]. It is important to notice that Gypsilab tries to
compute as much as possible the quantities “on the fly”, or in other words, to keep in memory as little
information as possible. The main underlying idea is that storing many vectors and matrices (even
sparse) might become memory consuming, and recomputing on demand the corresponding quantities
does not turn to be the most costly part in usual computations. Keeping this idea in mind helps in
understanding the “philosophy” that we have followed for the development of the different toolboxes.
Moreover, the whole library is object oriented and the toolboxes have been implemented as value
classes.

4.1. The mesh

Finite or Boundary element methods are based on the use of a mesh. The routines that handle the
mesh object are grouped into the toolbox openMSH. In Gypsilab, the mesh is a purely geometric
object with which one can compute only geometric quantities (e.g. normals, volumes, edges, faces,
etc.). A mesh can be of dimension 1 (a curve), 2 (a surface) or 3 (a volume) but is always embedded
in the dimension 3 space and is a simplicial mesh (i.e. composed of segments, triangles or tetrahedra).
It is defined by three tables :

• A list of vertices, which is a table of size Nv × 3 containing the three-dimensional coordinates
of the vertices ;

• A list of elements, which is a table of size Ne× (d+ 1), d being the dimension of the mesh and
Ne the number of elements ;

• A list of colors, which is a column vector of size Ne× 1 defining a color for each element of the
mesh, this last table being optional.

A typical msh object is given by the following structure.

>>mesh

mesh =

2050x3 msh array with properties:

vtx: [1083x3 double]
elt: [2050x3 double]
col: [2050x1 double]

304

The Gypsilab framework

The openMSH toolbox does not yet contain a general mesh generator per se. Only simple objects
(cube, square, disk, sphere, etc.) can be meshed. More general objects may be nevertheless loaded
using classical formats (.ply, .msh, .vtk, .stl, etc.). Since the expected structure for a mesh is very
simple, the user may also his/her own wrapper to create the previous tables.

The openMSH toolbox also contains many operations on meshes such as the intersection or the
union of different meshes, the extraction of the boundary, etc. Let us emphasize that upon loading,
meshes are automatically cleaned by removing unnecessary or redundant vertices or elements.

4.2. The domain

The domain is a geometric object on which one can furthermore integrate. Numerically speaking,
this is the concatenation of a mesh and a quadrature formula. This formula is identified by a number,
that one uses with the simplices of the corresponding mesh, in order to integrate functions. The
default choice is a quadrature formula with only one integration point located at the center of mass
of the simplices. This is usually very inaccurate, and it is almost always mandatory to enhance the
integration by taking a higher degree quadrature formula. A domain is defined using the dom keyword.
For instance, the command

Omega = dom(myMesh ,4);

defines an integration domain Omega from the mesh myMesh, using an integration formula with 4
integration points. If such an integration formula is not available, the program returns an error.
Otherwise, the command creates an integration domain with the structure shown by the following
output.

>> omega = dom(myMesh,4)

omega =

dom with properties:

gss: 4
msh: [2050x3 msh]

We believe that making the construction of the quadrature formula very explicit helps the user
to pay attention to this very important point, and make the right choice for his/her application. In
particular, for finite element computing, the right quadrature formula that one needs to use depends on
the order of the chosen finite element. Integration functionalities are implemented in the openDOM
toolbox (see more below).

4.3. The Finite Element toolbox (openFEM)

Finite element spaces are defined through the use of the class constructor fem. Namely, the command

Vh = fem(mesh , name);

creates a finite element space on the mesh (an arbitrary 2D or 3D mesh defined in R3) of type defined
by name. At the moment of the writing of this paper, 3 different families of finite elements are available:

• The Lagrange finite elements. The orders 0, 1 and 2 are only available for the moment. They
correspond to piecewise polynomials of degree 0, 1 and 2 respectively.

305

F. Alouges & M. Aussal

• The edge Nédélec finite element. It is a space of vectorial functions whose degrees of freedom
are the circulation along all the edges of the underlying mesh. This finite element is defined in
both 2D and 3D. In 2D is implemented a general form for which the underlying surface does
not need to be flat.

• The Raviart-Thomas, also called Rao-Wilton-Glisson (RWG) finite elements. Also vectorial,
the degrees of freedom are the fluxes through the edges (in 2D) or the faces (in 3D) of the
mesh. Again, the 2D implementation is available for general non-flat surfaces.

For the two last families, only the lowest orders are available. The value of the variable name should
be one of ’P0’, ’P1’, ’P2’, ’NED’, ’RWG’ respectively, depending on the desired finite element in the
preceding list.

Besides the definition of the finite element spaces, the toolbox openFEM contains a few more
functionalities, as the following.

• Operators. Operators can be specified on the finite element space itself. Available operators
are:
– grad, div, curl, which are differential operators that act on scalar or vectorial finite

elements.
– curl, div, nxgrad, divnx, ntimes. Those operators are defined when solving prob-

lems on a bidimensional surface in R3. Here n stands for the (outer) normal to the surface
and all the differential operators are defined on surfaces. Such operators are commonly
used when solving problems with the BEM (see below).

• Plots. Basic functions to plot a finite element or a solution are available. Namely, we have
introduced
plot(Vh);

where Vh is a finite element space. This produces a plot of the geometric location of the degrees
of freedom that define the functions in Vh.
surf(Vh ,uh);

in order to plot a solution. In that case the figure produced consists in the geometry on which
the finite element is defined colored by the magnitude of uh. Eventually, as we have seen in the
first examples presented in this paper, the command graph plots the graph of a finite element
computed on a 2D flat surface.
graph(Vh ,uh);

4.4. The integral keyword (openDOM)

Every integration done on a domain is evaluated through the keyword integral. Depending on the
context explained below, the returned value can be either a number, a vector or a matrix. More
precisely, among the possibilities are

• I = integral(dom, f);
where dom is an integration domain on which the integral of the function f needs to be com-
puted. In that case the function f should be defined in a vectorial way, depending on a variable
X which can be a N × 3 matrix. For instance the definitions

306

The Gypsilab framework

f = @(X) X(: ,1) .*X(: ,2);
g = @(X) X(: ,1) .^2 + X(: ,2) .^2 + X(: ,3) .^2;
h = @(X) X(: ,1) + X(: ,2) .*X(: ,3);

respectively stand for the (3 dimensional) functions
f(x, y, z) = xy , g(x, y, z) = x2 + y2 + z2 , h(x, y, z) = x+ yz .

Since domains are all 3 dimensional (or more precisely embedded in the 3 dimensional space),
only functions of 3 variables are allowed.

• I = integral(dom, f, Vh);
In that case, f is still a 3 dimensional function as before while Vh stands for a finite element
space. The returned value I is a column vector whose entries are given by

Ii =
∫

dom
f(X)φi(X) dX

for all basis function φi of the finite element space.

• I = integral(dom, Vh, f);
This case is identical to the previous one but now, the returned vector is a row vector.

• A = integral(dom, Vh, Wh);
where both Vh and Wh are finite element spaces. This returns the matrix A defined by

Aij =
∫

dom
φi(X)ψj(X) dX

where φi (resp. ψj) stands for the current basis function of Vh (resp. Wh).

• A = integral(dom, Vh, f, Wh);
This is a simple variant where the entries of the matrix A are now given by

Aij =
∫

dom
f(X)φi(X)ψj(X) dX .

As a matter of fact, the leftmost occurring finite element space is assumed to correspond to test
functions while the rightmost one corresponds to the unknowns.

5. Generalization of the approach to the BEM

It turns out that the preceding approach, described in section 3, can be generalized to the Boundary
Element Method (BEM). In such a context, after discretization, one has to solve a linear system where
the underlying matrix is fully populated. Typical examples are given by the acoustic or electromagnetic
scattering. Indeed, let us consider a kernel2 G(x, y) for which one has to compute the matrix A defined
by the entries

Aij =
∫

x∈Σ1

∫
y∈Σ2

φi(x)G(x, y)ψj(y) dx dy (5.1)

the functions (φi)1≤i≤N1 and (ψj)1≤j≤N2 , being basis functions of possibly different finite element
spaces. Taking discrete integration formulas on Σ1 and Σ2 respectively defined by the points and
weights (xk, ωk)1≤k≤Nint1 and (yl, ηl)1≤l≤Nint2 , leads to the approximation

Aij ∼
∑

k

∑
l

φi(xk)ωkG(xk, yl)ηlψj(yl) , (5.2)

2For instance, in the case of acoustic scattering in 3D, G is the Helmholtz kernel defined by G(x, y) = exp(ik|x−y|)
4π|x−y| .

307

F. Alouges & M. Aussal

which enables us to write in a matrix form
A ∼ ΦWxGWyΨ . (5.3)

In this formula, the matrices Wx and Wy are the diagonal sparse matrices defined as before in (3.3)
which depend on the quadrature weights ωk and ηl respectively. The matrices Φ and Ψ are the (usually
sparse) matrices defined as in (3.4) for the basis functions φi and ψj respectively, and G is the dense
matrix of size Nint1 ×Nint2 given by Gkl = G(xk, yl).

Again, building the sparse matrices as before, one only needs to further compute the dense matrix
G and assemble the preceding matrix A with only matrix products.

5.1. Generalization of the integral keyword (openDOM)

In terms of the syntax, we have extended the range of the integral keyword in order to handle such
integrals. Indeed, the preceding formulas show that there are very little differences with respect to the
preceding FEM formulations. Namely, we now need to handle

• Integrations over 2 possibly different domains Σ1 and Σ2;

• Any kernel depending on two variables provided by the user;

• As before, two finite element spaces that are evaluated respectively on x and y.

Furthermore, other formulations exist for the BEM, such as the so-called collocation method, in which
one of the two integrals is replaced by an evaluation at a given set of points. This case is also very
much used when one computes (see the section below) the radiation of a computed solution on a given
set of points.

To handle all these situations three possible cases are provided to the user:

• The case with two integrations and two finite element spaces. This corresponds to computing
the matrix

Aij =
∫

x∈Σ1

∫
y∈Σ2

φi(x)G(x, y)ψj(y) dx dy ,

and is simply performed in Gypsilab by the following command.
A = integral (Sigma1 , Sigma2 , Phi , G, Psi);

As before, the first finite element space Phi is considered as the test-function space while
the second one, Psi, stands for the unknown. The two domains on which the integrations
are performed are given in the same order as the finite element spaces (i.e. Phi and Psi are
respectively defined on Σ1 and Σ2).

• The cases with only one integration and one finite element space. Two possibilities fall into
this category. Namely, the computation of the matrix

Bij =
∫

x∈Σ1
φi(x)G(x, yj) dx ,

for a collection of points yj and the computation of the matrix

Cij =
∫

y∈Σ2
G(xi, y)ψj(y) dy ,

for a collection of points xi. Both cases are respectively (and similarly) handled by the two
following commands.

308

The Gypsilab framework

B = integral (Sigma1 ,y_j ,Phi ,G);
C = integral (x_i ,Sigma2 ,G,Psi);

In all the preceding commands, G should be a Matlab function that takes as input a pair of 3
dimensional variables X and Y of respective sizes NX × 3 and NY × 3. It should also be defined in
order to possibly handle sets of such points in a vectorized way. For example, G(x, y) = exp(ix · y)
can simply be declared as

G = @(X,Y) exp (1i*X*Y');

where it is expected that both X and Y are matrices that contain 3 columns (and a number of lines
equal to the number of points x and y respectively).

5.2. Regularization of the kernels

It is commonly known that usual kernels that are used in classical BEM formulations (e.g. Helmholtz
kernel in acoustics) are singular near 0. This creates a difficulty when one uses the BEM which may
give very inaccurate results since the quadrature rules used for the x and y integration respectively
may possess points that are very close one to another. However, the kernels often have a singularity
which is asymptotically known.

In Gypsilab, we provide the user with a way to regularize the considered kernel by computing
a correction depending on its asymptotic behavior. For example, we consider the Helmholtz kernel
which is used to solve the equations for acoustics (see section 5.4 for much more details)

G(x, y) = eik|x−y|

4π|x− y| . (5.4)

This kernel possesses a singularity when x ∼ y which has the asymptotics

G(x, y) ∼x∼y
1

4π|x− y| +O(1) .

The idea is that the remainder is probably well approximated using Gauss quadrature rule, and we
only need to correct the singular part coming from the integration of 1

|x−y| . In Gypsilab, this reads
as
A = 1/(4∗ p i) ∗(i n t e g r a l (Sigma , Sigma ,Vh,Gxy ,Vh)) ;
A = A+1/(4∗ p i) ∗ r e g u l a r i z e (Sigma , Sigma ,Vh, ' [1/ r] ' ,Vh) ;

The first line, as we have already seen assembles the full matrix defined by the integral

Aij =
∫

Σ

∫
Σ
G(x, y)φi(x)φj(y) dx dy ,

where (φi)i stands for the basis functions of the finite element space Vh.
The second line, however, regularizes the preceding integral by considering only the asymptotic

behavior of G. This latter term computes and returns the difference between an accurate computation
and the Gauss quadrature evaluation of∫

Σ

∫
Σ

φ(x)φ(y)
4π|x− y| dx dy .

The Gauss quadrature is evaluated as before while the more accurate integration is computed using a
semi-analytical method in which the integral in y is computed analytically while the one in x is done
using a Gauss quadrature rule. The correction terms are only computed for pairs of integration points
that are close enough. Therefore, the corresponding correction matrix is sparse.

309

F. Alouges & M. Aussal

5.3. Coupling with openHMX

As it is well-known, and easily seen from the formula (5.3), the matrices computed for the BEM
are fully populated. Indeed, usual kernels G(x, y) (e.g. the Helmholtz kernel) never vanish for any
pair (x, y). This therefore leads to a matrix G in (5.3) for which no entry vanishes. Furthermore,
the number of integration points Nint1 and Nint2 is very often much larger than the corresponding
numbers of degree of freedom. This means that the matrix G usually has a size much larger than the
final size of the (still fully populated) matrix A3. Both these facts limit very much the applicability of
the preceding approach on classical computers to a number of degrees of freedom of a few thousand,
which is often not sufficient in practice. For this reason we also provide a coupling with the Gypsilab
toolbox openHMX [19] in order to assemble directly a hierarchical H−matrix compressed version of
the preceding matrices. Namely, for a given tolerance tol, the commands

A = integral (Sigma1 ,Sigma2 ,Phi ,G,Psi ,tol);
B = integral (Sigma1 ,y_j ,Phi ,G,tol);
C = integral (x_i ,Sigma2 ,G,Psi ,tol);

return the same matrices as before, but now stored in a hierarchical H−matrix format, and approx-
imated to the desired tolerance. In particular, this enables the user to use the +, −, ∗, \, lu or spy
commands as if they were classical Matlab matrix objects.

These generalizations, together with the possibility of directly assemble H-matrices using the same
kind of syntax, seem to us one of the cornerstones of the Gypsilab package. To the knowledge of the
authors, there is, at the moment, no comparable software package which handles BEM or compressed
BEM matrices defined in a way as general and simple as here.

5.4. Acoustic scattering

As a matter of example, we provide here the solution of the acoustic scattering of a sound soft sphere
and the corresponding program in Gypsilab. For this test case, one considers a sphere of unit radius
S2, and an incident acoustic wave given by

pinc(x) = exp(ikx · d) (5.5)

where k is the current wave number and d is the direction of propagation of the wave. It is well-known
that the total pressure ptot outside the sphere is given by ptot = pinc +psca where the scattered pressure
wave obeys the formula

psca(x) =
∫
S2
G(x, y)λ(y) dσ(y) . (5.6)

In the preceding formula, the Green kernel of Helmholtz equation is given by (5.4) and the density λ
is computed using the so-called single layer formula

− pinc(x) =
∫
S2
G(x, y)λ(y) dσ(y) , (5.7)

for x ∈ S2. This ensures that ptot = 0 on the sphere. Solving the equation (5.7) with the Galerkin
finite element method amounts to solve the weak form∫

S2

∫
S2
µ(x)G(x, y)λ(y) dσ(x) dσ(y) = −

∫
S2
µ(x)pinc(x) dσ(x) , (5.8)

3For example, when one uses P 1 finite elements but an integration on triangles with 3 Gauss points per triangle, there
are 6 times more Gauss points than unknowns (in a triangular mesh, the number of elements scales like twice the number
of vertices). Calling N the number of unknowns, the final matrix A has a size N2 while the matrix corresponding to the
interaction of Gauss points is of size (6N)2 = 36N2 which is much bigger.

310

The Gypsilab framework

where the test function µ and the unknown λ belong to a discrete finite element space. We take the
space P 1 defined on a triangulation Th of S2.

% Parameters
N = 1e3 ;
t o l = 1e−3;
X0 = [0 0 −1];
% Sphe r i c a l mesh
sphere = mshSphere (N, 1) ;
S2 = dom(sphere , 3) ;
% Radiat ive mesh − Ver t i c a l square
square = mshSquare (5∗N, [5 5]) ;
square = swap (square) ;
% Frequency adjusted to maximum edge s i z e
stp = sphere . s tp ;
k = 1/ stp (2)
f = (k∗340) /(2∗ p i)
% Inc iden t wave
PW = @(X) exp (1 i ∗k∗X∗X0 ') ;
% Green ke rne l : G(x , y) = exp (ik | x−y |) / | x−y |
Gxy = @(X,Y) femGreenKernel (X,Y, ' [exp (i k r) / r] ' , k) ;
% F in i t e element space
Vh = fem (sphere , 'P1 ') ;
% Operator \ int_Sx \ int_Sy p s i (x) ' G(x , y) p s i (y) dx dy
LHS = 1/(4∗ p i) ∗(i n t e g r a l (S2 , S2 ,Vh,Gxy ,Vh, t o l)) ;
LHS = LHS+1/(4∗ p i) ∗ r e g u l a r i z e (S2 , S2 ,Vh, ' [1/ r] ' ,Vh) ;
% Wave t r a c e −−> \int_Sx p s i (x) ' pw(x) dx
RHS = i n t e g r a l (S2 ,Vh,PW) ;
% Solve l i n e a r system [−S] ∗ lambda = − P0
lambda = LHS \ RHS;
% Radiat ive operator \ int_Sy G(x , y) p s i (y) dy
Sdom = 1/(4∗ p i) ∗ i n t e g r a l (square . vtx , S2 ,Gxy ,Vh, t o l) ;
Sdom = Sdom+1/(4∗ p i) ∗ r e g u l a r i z e (square . vtx , S2 , ' [1/ r] ' ,Vh) ;
% Domain s o l u t i o n : Pdom = Pinc + Psca
Pdom = PW(square . vtx) − Sdom ∗ lambda ;
% Graphical r ep r e s en t a t i on
f i g u r e
p l o t (square , abs (Pdom))
t i t l e (' Total f i e l d s o l u t i o n ')
c o l o rba r
view (0 , 0) ;
hold o f f

The preceding program follows the traditional steps for solving the problem. Namely, one recognizes
the spherical mesh and domain (lines 11-12), the radiative mesh on which we want to compute and
plot the solution, here a square (lines 14-15), the incident plane wave (line 21), the Green kernel
definition (line 23), the finite element space (line 25), the assembling of the operator (line 27-28), the
construction of the right-hand side (line 30), and the solution of the problem (line 32). The rest of
the program consists in computing from the solution λ of (5.7), the total pressure on the radiative

311

F. Alouges & M. Aussal

mesh, and plot it on the square mesh. Notice that due to the presence of the tol parameter in the
assembling of the operator (and also of the radiative operator), the corresponding matrices are stored
as H−matrices. Notice also that the key part of the method (assembling and solution) are completely
contained between lines 21-32. The figures of the total pressure are given in Fig. 5.1 for the two cases
N = 104 and N = 9 · 104. The H-matrix produced in the former case is shown in Fig. 5.2.

Figure 5.1. Magnitude of the pressure produced in the acoustic scattering by a unit
sphere of a plane wave coming from above, using Gypsilab. On the left, the sphere is
discretized with 104 vertices and the frequency is 103 Hz. On the right the sphere is
discretized with 9 · 104 vertices and the frequency used is 3 · 103 Hz.

Figure 5.2. The H-matrix produced in the case of the acoustic scattering with 104

unknowns. The left-hand side picture is obtained by using the spy command on the
matrix itself. A zoom on the upper left part of the matrix (right) shows that each block
contains an information about the local rank.

312

The Gypsilab framework

5.5. Electromagnetic scattering

In electromagnetic scattering, formulations involving integral equations discretized with the BEM are
also commonly used. We refer the reader to [8, 22] for an overview of classical properties of integral
operators and discretizations. Three formulations are used to compute the magnetic current J = n×H
on the surface of the scatterer. Namely, we distinguish

• The Electric Field Integral Equation (EFIE)
TJ = −Einc,t

where the single layer operator T is defined by

TJ = ik

∫
Σ
G(x, y)J(y) dy + i

k
∇x

∫
Σ
G(x, y)divJ(y) dy

and Einc,t is the tangential component of the incident electric field.

• The Magnetic Field Integral Equation (MFIE)(1
2 − n×K

)
J = −n×Hinc,t

where the double layer operator K is defined by

KJ =
∫

Σ
∇yG(x, y)J(y) dy

and Hinc,t is the tangential component of the incident magnetic field.

• The Combined Field Integral Equation (CFIE), used to prevent the ill-posedness of the preced-
ing formulations at some frequencies. It is a linear combination of the Electric and Magnetic
Field Integral Equations(

−βT + (1− β)
(1

2 − n×K
))

J = βEinc,t − (1− β)n×Hinc,t .

As before, the kernel is the Helmholtz Green kernel defined by (5.4).
The classical finite element formulation for this problem uses the Raviart-Thomas elements for J

which are available in openFEM. The key part of the program assembling the CFIE operator and
solving the scattering problem follows. For simplicity, we only focus on the assembling and solving
parts and do not provide the initialization part or the radiation and plotting parts.

% Inc iden t d i r e c t i o n and f i e l d
X0 = [0 0 −1];
E = [0 1 0] ; % Po l a r i z a t i on o f the e l e c t r i c f i e l d
H = c ro s s (X0 ,E) ; % Po l a r i z a t i o n o f the magnetic f i e l d
% Inc iden t Plane wave (e l e c t r omagne t i c f i e l d)
PWE{1} = @(X) exp (1 i ∗k∗X∗X0 ') ∗ E(1) ;
PWE{2} = @(X) exp (1 i ∗k∗X∗X0 ') ∗ E(2) ;
PWE{3} = @(X) exp (1 i ∗k∗X∗X0 ') ∗ E(3) ;
%
PWH{1} = @(X) exp (1 i ∗k∗X∗X0 ') ∗ H(1) ;
PWH{2} = @(X) exp (1 i ∗k∗X∗X0 ') ∗ H(2) ;
PWH{3} = @(X) exp (1 i ∗k∗X∗X0 ') ∗ H(3) ;
% Green ke rne l f unc t i on G(x , y) = exp (ik | x−y |) / | x−y |
Gxy = @(X,Y) femGreenKernel (X,Y, ' [exp (i k r) / r] ' , k) ;

313

F. Alouges & M. Aussal

Hxy{1} = @(X,Y) femGreenKernel (X,Y, ' grady [exp (i k r) / r] 1 ' , k) ;
Hxy{2} = @(X,Y) femGreenKernel (X,Y, ' grady [exp (i k r) / r] 2 ' , k) ;
Hxy{3} = @(X,Y) femGreenKernel (X,Y, ' grady [exp (i k r) / r] 3 ' , k) ;
% F in i t e e lements
Vh = fem (sphere , 'RWG') ;
% F in i t e element mass matrix
Id = i n t e g r a l (sigma ,Vh,Vh) ;
% F in i t e element boundary operator
T = 1 i ∗k/(4∗ p i) ∗ i n t e g r a l (sigma , sigma ,Vh,Gxy ,Vh, t o l) ...
−1 i /(4∗ p i ∗k) ∗ i n t e g r a l (sigma , sigma , div (Vh) ,Gxy , div (Vh) , t o l) ;

T = T + 1 i ∗k/(4∗ p i) ∗ r e g u l a r i z e (sigma , sigma ,Vh, ' [1/ r] ' ,Vh) ...
−1 i /(4∗ p i ∗k) ∗ r e g u l a r i z e (sigma , sigma , div (Vh) , ' [1/ r] ' , d iv (Vh)) ;

% F in i t e element boundary operator
nxK = 1/(4∗ p i) ∗ i n t e g r a l (sigma , sigma , nx (Vh) ,Hxy ,Vh, t o l) ;
nxK = nxK+1/(4∗ p i) ∗ r e g u l a r i z e (sigma , sigma , nx (Vh) , ' grady [1/ r] ' ,Vh) ;
% Le f t hand s i d e
LHS = −beta ∗ T + (1−beta) ∗ (0 . 5∗ Id − nxK) ;
% Right hand s i d e
RHS = beta ∗ i n t e g r a l (sigma ,Vh,PWE) ...

− (1−beta) ∗ i n t e g r a l (sigma , nx (Vh) ,PWH) ;
% Solve l i n e a r system
J = LHS \ RHS;

As one can see, the program is a direct transcription of the mathematical weak formulation of the
problem. This follows the same lines as in the acoustic scattering problem except for the operators
that are different and the finite element used. Notice also the regularization of the double layer kernel
in line 29.

6. Performance

6.1. Performance in FEM

In this section we compare Gypsilab with FreeFem++. The machine that we have used for this
comparison is equipped with Xeon E5-2643-V1 processors with a frequency of 3.3 GHz and 128 GB
of memory. Although the machine possesses two such processors, meaning that up to 8 cores could
be used for the computation, we only chose a single core to run the test, both for FreeFem++ and
Matlab which is therefore launched using the -singleCompThread option. For the test, we have used
FreeFem++ version 3.61 and Matlab R2018a.

We have chosen to solve the Dirichlet problem{
−∆u = 1 in Ω ,
u = 0 on ∂Ω ,

(6.1)

where Ω = (0, 1)3 is the unit cube of R3 meshed regularly, with (N + 1)3 points and N ranges from
20 up to 100 depending on the case. Both linear P 1 and quadratic P 2 elements are considered. In all
cases, the same quadrature formula was used to approximate the underlying integrals, namely with
one (resp. 4) quadrature point(s) for P 1 (resp. P 2) elements. Tables 6.1 and 6.2 give the respective
timings for assembling the problem and solving it using in both cases the GMRES solver and a 10−6

accuracy for the convergence. Notice also that the number of degrees of freedom Ndof is different in

314

The Gypsilab framework

FreeFem++ and Gypsilab. This is due to the fact that Dirichlet boundary conditions are enforced
by penalization in FreeFem++, while we eliminate the corresponding unknowns in Gypsilab.

We notice that Gypsilab appears slower than FreeFem+ by a factor which is less than 4 in all the
configurations that were tested. We therefore believe that Gypsilab is a suitable tool for prototyping.

P 1 FreeFem++ Gypsilab
N Ndof Tass Tsol Ndof Tass Tsol

20 9 261 0.28 0.10 6859 0.36 0.15
40 68 921 0.34 0.86 59319 2.3 1.7
60 226 981 1.1 4.3 205379 8.0 10.8
80 531 441 2.5 20.3 493039 20 49
100 1 030 301 5.3 64.8 970299 43 230

Table 6.1. Timings for assembling the matrix and solving the linear system com-
ing from the discretization of the Laplace problem (6.1) with P 1 finite elements in
FreeFem++ and Gypsilab respectively. We notice a much bigger time for assem-
bling the problem which is compensated by the solution. Gypsilab appears slower
than FreeFem++ for the total solution by a factor less than 4 in all cases.

P 2 FreeFem++ Gypsilab
N Ndof Tass Tsol Ndof Tass Tsol

20 68921 0.5 1.0 59319 3.0 1.8
40 531441 3.8 28.36 493039 25.7 50.8
60 1771561 13.0 202.0 1685159 91.7 507

Table 6.2. Timings for assembling the matrix and solving the linear system com-
ing from the discretization of the Laplace problem (6.1) with P 2 finite elements in
FreeFem++ and Gypsilab respectively. As before assembling the problem is much
slower in Gypsilab. However the total solution times are comparable.

6.2. Performance in BEM

We report in this section the performance attained by the acoustic scattering of the sphere previously
described. Here, the goal is not to compare with another package, but we have still used a single
core iof the machine to run the test. We give in the following the timings for different meshes of
the sphere corresponding to an increasing number N of degrees of freedom in the underlying system.
The first part of Table 6.3 gives the timings to assemble the full BEM matrix for sizes ranging from
1000 to 150000 degrees of freedom. Above 10000 unknowns, the matrix of the kernel computed at the
integration points no longer fits into the memory of the available machine. Therefore, we turn to use
the hierarchical compression for the matrix, i.e. the H−matrix paradigm available through the use of
openHMX. This enables us to increase the size of reachable problems by an order of magnitude and
more. This is reported in the bottom part of Table 6.3. Notice that the frequency of the problem is
adapted to the precision of the mesh as shown in the last column of the table.

In order to see the effect of the frequency on the construction of the H-matrix and the solution, we
have also tried to fix the frequency to 316 Hz (the smallest value for the preceding case) and check the

315

F. Alouges & M. Aussal

influence on the assembling, regularization and solve timings in the problem. The data are given in
Table 6.4. It can be seen that the underlying matrix is much easier compressed and quicker assembled.
The solution time is also significantly reduced. Indeed, the time to assemble the H-matrix becomes
proportional to the number of unknowns.

Ndof Tass Treg Tsol TH
ass TH

reg TH
sol Freq. (Hz)

1000 3.43 1.46 0.19 5.58 1.49 0.69 316
3000 27.1 2.82 2.32 21.0 4.20 3.12 547
5000 74.0 4.72 8.20 31.6 5.13 6.54 707
10000 318 9.80 64.0 72.9 11.3 20.1 1000
20000 – – – 163 22.8 70.2 1414
40000 – – – 358 41.3 298 2000
80000 – – – 1035 93.0 1230 2828
150000 – – – 3400 167 4728 3872

Table 6.3. Timings in seconds for assembling, regularizing and solving the problem of
acoustic scattering given in section 5.4. The second half of the table corresponds to the
timings using the H−matrix approach using in the Gypsilab-openHMX package. For
problems of moderate size it is slightly faster to use the classical BEM approach, while
the sizes corresponding to the bottom lines are beyond reach for this method. Notice
that when we solve this problem using the H−matrices, a complete LU factorization
is computed. This is not optimal in the present case, in particular when compared to
other compression techniques such as the FMM, since the underlying linear system is
solved only once (with only one right hand side). Non available data indicates that the
problem cannot fit into memory.

Ndof TH
ass TH

reg TH
sol Freq. (Hz)

10000 60.1 9.32 10.0 316
20000 118 21 22.3 316
40000 181 38.9 53.0 316
80000 389 79.3 133 316
150000 672 141 279 316

Table 6.4. Timings in seconds for assembling, regularize and solve the problem of
acoustic scattering given in section 5.4 at a fixed frequency f = 316Hz on the unit
sphere. The number of unknowns is given as Ndof and the H-matrix compression tech-
nique is used.

7. Conclusion

The package Gypsilab is a numerical library written in full Matlab that allows the user to solve PDE
using the finite element technique. Very much inspired by the FreeFem++ formalism, the package
contains classical FEM and BEM functionalities. In this latter case, the library allows the user to
store the operators in a H-matrix format that makes it possible to factorize the underlying matrix and

316

The Gypsilab framework

solve using a direct method the linear system. We are not aware of any comparable software package
that combines ease of use, generality and performance to the level reached by Gypsilab. We have
shown illustrative examples in several problems ranging from classical academic Laplace problems to
the Combined Field Integral Equation in electromagnetism. Eventually, a short performance analysis
shows that the library possesses enough performance to run problems with a number of unknowns
of the order of a million in reasonable times. A lot remains to be done, as extending the available
finite elements, proposing different compression strategies or coupling FEM and BEM problems, that
we wish to study now. In particular solving coupled FEM-BEM problems in Gypsilab will be the
subject of a forthcoming paper.

Finally, Gypsilab is available under GPL license [19] and which makes it a desirable tool for
prototyping.

Acknowledgments

Both authors would like to thank Pierre Jolivet for valuable comments on the present work, especially
concerning the way FreeFem++ handles different quadrature formulas. The financial support of the
french Direction Générale de l’Armement is also gratefully acknowledged.

References

[1] J. Alberty, C. Carstensen, and S. A. Funken. Remarks around 50 lines of Matlab: short finite element
implementation. Numerical Algorithms, 20(2-3):117–137, 1999.

[2] F. Alouges and M. Aussal. The sparse cardinal sine decomposition and its application for fast numerical
convolution. Numerical Algorithms, 70(2):427–448, 2015.

[3] F. Alouges, M. Aussal, A. Lefebvre-Lepot, F. Pigeonneau, and A. Sellier. Application of the sparse cardinal
sine decomposition to 3d Stokes flows. International Journal of Computational Methods and Experimental
Measurements, 5(3):387–394, 2017.

[4] F. Alouges, M. Aussal, and E. Parolin. Fast Boundary Element Method for acoustics with the sparse
cardinal sine decomposition. European Journal of Computational Mechanics, 26(4):377–393, 2017.

[5] I. Anjam and J. Valdman. Fast Matlab assembly of FEM matrices in 2D and 3D: Edge elements. Applied
Mathematics and Computation, 267:252–263, 2015.

[6] https://imacs.polytechnique.fr/ASERIS.htm. [Accessed - Sept. 2018].

[7] H. Bang and Y. W Kwon. The finite element method using Matlab. CRC press, 2000.

[8] D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory, volume 93. Springer Science
& Business Media, 2012.

[9] https://www.comsol.fr. [Accessed - Sept. 2018].

[10] F. Cuvelier, C. Japhet, and G. Scarella. An efficient way to assemble finite element matrices in vector
languages. BIT Numerical Mathematics, 56(3):833–864, 2016.

[11] https://www.esi-group.com/software-solutions/virtual-environment/electromagnetics/
cem-one/efield-time-domain-solvers. [Accessed - Sept. 2018].

[12] http://www.feelpp.org. [Accessed - Sept. 2018].

[13] https://fenicsproject.org. [Accessed - Sept. 2018].

[14] http://firedrakeproject.org. [Accessed - Sept. 2018].

[15] http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html. [Accessed - Sept. 2018].

317

https://imacs.polytechnique.fr/ASERIS.htm
https://www.comsol.fr
https://www.esi-group.com/software-solutions/virtual-environment/electromagnetics/cem-one/efield-time-domain-solvers
https://www.esi-group.com/software-solutions/virtual-environment/electromagnetics/cem-one/efield-time-domain-solvers
http://www.feelpp.org
https://fenicsproject.org
http://firedrakeproject.org
http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html

F. Alouges & M. Aussal

[16] S. Funken, D. Praetorius, and P. Wissgott. Efficient implementation of adaptive P1-FEM in Matlab. Com-
putational Methods in Applied Mathematics Comput. Methods Appl. Math., 11(4):460–490, 2011.

[17] C. Geuzaine. GetDP: a general finite-element solver for the de Rham complex. In PAMM: Proceedings in
Applied Mathematics and Mechanics, volume 7(1), pages 1010603–1010604. Wiley Online Library, 2007.
See also "http://getdp.info".

[18] L. Greengard. The rapid evaluation of potential fields in particle systems. MIT press, 1988.
[19] www.cmap.polytechnique.fr/~aussal/gypsilab. Gypsilab is freely available under GPL 3.0 license. (It

is also available on GitHub at "https://github.com/matthieuaussal/gypsilab").
[20] W. Hackbusch. Hierarchische Matrizen: Algorithmen und Analysis. Springer Science & Business Media,

2009.
[21] F. Hecht. New development in FreeFem++. Journal of numerical mathematics, 20(3-4):251–266, 2012. See

also http://www.freefem.org.
[22] J.-C. Nédélec. Acoustic and electromagnetic equations: integral representations for harmonic problems,

volume 144. Springer Science & Business Media, 2001.
[23] T. Rahman and J. Valdman. Fast Matlab assembly of FEM matrices in 2D and 3D: Nodal elements. Applied

mathematics and computation, 219(13):7151–7158, 2013.

[24] W. Śmigaj, T. Betcke, S. Arridge, J. Phillips, and M. Schweiger. Solving boundary integral problems with
BEM++. ACM Transactions on Mathematical Software (TOMS), 41(2):6, 2015.

[25] O. J. Sutton. The virtual element method in 50 lines of Matlab. Numerical Algorithms, 75(4):1141–1159,
2017.

[26] https://www.esi-group.com/fr/solutions-logicielles/performance-virtuelle/
vibro-acoustique. [Accessed - Sept. 2018].

[27] https://uma.ensta-paristech.fr/soft/XLiFE++/. [Accessed - Sept. 2018].

318

http://getdp.info
www.cmap.polytechnique.fr/~aussal/gypsilab
https://github.com/matthieuaussal/gypsilab
http://www.freefem.org
https://www.esi-group.com/fr/solutions-logicielles/performance-virtuelle/vibro-acoustique
https://www.esi-group.com/fr/solutions-logicielles/performance-virtuelle/vibro-acoustique
https://uma.ensta-paristech.fr/soft/XLiFE++/

	1. Introduction
	2. Simple examples
	2.1. A Laplace problem with Neumann boundary conditions
	2.2. Fourier boundary conditions
	2.3. An eigenvalue problem

	3. Finite element programming in Matlab
	4. Quick overview of Gypsilab
	4.1. The mesh
	4.2. The domain
	4.3. The Finite Element toolbox (openFEM)
	4.4. The integral keyword (openDOM)

	5. Generalization of the approach to the BEM
	5.1. Generalization of the integral keyword (openDOM)
	5.2. Regularization of the kernels
	5.3. Coupling with openHMX
	5.4. Acoustic scattering
	5.5. Electromagnetic scattering

	6. Performance
	6.1. Performance in FEM
	6.2. Performance in BEM

	7. Conclusion
	Acknowledgments
	References

