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Abstract The axisymmetric Taylor-vortex flow of a rarefied gas between two coax-
ial circular cylinders, a rotating inner cylinder and a resting outer one, is inves-
tigated numerically for small Knudsen numbers on the basis of the compressible
Navier-Stokes (CNS) equations and their appropriate slip boundary conditions. The
accuracy of the result as an approximate solution to the Boltzmann equation is con-
firmed by comparing it with the result obtained by the direct simulation Monte
Carlo (DSMC) method for Knudsen numbers of the order of 10−2. The flow field for
smaller Knudsen numbers (of the order of 10−3) exhibits a boundary-layer like struc-
ture near the cylinders. It is shown that, compared with the cylindrical Couette flow,
the velocity slip in the circumferential direction is enhanced in the Taylor-vortex
flow.

1 Introduction

The Taylor-vortex flow between two coaxial circular cylinders rotating at different
angular velocities is one of the most fundamental problems in fluid dynamics. In
particular, for an incompressible fluid, it is a classical problem that has been inves-
tigated extensively [1, 2, 3]. As for a rarefied gas, its study is relatively recent, and
some results based on the direct simulation Monte Carlo (DSMC) method [4, 5] have
been reported in the case of high-speed rotation of the inner cylinder for Knudsen
numbers of the order of 10−2 and 10−3 (e.g., [6, 7, 8, 9]). However, because of the in-
crease of the computational load, there are few studies of detailed flow structure for
Knudsen numbers of the order of 10−3 and smaller. Therefore, the behavior of the
flow field when the Knudsen number approaches zero has not been fully understood.

In the present study, we revisit this problem with special interest in the structure
of the flow field and the magnitude of the velocity slip in the near continuum regime.
We also use the DSMC method as a numerical tool. However, when the Knudsen
number becomes small, it becomes increasingly difficult to obtain detailed structure
of the flow field with this method. On the other hand, for small Knudsen numbers,
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a systematic asymptotic analysis has been carried out for the Boltzmann equation,
and the fluid-dynamic equations and their boundary conditions of slip type that
give the correct asymptotic solution for the steady boundary-value problem of the
Boltzmann equation have been established in different physical situations (Sone’s
asymptotic theory, cf. [10, 11, 12, 13]). Such fluid-dynamic systems are much more
convenient for numerical analysis of flows at smaller Knudsen numbers. However, the
Taylor-Couette flow with high-speed rotation of the inner cylinder does not seem
to be covered by these situations where the fluid-dynamic systems are available.
Therefore, we are going to use the Navier–Stokes equations for a compressible fluid
and their correct slip boundary conditions to investigate the present problem. Their
validity is confirmed numerically by the comparison with the result by the DSMC
method for Knudsen numbers of the order of 10−2.

It should be mentioned that the Taylor-vortex flow with high-speed rotation of
the inner cylinder has been analyzed numerically using the compressible Navier–
Stokes equations and the no-slip boundary conditions [14]. The reader is referred
to [15, 16] for linear-stability analysis of the high-speed cylindrical Couette flow of
a rarefied gas.

2 Problem and assumptions

Let us consider a rarefied gas in an annular domain of height L bounded by two coax-
ial circular cylinders and top and bottom boundaries. The inner cylinder (radius R1,
temperature T0) is rotating with a surface speed V1, whereas the outer cylinder
(radius R2, temperature T0) is at rest. We investigate the steady behavior of the
gas under the following assumptions: (i) The behavior of the gas is described by
the Boltzmann equation for hard-sphere molecules; (ii) The gas molecules undergo
diffuse reflection on the cylinders and specular reflection on the top and bottom
boundaries; (iii) The flow field is axisymmetric; (iv) The Knudsen number (Kn) is
small. The DSMC method is used down to Kn = 0.01. But, for smaller Kn (down
to Kn = 0.0007), we use the Navier–Stokes equations for a compressible fluid and
the correct slip boundary conditions (of the order of Kn) on the cylinders derived
consistently with the Chapman–Enskog solution of the Boltzmann equation.

3 Basic equations

Let ρ0 be the average density of the gas in the annular domain, and let p0 = Rρ0T0,
where R is the gas constant per unit mass (i.e., R = k/m with k the Boltzmann
constant and m the mass of a molecule). Let us define the Knudsen number Kn as
Kn = l0/R1, where l0 is the mean free path of the gas molecules in the equilibrium at
rest with temperature T0 and density ρ0. Then, we introduce dimensionless variables
t, x, ζ, etc. by means of the following definitions of the corresponding dimensional
quantities: R1(2RT0)

−1/2t is the time variable, R1x the spatial position vector,
(2RT0)

1/2ζ the molecular velocity, ρ0(2RT0)
−3/2f the molecular velocity distribution
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function, ρ0ρ the density, (2RT0)
1/2v the flow velocity, T0T the temperature, p0p the

pressure, and p0e the total energy per unit volume. In addition, we use the cylindrical
coordinate system (r, θ, z) in the dimensionless x space with z axis on the axis of
the inner (or outer) cylinder and z = 0 on the bottom boundary of the annular
domain. Therefore, the gas domain is expressed as 1 ≤ r ≤ R2/R1, 0 ≤ z ≤ L/R1,
and 0 ≤ θ < 2π. We denote the r, θ, and z components of ζ by ζr, ζθ, and ζz and
those of v by vr, vθ, and vz. Our choice of ρ0 leads to the following normalization
condition for the dimensionless density ρ:

2

(L/R1)[(R2/R1)2 − 1]

∫ L/R1

0

∫ R2/R1

1

ρrdrdz = 1, (1)

3.1 Boltzmann System

The dimensionless Boltzmann equation in the present axisymmetric problem is ex-
pressed as

∂f

∂t
+ ζr

∂f

∂r
+ ζz

∂f

∂z
+
ζ2θ
r

∂f

∂ζr
− ζrζθ

r

∂f

∂ζθ
=

1

ε
J(f, f), (2)

where J(f, f) is the collision integral determined by the model of the molecular
interaction, the explicit form of which is omitted here for brevity, and ε = (

√
π/2)Kn.

The dimensionless form of the diffuse-reflection condition on the inner and outer
cylinders can be written as

f = π−3/2σw exp
(
−[ζ2r + (ζθ − Vw)2 + ζ2z ]

)
for ζn > 0, (3a)

σw = −2π1/2

∫

ζn<0

ζnf dζ, (3b)

where we let Vw = V1/(2RT0)
1/2 and ζn = ζr on the inner cylinder (r = 1, 0 ≤ z ≤

L/R1) and Vw = 0 and ζn = −ζr on the outer (r = R2/R1, 0 ≤ z ≤ L/R1). On
the other hand, the specular reflection condition on the top (z = L/R1) and bottom
(z = 0) boundaries is given by

f(t, r, z, ζr, ζθ, ζz) = f(t, r, z, ζr, ζθ, −ζz), (4)

for ζz > 0 on z = 0 and for ζz < 0 on z = L/R1.
The initial condition is given by

f = f0 at t = 0, (5)

where f0 is an appropriately chosen initial function (e.g., the Maxwellian distribution
corresponding to the gas at rest with temperature T0 and density ρ0).

3.2 Navier–Stokes System

If we take the Chapman–Enskog solution of the Boltzmann equation (2) and retain
the terms of O(Kn) neglecting the higher-order terms, we have the Navier–Stokes
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equation for a compressible fluid (cf. Sec. B.4 in [13]), which may be written in the
following form:

∂ρ

∂t
+∇ · (ρv) = 0, (6a)

∂

∂t
(ρv) +∇ · (ρvv) +

1

2
∇p =

1

2
∇ · τ , (6b)

∂e

∂t
+∇ · [(e+ p)v] = ∇ · (τ · v)−∇ · q. (6c)

where p0τ and p0(2RT0)
1/2q are, respectively, the dimensional viscous-stress tensor

and heat-flow vector, and e, τ , and q are given as follows:

e = ρ[(3/2)T + |v|2], (7a)

τ = εγ1T
1/2[∇v + (∇v)T − (2/3)(∇ · v) I ], (7b)

q = −(5/4)εγ2T
1/2∇T, (7c)

where ( )T indicates the transpose operation, I denotes the unit tensor, and γ1
and γ2 are functions of T depending on the model of molecular interaction and are
constant for hard-sphere molecules (γ1 = 1.270042 and γ2 = 1.922284 [12, 13]). The
terms εγ1T

1/2 and εγ2T
1/2 in Eqs. (7b) and (7c) correspond, respectively, to the

viscosity and thermal conductivity of the gas. Equations (6) and (7) form a closed
set of equations together with the equation of state, p = ρT . In Eqs. (6) and (7),
the cylindrical coordinates are not used, so that the axial symmetry is not shown
explicitly.

On the basis of the first-order Chapman–Enskog solution, we can derive the slip
boundary conditions on the cylinders appropriate to the Navier–Stokes equations (6)
(see the next subsection), which are written in the following form: At r = Rw,

vr = 0, ρ(vθ − Vw) = −δk0
(
∂vθ
∂r
− Vw
Rw

)
ε, ρvz = −δk0

∂vz
∂r

ε, (8a)

ρ(T − 1) = δd1
∂T

∂r
ε. (8b)

Here, we let Rw = 1, Vw = V1/(2RT0)
1/2, and δ = 1 for the inner cylinder (r = 1,

0 ≤ z ≤ L/R1) and Rw = R2/R1, Vw = 0, and δ = −1 for the outer (r = R2/R1,
0 ≤ z ≤ L/R1); k0 and d1 are the so-called slip coefficients and known to be
k0 = −1.2540 and d1 = 2.4001 for hard-sphere molecules and the diffuse reflection
condition [12, 13].

We also impose appropriate conditions corresponding to the specular reflec-
tion (4) on the top and bottom boundaries, that is,

∂vr
∂z

=
∂vθ
∂z

= vz = 0,
∂T

∂z
= 0, at z = 0 and L/R1. (9)

The initial condition that we use in the present study is the uniform state at rest
(ρ = T = 1, v = 0) or the steady solution for a nearby ε.
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3.3 Derivation of Slip Boundary Conditions

If we denote the Chapman–Enskog solution of the Boltzmann equation (2) by

fCE = f
(0)
CE + f

(1)
CEε + O(ε2), we are using the part f

(0)
CE + f

(1)
CEε. The leading-order

term f
(0)
CE, which is the local Maxwellian distribution with density ρ, flow veloc-

ity v, and temperature T , satisfies the boundary condition (3) if we assume that
vr = vz = 0, vθ = Vw, and T = 1 on the cylinders. On the other hand, the
functional form of f

(1)
CE with respect to ζ is different from that of the boundary con-

dition (3), so that f
(1)
CE has no freedom to satisfy the boundary condition. Therefore,

we seek the solution satisfying the boundary condition in the form f = fCE + fK,
where fK is the correction term appreciable only in the Knudsen layers, i.e., the
thin layers with thickness of O(ε), adjacent to the inner and outer cylinders [12, 13].
More specifically, fK has the length scale of variation of O(ε) in the direction nor-
mal to the surface of the cylinders, so that fK is expressed as fK(t, η, z, ζn, ζθ, ζz),
where η = (r − 1)/ε, ζn = ζr in the Knudsen layer at the inner cylinder and
η = (R2/R1 − r)/ε, ζn = −ζr in that at the outer, and is assumed to vanish rapidly
as η →∞.

Because f
(0)
CE can satisfy the boundary condition (3) with the choice vr = vz = 0,

vθ = Vw, and T = 1 on the cylinders, we may consider that vr = vz = O(ε),

vθ−Vw = O(ε), and T−1 = O(ε). Therefore, we assume the form fK = f
(1)
K ε+O(ε2)

and try to obtain f
(1)
K . We now substitute f = fCE + fK into the Boltzmann

equation (2) in the Knudsen layers and the boundary condition (3). If we take into
account the properties of fCE and fK and neglect the quantities of O(ε2) and higher,

we obtain the equation and boundary condition for f
(1)
K . They are essentially the

same as the Knudsen-layer problem encountered in the linear asymptotic theory
(cf. Sec 3.1 in [13]) and are decomposed into two classical half-space problems, the
shear-slip and the temperature-jump problems. By solving these problems, the slip
boundary conditions (8), including the values of the slip coefficients, are obtained

together with the solution f
(1)
K . Numerical solutions of these problems are available

in the literature (e.g., [17, 18]).

4 Numerical analysis and results

We solve the Boltzmann system (2)–(5) numerically by the DSMC method [4, 5].
As for the Navier–Stokes system, Eqs. (6)–(9) and the initial condition, we use
the Beam–Warming method [19] for the time evolution and the forth-order central
differences for the finite difference in space. When we use the uniform state at
rest (ρ = T = 1, v = 0) as the initial condition, it is slightly perturbed by adding
vz = sin(πz/L)/1000. For both systems, the steady solution is obtained as the long-
time limit by pursuing the time evolution of the solution.

In the present paper, we fix the parameters R2/R1, L/R1, and V1/(2RT0)
1/2 as

R2/R1 = 2, L/R1 = 1, and V1/(2RT0)
1/2 = 1 and show the results for different

Kn [= (2/
√
π) ε].
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Fig. 1: Comparison between the compressible Navier–Stokes (CNS) result and the
DSMC result for Kn = 0.02. (a) Contour lines of vθ and the vector (vr, vz) in the rz
plane, (b) contour lines of ρ, (c) contour lines of T . The solid (dashed) line indicates
the CNS (DSMC) result. The arrow indicates (vr, vz) at its starting point (CNS
result), and its scale is shown above the figure.

10
-5

10
-4

10
-3

10
-2

 1  1.5  2

d
if

fe
re

n
c
e

r

z=0.0125

z=0.5125

z=0.9875

(a)

10
-5

10
-4

10
-3

10
-2

 1  1.5  2

d
if

fe
re

n
c
e

r

z=0.0125

z=0.5125

z=0.9875

(b)

10
-5

10
-4

10
-3

10
-2

 1  1.5  2

d
if

fe
re

n
c
e

r

z=0.0125

z=0.5125

z=0.9875

(c)

Fig. 2: Difference between the CNS and DSMC results in macroscopic quantities at
z = 0.0125, 0.5125, 0.9875 for Kn = 0.02. (a) |vCNS

θ − vDSMC
θ |, (b) |ρCNS − ρDSMC|,

(c) |TCNS − TDSMC|.

4.1 Comparison between the Boltzmann and Navier–Stokes
Systems

We first compare the flow field obtained for the compressible Navier–Stokes system
(CNS) and that for the Boltzmann system by the DSMC method.

Figure 1 shows the results for Kn = 0.02: Fig. 1(a) shows the contour lines of vθ
and the two-dimensional vector (vr, vz) in the rz plane, Fig. 1(b) the contour lines
of ρ, and Fig. 1(c) the contour lines of T . The solid line indicates the contour line
obtained for CNS and the dashed line that by the DSMC method; the arrow in
Fig. 1 indicates (vr, vz) for CNS at its starting point, and its scale is shown above
the figure. Figure 2 is a plot of the distribution in r of the difference (absolute
value) in the macroscopic quantities along the three lines z = 0.0125, 0.5125, and
0.9875: Fig. 2(a) shows |vCNS

θ − vDSMC
θ |, Fig. 2(b) |ρCNS − ρDSMC|, and Fig. 2(c)
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Fig. 3: Flow field at Kn = 0.005 (CNS). (a) Contour lines of vθ and the vector
(vr, vz) in the rz plane, (b) contour lines of ρ, (c) contour lines of T . The arrow
indicates (vr, vz) at its starting point, and its scale is shown above the figure.

|TCNS − TDSMC|, where the superscript CNS indicates the CNS results, and the
superscript DSMC the DSMC result. Since the DSMC result contains statistical
fluctuation, the curves in Fig. 2 are not smooth.

In Fig. 1, one observes the Taylor-vortex flow with a single roll. The distribu-
tions of the circumferential velocity and density obtained by both methods agree
well [Figs. 1(a) and 1(b)], but a slight discrepancy is seen for the isothermal lines
[Fig. 1(c)]. This is due to the fact that the difference is magnified because of the
small temperature variation. As seen in Fig. 2, the discrepancy is of O(10−3). Since
the CNS result is based on the first-order Chapman–Enskog solution, its expected
deviation from the DSMC result may be of O(Kn2), that is, O(4× 10−4) [since the
Knudsen layer corrections are not made for the CNS result, the discrepancy inside
the Knudsen layers can be of O(Kn)]. The discrepancy shown by Fig. 2 is larger
by one order of magnitude. The reason will be mentioned in DISCUSSIONS. Natu-
rally, we have better agreement between CNS and DSMC results for Kn = 0.01, the
results for which are not shown in the present paper.

4.2 Flow Field Obtained by the Navier–Stokes System

In Figs. 3 and 4, we show the results for Kn = 0.005 and 0.001, respectively: As in
Fig. 1, Figs. 3(a) and 4(a) show the contour lines of vθ and the velocity vector (vr, vz)
on the rz plane, Figs. 3(b) and 4(b) the contour lines of ρ, and Figs. 3(c) and 4(c)
the contour lines of T . The Taylor-vortex flow with a single vortex is induced in
both cases. The concentration of the contour lines near the cylinders indicates that
the gradients of vθ, ρ, and T are steep there (in particular, near the inner cylinder)
and are mild in the bulk of the gas. The gradients near the cylinders are steeper at
Kn = 0.001. Since the viscosity is smaller for smaller Kn, this feature suggests that
the structure like the viscous boundary layer appears in the vicinity of the cylinders.

In order to look into the boundary-layer like structure, we show in Figs. 5–7 the
profile of vθ for Kn = 0.01, 0.005, and 0.001 along the three lines, z = 0 (Fig. 5),
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Fig. 4: Flow field at Kn = 0.001 (CNS). (a) Contour lines of vθ and the vector
(vr, vz) in the rz plane, (b) contour lines of ρ, (c) contour lines of T . The arrow
indicates (vr, vz) at its starting point, and its scale is shown above the figure.
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Fig. 5: Profile of vθ along z = 0 (CNS). (a) vθ vs r, (b) vθ vs the stretched ra-
dial coordinate (r − 1)/Kn1/2 measured from the inner cylinder. In (a), vθ for the
cylindrical Couette flow at Kn = 0.001 is also shown.
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Fig. 6: Profile of vθ along z = 0.5 (CNS). (a) vθ vs r, (b) vθ vs the stretched
radial coordinate (r− 1)/Kn1/2 measured from the inner cylinder. In (a), vθ for the
cylindrical Couette flow at Kn = 0.001 is also shown.
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Fig. 7: Profile of vθ along z = 1 (CNS). (a) vθ vs r, (b) vθ vs the stretched ra-
dial coordinate (r − 1)/Kn1/2 measured from the inner cylinder. In (a), vθ for the
cylindrical Couette flow at Kn = 0.001 is also shown.

z = 0.5 (Fig. 6), and z = 1 (Fig. 7). Let us focus our attention on the profile near
the inner cylinder. In each figure, panel (a) is the ordinary profile, and panel (b)
the profile as a function of the stretched radial coordinate (r − 1)/Kn1/2 measured
from the inner cylinder (r = 1). In panel (a), the profile of vθ for the cylindrical
Couette flow at Kn = 0.001 is also shown. The profiles at z = 0 [Fig. 5(a)] and
0.5 [Fig. 6(a)] show that, as Kn becomes small, the gradient of vθ becomes steeper
near the inner cylinder but becomes milder in the bulk of the gas. As the result, the
profiles differ significantly from that of the cylindrical Couette flow. Moreover, as
seen from Figs. 5(b) and 6(b), the profiles near the inner cylinder at three different
Knudsen numbers exhibit a similarity in the sense that they more or less coincide
in the stretched radial coordinate (r − 1)/Kn1/2. This suggests that the viscous
boundary-layer structure appears, since Kn ∝ 1/Re with Re the Reynolds number.
The latter relation is the consequence of the von Kármán relation Ma ∝ Kn Re with
Ma the Mach number and of the fact that Ma ∝ V1/(2RT0)

1/2 = 1 in Figs. 5–7. In
contrast, the profile at z = 1 does not differ much from the cylindrical Couette flow,
and the similarity seen at z = 0 and 0.5 is not observed. This is because the outward
radial flow (vr > 0) near z = 1 [cf. Figs. 3(a) and 4(a)] lifts up the boundary layer
and destroys the boundary-layer structure.

If we look at Figs. 5(a) and 6(a) carefully, we notice that the velocity slip
V1/(2RT0)

1/2 − vθ = 1 − vθ on the inner cylinder (r = 1) becomes much larger,
compared to the cylindrical Couette flow, once the Taylor vortex is formed. Fig-
ure 8(a) shows the velocity slip 1− vθ on the inner cylinder at z = 0 [cf. Fig. 5(a)]
versus Kn. The solid line indicates the result for the cylindrical Couette flow ob-
tained under the constraint of axial and circumferential uniformity, and ◦ indicates
the results for axisymmetric computation. As Kn is reduced from 0.04, the velocity
slip bifurcates at Kn ≈ 0.023 at which the Taylor vortex is formed. Figure 8(b)
is a closeup of Fig. 8(a) near the bifurcation point. Figure 8(c) is the replot of
Fig. 8(a) in log-log scale. The velocity slip in the cylindrical Couette flow tends to
follow the line with gradient 1, which means that 1 − vθ ∝ Kn, whereas that for
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Fig. 8: Velocity slip V1/(2RT0)
1/2 − vθ = 1 − vθ at z = 0 on the inner cylinder

(r = 1) (CNS). (a) 1− vθ vs Kn, (b) closeup of panel (a) near the bifurcation point,
(c) 1− vθ vs Kn in log-log scale.

the Taylor-vortex flow tends to follow the line with gradient 1/2, which means that
1 − vθ ∝ Kn1/2. This behavior might seem to contradict the use of the first-order
slip boundary conditions (8). This point will be discussed in the following section.

5 Discussions

Let us focus our attention on the structure of the flow field near the inner cylinder.
Let us suppose that a boundary-layer like structure, the length scale of which in r
direction is Kn1/2, is formed on a part of the inner cylinder. Then, if we use the
stretched normal coordinate y = (r − 1)/Kn1/2, the term containing ∂vθ/∂r in
Eq. (8a) becomes

−k0
∂vθ
∂r

ε = −
√
π

2
k0
∂vθ
∂y

Kn1/2. (10)

That is, this term is upgraded to O(Kn1/2) by the presence of the boundary layer.
The same is true for the other two terms, −k0(∂vz/∂r) ε and d1(∂T/∂r) ε, in Eq. (8).
This is consistent with the magnitude of the velocity slip shown in Fig. 8(c) and
thus provides another piece of evidence of the boundary-layer structure at least near
z = 0.

Since we are using the first-order Chapman–Enskog solution corresponding to
the Navier–Stokes equations, we expect that our numerical solution using the lat-
ter equation is a correct approximation to the solution of the Boltzmann equation
up to O(Kn). In other words, we have neglected the terms of O(Kn2), the so-
called Burnett terms, in the fluid-dynamic equations, which may contain higher-
order derivatives, such as (1/r)(∂3T/∂r2∂θ)ε2. The latter term may be upgraded as
(1/r)(∂3T/∂y2∂θ)Kn inside the boundary layer. In consequence, the Navier–Stokes
equations do not guarantee the accuracy up to O(Kn) inside the boundary layer.
This may be one of the reasons that the deviation of the CNS solution from the
DSMC result (Fig. 2) is of O(Kn3/2) and is larger than the expected difference of
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O(Kn2). However, on the contrary to the above observation, the CNS result seems
to be accurate up to O(Kn) (Fig. 2).

Once the viscous boundary layer is formed near the cylinders, the correct asymp-
totic solution and the corresponding fluid-dynamic equations would be obtained by
the scheme for finite Mach numbers of Sone’s asymptotic analysis [20] (cf. Chap. 6 in
[12]). It is carried out with Kn1/2 as the small parameter. It gives the shear-slip and
temperature jump conditions at O(Kn1/2) on the boundary and guarantees that the
CNS equations are correct up to O(Kn1/2). It is consistent with our numerical result
and intuitive argument. However, this type of systematic asymptotic analysis is not
applicable uniformly because, as seen from Figs. 3–7, the boundary-layer structure
does not cover the whole inner (outer) cylinder (0 ≤ z ≤ 1). Therefore, it is not
obvious how to derive the correct and uniformly valid fluid-dynamic system describ-
ing the Taylor-vortex flow from the Boltzmann system by means of a systematic
asymptotic analysis for small Knudsen numbers.
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