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Bérenger/Maxwell with Discontinous Absorptions:

Existence, Perfection, and No Loss

Laurence Halpern ∗ Jeffrey Rauch †‡

Abstract

We analyse Bérenger’s split algorithm applied to the system ver-
sion of the two dimensional wave equation with absorptions equal to
Heaviside functions of xj , j = 1, 2. The methods form the core of the
analysis [11] for three dimensional Maxwell equations with absorptions
not necessarily piecewise constant. The split problem is well posed, has
no loss of derivatives (for divergence free data in the case of Maxwell),
and is perfectly matched.

Keywords. PML. well posedness, loss of derivatives, perfect matching.

AMS Subject Classification. 65M12, 65M55, 30E10.

1 Absorbing strategy and corners

Bérenger’s algoritm is an absorbing layer method for computing approximate
solutions of Maxwell’s equations in vacuum on Rd with d = 2, 3. It can be
applied to other equations but was designed for Maxwell and excels in that
context.

One is interested in the values of the solution only in a compact set. One
chooses a rectangle R larger, but ideally not too much larger. The rectan-
gle R is inside a larger one, S as in Figure 1.

The boundary of S is not a physical boundary. At the boundary one must
impose artificial boundary conditions that are designed to be as transparent
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Figure 1: Geometry of Bérenger’s algorithm

to outgoing waves as possible. This poses a serious difficulty at the corners
of S as the boundary conditions on the adjacent faces are usually different.

The absorbing layer strategy aims to reduce the intensity of the waves that
reach the exterior boundary. This places less demands on the transparent
boundary condition. In the rectangle R one solves Maxwell’s equations. In
the region between the two rectangles one solves a dissipative equation that
represents an absorbing layer. The unknowns in R are an electric field and
magnetic field so six scalar functions. For Bérenger’s absorbing layer, the
unknown in the layer has more components than the original equation.

This paper as well as its predecessor, [10], do not address the external bound-
ary. Take S = Rd. The outer boundary from Figure 1 recedes to infinity as
in Figure 2.

R

Figure 2: Geometry with S = Rd. No external boundary.
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A great advantage of Bérenger algorithm is that it explicitly treats the inter-
nal corners in R. The problem discussed here is to show that the algorithm
of Bérenger defines a well posed problem and is perfectly matched at the
boundaries of R, including corners. Contrary to popular belief, it satis-
fies estimates without loss of derivatives for the divergence free solutions of
Maxwell’s equations.

R
R

Figure 3: Exact initial data and later solution. A perfectly matched layer
would show the same result to the right of the dotted boundary

R
R

Figure 4: An imperfectly matched layer would have errors of reflection

Perfect matching (following [2]) means that when used to compute solutions
with sources in R, the computed solution in R is equal to the exact solution
as in Figure 3. The surrounding medium does not pollute the solution in R
with any reflections at the boundaries or diffracted waves from the corners.
It is an unreasonable demand that is met nevertheless.

To describe the proof with a minimum of technical obstructions, we discuss
the case d = 2 and make two additional simplifications. The first is to take
R = ]0,∞[2 equal to the positive quadrant, as in Figure 5. The origin is the
unique corner in this geometry.

The second is to replace Maxwell’s equations by the system analogue of the
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3

R1

2

Figure 5: Simplified geometry. One corner, no external boundary.

wave equation,

L(∂t, ∂x) := ∂t +
∑

j

Aj∂j := ∂t +

(
1 0
0 −1

)
∂1 +

(
0 1
1 0

)
∂2. (1.1)

Acknowlegement. Thanks to G. Métivier for suggestions leading to cleaner
estimates.

2 Bérenger’s splitting

The objective is to approximate in R the values of a solution U to an equa-
tion on R1+2,

L(∂t, ∂x)U =
(
∂t+A1∂1+A2∂2

)
U = F , U = F = 0 for t < 0 . (2.1)

The source term F is supported strictly inside R, that is, there is a bounded
open ω with ω ⊂ R and

suppF ⊂ [0,∞[ × ω . (2.2)

Bérenger’s algorithm introduces a C2 valued function V on Rt×R and a C4

valued function Ũ := (U1, U2) on the complement, Rt × (R2 \R). The U j

take values in C2. The equation for V is simply the original equation

LV = F, in R×R, V = 0 for t < 0 . (2.3)

Laurence Halpern and Jeffrey Rauch
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The equations for Ũ on R× (R2 \R) are writtten L̃Ũ = 0 and are called the
split equations. They are

(
∂t + σ1(x1)

)
U1 + A1∂1(U1 + U2) = 0 ,

(
∂t + σ2(x2)

)
U2 + A2∂2(U1 + U2) = 0 .

(2.4)

The first equation has the ∂1 derivatives and the other has the ∂2 terms.
Where the σj vanish, the sum U1 + U2 satisfies the original equation.

The functions σj called absorption coefficients are nonnegative, bounded and
supported in ]−∞, 0]. The absorptions vanish in R. The original algorithm
proposed by Bérenger made the choice

σj := c1]−∞,0[ , c > 0 (2.5)

equal to a constant multiple of the indicator function of ]−∞, 0[, see [6] . In
this case the operator on the left of (2.4) has constant coefficients in each of
the three subdomains of the complement of R indicated as domains 1,2, and
3 in Figure 5. As the coefficients are discontinuous across the coordinate
axes, solutions will not be smooth across the axes.

The differential equations (2.3) in R × R and (2.4) on Rt × (R2 \ R) are
linked by a transmission condition that requires that the function

U :=

{
V for x ∈ R

U1 + U2 for x ∈ R2 \R
(2.6)

is continuous across the coordinate axes. This asserts equality of V and
U1 +U2 across the segments indicated with solid arrows in the Figure 5 and
continuity of U1 + U2 across the segments indicated with dotted arrows.
These transmissions are insured by constructing U(t) ∈ H1(R2) for which
traces from the two sides of segments on the axis are equal.

The miraculous behavior of Bérenger’s algorithm [6, 7, 8] is that the discon-
tinuities of σj(xj) produce no reflections at all. For σj that are sufficiently
smooth or when there is only one non zero σj this is proved in [10]. The
present paper addresses the case of the discontinuous absorptions (2.5). §9
proves that perfection for Bérenger follows from the well posedness of the
transmission problem.

The well posedness of the transmission problem with more than one dis-
continuous absorption has remained open for more than twenty years. The
method presented here also works in the case of smooth absorptions. In
all of these cases the transmission problem has no loss of derivatives for
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divergence free solutions of Maxwell. The proofs of [13] , [10], for differen-
tiable σj lose derivatives. So do the constant coefficient problems in regions
1,2,3, see Arbarbanel and Gottlieb [1] . Our result without loss seems in
contradiction. The explanation of this apparent paradox, is that the loss of
derivatives from [1] does not occur for divergence free solutions of Maxwell’s
equations. A key element is the construction of a divergence free condition
that is propagated by the split equations.

For the wave equation system, the result is the following.

Definition 2.1 Denote by Ω the complement of the axes in R2

Ω :=
{

(x1, x2) ∈ R2 : x1x2 6= 0
}
.

Theorem 2.2 There are positive constants C and λ0 so that if F is a dis-
tribution on R× R2 supported in [0,∞[×ω and for λ > λ0

{Ft , ∇F} ∈ eλt L2
(
R ; L2(R2)

)
,

there is a unique triple V,U1, U2 with V supported in [0,∞[×R, U j sup-
ported in [0,∞[×Ω \R,

V , U j , Vt , U
j
t ,∇x

(
V
∣∣
R

)
, ∇x

(
U j
∣∣
Ω\R

)
∈ eλt L2

(
R ; L2(R2)

)
,

and satisfying the Bérenger transmission problem in the sense that (2.3) and
(2.4) are satisfied and U defined in (2.6) belongs to eλtL2

(
R ; H1(R2)

)
. In

addition with ‖ · ‖ denoting norm in L2(R2),

∫
e−2λt

(
λ2
∥∥V,U j

∥∥2
+
∥∥∂tV, ∂tU j

∥∥2
+
∥∥∇x

(
V
∣∣
R
, (U1 + U2)

∣∣
Ω\R

)∥∥2)
dt

≤ C

∫
e−2λt

(∥∥∂tF (t)
∥∥2

+
∥∥∇F (t)

∥∥2
)
dt .

Both sides estimate H1 norms. There is almost no loss of derivatives. One
has time derivatives of U j but x derivatives of only U1 + U2.

The majority of the paper is devoted to the proof of existence. The solu-
tion is constructed by solving, with good estimates, the Laplace transformed
equations. From the Laplace transformed system a scalar second order el-
liptic equation resembling the Helmholtz equation is extracted.

Open problems. i. The estimates for the Laplace transform are weaker
than those in the Hille-Phillips Theorem of semigroup theory. For the wave
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equation with elliptic generator, the proof in [10] shows that there a C0

semigroup on L2. Analogous estimates for divergence free Maxwell are not
known. ii. If the source term F vanishes for t ≥ T it is not known is the
resulting free evolution of the Berenger system is uniformly bounded in time.

3 Reduction to a single unknown u

In the next Lemma, the equations involving L(τ, ∂x) and L̃(τ, ∂x) come
from Laplace transformation in time of the Bérenger equations on R × R
and R× (Ω \R) respectively.

Lemma 3.1 Suppose that v and u1, u2 are distributions on R and Ω\R re-
spectively, f ∈ L2(R) with supp f disjoint from ∂R, and Re τ > 0. Suppose
that

L(τ, ∂)v = f , and, L̃(τ, ∂)(u1, u2) = 0 in Ω \R. (3.1)

Define u = v in R and u = u1 + u2 in Ω \R.

i. Then on Ω one has

τ u +
τ

τ + σ1(x1)
A1∂1u +

τ

τ + σ2(x2)
A2∂2u = f . (3.2)

ii. Conversely if u ∈ D′(Ω) satisfies (3.2), then setting v = u on R and by
defining u1 and u2 on Ω \R by the analogue of (2.4),

(τ + σ1(x1))u1 + A1∂1u = 0 ,

(τ + σ2(x2))u2 + A2∂2u = 0 .
(3.3)

yields (3.1).

Proof of Lemma. i. Since the functions σj vanish in R, equation (3.2) is
identical to the equation Lv = f on R. On R2 \R the function f vanishes.
In that domain, multiply the first equation in (3.3) by τ + σ2(x2) and the
second by τ + σ1(x1) to find

(
τ + σ1(x1)

)(
τ + σ2(x2)

)
u1 +

(
τ + σ2(x2)

)
A1∂1u = 0 ,

(
τ + σ1(x1)

)(
τ + σ2(x2)

)
u2 +

(
τ + σ1(x1)

)
A2∂2u = 0 .

(3.4)

Add to find
(
τ+σ1(x1)

)
(τ+σ2(x2)

)
u+
(
τ+σ2(x2)

)
A1∂1u+

(
τ+σ1(x1)

)
A1∂2u = 0. (3.5)

Exp. no X— Bérenger/Maxwell with Discontinous Absorptions : Existence, Perfection, and No Loss

X–7



Multiplying by τ/
[
(τ + σ1(x1))(τ + σ2(x2))

]
yields (3.2).

ii. Immediate. �

Remark 3.1 i. The uj are one derivative less smooth than u. ii. Equation
(3.2) holds only on the complement of the axes since we have multiplied and
divided by factors τ + σj(xj) that are not smooth on the axes.

4 A reduced scalar wave equation

For Re τ > 0 define a scalar divergence form second order elliptic operator
p with smooth bounded coefficients on the open set Ω by

p(τ, x, ∂) := ∂1
τ + σ2(x2)

τ + σ1(x1)
∂1 + ∂2

τ + σ1(x1)

τ + σ2(x2)
∂2 . (4.1)

The corresponding quadratic form and Dirichlet integral are

τ + σ2(x2)

τ + σ1(x1)
ξ2

1 +
τ + σ1(x1)

τ + σ2(x2)
ξ2

2 ,

∫ (
τ + σ2(x2)

τ + σ1(x1)

∣∣∂1ψ
∣∣2 +

τ + σ1(x1)

τ + σ2(x2)

∣∣∂2ψ
∣∣2
)
dx.

The coefficients are constant in each of the four components of Ω.

Lemma 4.1 i. For Re τ > 0, p(τ, x, ∂) maps H1(R2) to H−1(R2).

ii. If u ∈ D′(Ω) satisfies (3.2) with f ∈ L2(R2) supported in ω, then on Ω

(
τ + σ1(x1)

) (
τ + σ2(x2)

)
u − p(τ, x, ∂)u =

(τ + σ1(x1)) (τ + σ2(x2))

τ2
L
(
− τ, τ

τ + σ1(x1)
∂1,

τ

τ + σ2(x2)
∂2

)
f .

(4.2)

iii. For Re τ > 0, the coefficients satisfy,

∣∣∣∣
τ + σ2(x2)

τ + σ1(x1)
− 1

∣∣∣∣ +

∣∣∣∣
τ + σ1(x1)

τ + σ2(x2)
− 1

∣∣∣∣ ≤
C

|τ | . (4.3)

iv. If u ∈ H1(R2) satisfies (4.2) on Ω then it satisfies (4.2) on R2. In this
case, the triple v, u1, u2 defined in terms of u as in Lemma 3.1 is a solution
of the transformed Bérenger transmission problem.

Proof. i. This is a consequence of the facts that the σj are bounded and
nonnegative.

Laurence Halpern and Jeffrey Rauch
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ii. Since A2
j = I and A1A2 +A2A1 = 0 it follows that

L(τ, ξ)2 = (τ2 + |ξ|2) I + 2τ(ξ1A1 + ξ2A2)

= (τ2 + |ξ|2) I + 2τ
(
L(τ, ξ)− τI)

= (|ξ|2 − τ2)I + 2τL(τ, ξ) .

Therefore,

−L
(
τ,

τ

τ + σ1
ξ1,

τ

τ + σ2
ξ2

)2
=

(
τ2−

( τ

τ + σ1
ξ1

)2
−
( τ

τ + σ2
ξ2

)2)
I − 2τL

(
τ,

τ

τ + σ1
ξ1,

τ

τ + σ2
ξ2

)
.

Consequently one has the following identity among piecewise constant coef-
ficient partial differential operators on Ω,

−L
(
τ,

τ

τ + σ1
∂1,

τ

τ + σ2
∂2

)2
=

(
τ2 −

( τ

τ + σ1

)2
∂2

1 −
( τ

τ + σ2

)2
∂2

2

)
I − 2τL

(
τ,

τ

τ + σ1
∂1,

τ

τ + σ2
∂2

)
.

Multiplying (3.2) by −L yields

L
(
τ,

τ

τ + σ1
∂1,

τ

τ + σ2
∂2

)2
u = L

(
τ,

τ

τ + σ1
∂1,

τ

τ + σ2
∂2

)
f − 2τf

= L
(
− τ, τ

τ + σ1
∂1,

τ

τ + σ2
∂2

)
f

Multiplying by
(τ + σ1(x1))(τ + σ2(x2))

τ2

yields (4.2).

iii. Estimate
∣∣∣∣
τ + σ2

τ + σ1
− 1

∣∣∣∣ =

∣∣∣∣
σ2 − σ1

τ + σ1

∣∣∣∣ ≤
‖σ2 − σ1‖L∞
|τ + σ1|

≤ ‖σ2 − σ1‖L∞
|τ | .

iv. Step I. Define

g :=
(τ + σ1(x1))(τ + σ2(x2))

τ2
L
(
− τ, τ

τ + σ1(x1)
∂1,

τ

τ + σ2(x2)
∂2

)
f. (4.4)

Exp. no X— Bérenger/Maxwell with Discontinous Absorptions : Existence, Perfection, and No Loss
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Since u ∈ H1(R2), f ∈ L2, and, the support of f is disjoint from ∂Ω, it
follows that,

(
(τ + σ1) (τ + σ2)− p

)
u − g ∈ H−1(R2) . (4.5)

Since the equation holds on Ω, the support of the left hand side of (4.5) is
contained in {x : x1x2 = 0}.
Step II. Show that the support intersects the {x1 = 0} axis at most at the
origin.

Since u ∈ H1
(
R2
)
, the derivatives ∂ju ∈ L2. Because the coefficients are

bounded, this implies that

τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u ,

τ + σ1(x1)

τ + σ2(x2)
A2 ∂2u ∈ L2

(
R2
)
.

Equation (4.2) expresses

∂1

(
τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

)

as a sum of terms each in L2
(
]0,∞[x1 ; H−1(Rx2)

)
. Therefore,

∂1

(
τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

)
∈ L2

(
]0,∞[x1 ; H−1(Rx2)

)
.

Denote by χ± the characteristic function of {x ∈ R2 : ±x1 > 0}. Since
u ∈ H1(R2), it follows that in the sense of distributions on R2,

τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u = χ+

τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u + χ−

τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u, (4.6)

and

∂1

(
χ+

τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

)
=

χ+∂1

(
τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

)
+
τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

∣∣∣∣
x1=0+

δ(x1).

(4.7)

The trace on the right is a well defined element of H−1/2(Rx2). From x1 < 0
one has

∂1

(
χ−

τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

)
=

χ−∂1

(
τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

)
− τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

∣∣∣∣
x1=0−

δ(x1).

(4.8)

Laurence Halpern and Jeffrey Rauch
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The transmission condition on the parts x2 6= 0 of the x1-axis implies that

supp

[
τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

∣∣∣∣
x1=0+

− τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

∣∣∣∣
x1=0−

]
⊂ {(0, 0)} .

Since the only element of H−1/2(R) supported at the origin is 0, it follows
that

τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

∣∣∣∣
x1=0+

− τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

∣∣∣∣
x1=0−

= 0 . (4.9)

Summing (4.8) and (4.7) using (4.9) proves the distribution derivative

∂1

(
τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

)
=

χ−∂1

(
τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

)
+ χ+∂1

(
τ + σ2(x2)

τ + σ1(x1)
A1 ∂1u

)
.

The distribution derivative is just the ordinary derivative computed on each
side of the axis.

If χ± denote the characteristic functions of {x ∈ R2 : ±x2 > 0}, an analogous
computation shows that

∂2

(
τ + σ1(x1)

τ + σ2(x2)
A2 ∂2u

)
=

χ−∂2

(
τ + σ1(x1)

τ + σ2(x2)
A2 ∂2u

)
+ χ+∂2

(
τ + σ1(x1)

τ + σ2(x2)
A2 ∂2u

)
.

These identities imply that the differential equation is satisfied on R2 \ 0.
Therefore the difference between the left and right hand sides is an element
of H−1(R2) that is supported at 0. It therefore vanishes.

Step III. Since u ∈ H1(R2) its traces from above and below on {x2 = 0}
are equal. This proves the desired transmission condition for (v, u1, u2) on
the positive and negative x1-axis. An analogous argument works for the
x2-axis. �

5 Reduced equation estimate

We seek u in H1(R2) for sources F with values H1(R2). Since g is given in
terms of first derivatives of F that yields g ∈ L2. Therefore estimate (5.1)
is the desired regularity.
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Proposition 5.1 There are constants C,M so that for all g ∈ L2(R2) and τ
with Re τ > M there is one and only one solution u ∈ H1(R2) to

(
(τ + σ1(x1)) (τ + σ2(x2)) − p(τ, x, ∂)

)
u = g .

In addition
(Re τ) ‖u‖ + ‖∇u‖ ≤ C ‖g‖ . (5.1)

Proof. It suffices to prove (5.1) as an a priori estimate. The estimate is
proved by analysing the real and imaginary parts of the identity

(u, g) =
(
(τ + σ1(x1)) (τ + σ2(x2))u , u

)
+

∫ (
τ + σ2(x2)

τ + σ1(x1)
|∂1u|2 +

τ + σ1(x1)

τ + σ2(x2)
|∂2u|2

)
dx .

(5.2)

The integral is not far from its unperturbed value
∣∣∣∣
∫ (

τ + σ2(x2)

τ + σ1(x1)
|∂1u|2+

τ + σ1(x1)

τ + σ2(x2)
|∂2u|2

)
dx−‖∇u‖2

∣∣∣∣ ≤ C
‖∇u‖2
|τ | . (5.3)

One can take C = sup |σ1(x1)− σ2(x2)|.
Extract the information from the imaginary part of (5.2). Compute using
Im τ2 = 2 Im τRe τ ,

Im
(

(τ + σ1(x1)) (τ + σ2(x2))
)

= Im τ2 + (σ1(x1) + σ2(x2)) Im τ

= Im τ
(

2 Re τ + σ1(x1) + σ2(x2)
)
.

Therefore

Im
(
(τ+σ1(x1)) (τ+σ2(x2))u , u

)
= Im τ

∫ (
2 Re τ + σ1(x1) + σ2(x2)

)
|u|2 dx.

Taking absolute values and noting that 2 Re τ + σ1(x1) + σ2(x2) ≥ 2 Re τ
yields using (5.2) and (5.3)

2 |Im τ |Re τ ‖u‖2 ≤
∣∣∣Im

(
(τ + σ1(x1)) (τ + σ2(x2))u , u

)∣∣∣

≤ ‖u‖ ‖g‖ +
C‖∇u‖2
|τ | .

This is used to estimate |Im τ | ‖u‖. Precisely multiply by |Im τ |/2Re τ to
find

|Im τ |2 ‖u‖2 ≤ ‖u‖‖g‖ |Im τ |
2 Re τ

+ ‖∇u‖2 C |Im τ |
2|τ |Re τ

. (5.4)
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Next extract the information in the real part of (5.2). Compute the real
part of the zero order term beginning with

Re
(

(τ + σ1(x1)) (τ + σ2(x2)
)

= Re τ2 + (σ1 + σ2)Re τ + σ1σ2

≥ Re τ2 = (Re τ)2 − (Im τ)2 .

Therefore the real part of (5.2) using (5.3) yields

(Re τ)2‖u‖2 + ‖∇u‖2 ≤ ‖u‖‖g‖ + (Im τ)2‖u‖2 +
C ‖∇u‖2
|τ |

Use (5.4) to find

(Re τ)2‖u‖2 + ‖∇u‖2 ≤ ‖u‖‖g‖
(

1 +
|Im τ |
2 Re τ

)
+
(

1 +
|Im τ |
2 Re τ

)C ‖∇u‖2
|τ | .

(5.5)

Choose M > 1 so that for Re τ > M one has

(
1 +
|Im τ |
2 Re τ

)C + 1

|τ | ≤ 1

10
. (5.6)

Then,

(Re τ)2‖u‖2 + ‖∇u‖2 ≤ 1

10
‖τ u‖ ‖ g‖+

1

10
‖∇u‖2. (5.7)

The differential equation expresses

τ2 u = pu−
[
τ(σ1 + σ2) + σ1σ2

]
u+ g

Taking the L2 scalar product with u shows that for |τ | > 1,

‖τu‖2 . ‖∇u‖2 + ‖τu‖ ‖u‖+ ‖u‖ ‖g‖

Therefore

‖τu‖2 . ‖∇u‖2 + ‖u‖2 + ‖g‖2 , ‖τu‖ . ‖∇u‖+ ‖u‖+ ‖g‖ .

Inject in (5.7) to find with constants C changing from line to line

(Re τ)2‖u‖2 + ‖∇u‖2 ≤ 1

10
‖∇u‖2 + C ‖g‖

(
‖∇u‖+ ‖u‖+ ‖g‖

)

≤ 1

5
‖∇u‖2 + C

(
‖u‖2 + ‖g‖2

)

For Re τ large this yields the desired estimate. �

Exp. no X— Bérenger/Maxwell with Discontinous Absorptions : Existence, Perfection, and No Loss

X–13



6 Laplace Transform, Paley-Wiener, and Plancherel

Recall the Paley-Wiener-Plancherel characterization of Laplace transforms
of square integrable functions.

The Laplace transform of a distribution F supported in t ≥ 0 and so that
e−λtF ∈ L1(R) for λ > M , is defined for Re τ > M by

F̂ (τ) :=

∫
e−τt F (t) dt .

It is defined and holomorphic in a half space Re τ > M . Our functions F
take values in a Hilbert space H.

Theorem 6.1 The Laplace transforms of functions F supported in t ≥ 0
and so that e−MtF ∈ L2(R ; H) are exactly the functions G(τ) holomorphic
in Re τ > M with values in H and so that

sup
λ>M

∫

Re τ=λ

∥∥F̂ (τ)
∥∥2

H
|dτ | < ∞ .

In this case F̂ (τ) has trace at Re τ = M that is square integrable and
∫
e−2Mt ‖F (t)‖2H dt = sup

λ>M

∫

Re τ=λ

∥∥F̂ (τ)
∥∥2

H
|dτ | =

∫

Re τ=M

∥∥F̂ (τ)
∥∥2

H
|dτ | .

Im

M λ
Re τ

τ

Figure 6: Laplace transform contours

With an eye to applying Theorem 6.1 to the solution of the transformed
equation (4.2), we estimate the right hand member g in (4.4).

Since the support of F̂ lies strictly inside R, the σj vanish identically on the

support of F̂ . Therefore, g = h(τ, x)L
(
− τ, ∂1, ∂2

)
F̂ , h(τ, x) is bounded

on {Re τ ≥ 1} so,
‖g‖ . ‖τF̂‖ + ‖∇F̂‖ .
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Using this in (5.1) yields

(Re τ)2 ‖u‖2 + ‖∇u‖2 . ‖τ F̂‖2 + ‖∇ F̂‖2 .

Integrate to find
∫

Re τ=λ

(
λ2‖u(τ)‖2 + ‖∇u(τ)‖2

)
|dτ | .

∫

Re τ=λ

(
‖τ F̂‖2 + ‖∇ F̂‖2

)
|dτ |

=

∫

Re τ=λ

(
‖F̂t‖ + ‖∇F̂t‖2

)
|dτ |

=

∫
e−2λt

(∥∥Ft(t)
∥∥2

+
∥∥∇F (t)

∥∥2)
dt .

Therefore if e−λt{Ft,∇xF} ∈ L2(R ; L2(R2)) for some λ > M , then the
function u(τ), clearly holomorphic, satisfies the necessary and sufficient con-
dition from Theorem 6.1, perhaps with a larger M since (5.1) is known only
for λ larger than a constant that could be larger than M .

Applying Theorem 6.1 shows that there is a unique function U(t) supported
in t > 0 so that e−λtU is square integrable in time with values in H1(R2)
and whose Laplace transform in u(τ). In addition one has the estimate

λ2

∫
e−2λt‖U(t)‖2 dt +

∫
e−2λt‖∇xU(t)‖2 dt

.
∫
e−2λt

(∥∥∂tF (t)
∥∥2

+
∥∥∇F (t)

∥∥2
)
dt .

(6.1)

The constant in . is independent of λ large.

7 Reduced equations to Bérenger split equations

From the function U(t) constructed in the last section, we construct a solu-
tion of the Bérenger split system. The split system requires a function V (t)
on R and split solutions U1 and U2 defined for x ∈ Ω \R.

Define
V := U

∣∣
R
.

Estimates for V are direct consequences of (6.1).

The split solutions U j are the unique solutions of (2.4) with U j vanishing
for t < 0. The Laplace transforms satisfy

Û j =
−1

τ + σj(xj)
Aj∂jÛ =

−1

τ + σj(xj)
Aj∂ju.
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Estimate (5.1) implies

‖Û j‖ . 1

|τ |‖∇u‖ , ‖τÛ j‖ . ‖∇u‖ , (7.1)

Plancherel’s theorem yields with constant independent of λ large,
∫
e−2λt ‖∂tU j(t)‖2 dt ≤ C

∫
e−2λt

∥∥∇u(t)
∥∥2

dt .

To estimates x-derivatives of the U j , we must be careful because the U j

are typically discontinuous across both the xj axes in R2 \R. On the other
hand equations (3.3) express spatial derivatives in terms of time derivative
away from those axes. These x derivatives are the distribution derivative in
regions 1,2, and 3 from Figure 2. These are exactly the open components of
Ω \R yielding,

∫
e−2λt ‖∇(U1 + U2)

∣∣
Ω\R‖

2 dt ≤ C

∫
e−2λt ‖∂tU j(t)‖2 dt .

This yields the symmetric estimate without loss of derivatives for the prim-
itive variables of Bérenger

∫
e−2λt

∥∥∇x
(
V, (U1 + U2)

∣∣
Ω\R

)
(t)
∥∥2

dt ≤

C

∫
e−2λt

(∥∥∂tF (t)
∥∥2

+
∥∥∇F (t)

∥∥2
)
dt .

(7.2)

Remark 7.1 In the case of Maxwell’s equations, Aj is not invertible and

to find ∂jÛ
j one must use in addition the divergence equations.

It remains to estimate the L2 norms of V,U1, U2, Vt, U
1
t , U

2
t . Using the

differential equations satisfied by V,U1, U2 yields
∫
e−2λt

∥∥∂tV, (∂t + σ1(x1))U1, (∂t + σ2(x2))U2
∥∥2

dt ≤

C

∫
e−2λt

(∥∥∂tF (t)
∥∥2

+
∥∥∇F (t)

∥∥2
)
dt .

(7.3)

Integration in time yields for λ large,

λ2

∫
e−2λt

∥∥V,U1, U2
∥∥2

dt .
∫
e−2λt

(∥∥∂tF (t)
∥∥2

+
∥∥∇F (t)

∥∥2
)
dt . (7.4)

This completes the existence part of the proof of Theorem 2.2.
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8 Proof of uniqueness

Proof. Suppose that 0 < T <∞ and V,U1, U2 is a solution for the Bérenger
split system on −∞ < t < T that vanishes for t < 0 and so that V and U j

belong to H1(]0, T [×R) and H1(]0, T [×(Ω \R)) respectively. It suffices to
prove that V and U j vanish on for 0 < t < T1 for arbitrary T1 ∈ ]0, T [.

Choose χ ∈ C∞(R) supported in ]−∞, T [ and equal to 1 on ]−∞, T1]. It
suffices to show that χV and χ(U1, U2) vanish for t ≤ T . Compute on R
and Ω \R respectively,

L(∂t, ∂x)(χ(t)V ) = χ′(t)V , L̃(∂t, ∂x)
(
χ(t)

(
U1, U2

))
= χ′(t)

(
U1, U2) .

Define two functions valued in H1(R2)

U :=

{
χV for x ∈ R

χ
(
U1 + U2

)
for x ∈ Ω \R

, W :=

{
χ′V for x ∈ R

χ′
(
U1 + U2

)
for x ∈ Ω \R

.

Then derive for the Laplace transform u(τ) of U ,

L
(
τ,

τ

τ + σ1(x1)
∂1,

τ

τ + σ1(x2)
∂2

)
u = Ŵ .

Repeat the derivation of (4.2) to find

(
τ + σ1(x1)

) (
τ + σ2(x2)

)
u − p(τ, x, ∂)u = γ(τ) ,

γ(τ) :=
(τ + σ1(x1)) (τ + σ2(x2))

τ2
L
(
− τ, τ

τ + σ1(x1)
∂1,

τ

τ + σ2(x2)
∂2

)
Ŵ .

In the derivation of (4.2) the multiplication by the discontinuous function
τ−2Πj(τ +σj(xj)) was justified by the fact that f had support disjoint from
the discontinuities. This time it is because the discontinuous function is
bounded and the second factor LŴ is an element of L2.

Since W is supported in T1 ≤ t ≤ T it follows that

∫

Re τ=λ
‖γ‖2 |dτ | =

∫ T

T1

e−2λt
(
‖Wt(t)‖2 + ‖∇W (t)‖2

)
dt

≤ e−2λT1

∫ T

T1

‖Wt(t)‖2 + ‖∇W (t)‖2 dt = C e−2λT1 .
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with C independent of λ when λ→∞. The basic estimate for the reduced
equation together with Plancherel’s theorem implies that

∫
e−2λt ‖U(t)‖2 dt ≤ C e−2λT1 , λ→∞ .

It follows that U = 0 for t ≤ T1. So V and U1 + U2 vanish for t ≤ T1.

For U j use for t ≤ T1,
(
∂t + σj(xj)

)
U j = −Aj∂jU = 0 .

Since U j = 0 for t < 0 it follows that U j = 0 for t < T1, completing the
proof of uniqueness. �

9 Proof of Perfection

Theorem 9.1 The Bérenger split transmission problem is perfectly matched,
that is, the solution U to (2.1) and the solution V,U1, U2 of the split equa-
tions (2.3) (2.4) satisfy U|R = V .

Proof. The proof below is from §3.5 of [10]. Prove that the Laplace trans-

forms are equal, that is Û |R = V̂ for Re τ >> 1.

The literature of perfect matching has a persistent theme of complex changes
of variables, see for example [9] that inspired us. The proof below relies on
the fact that the complex transformation is real when τ is real and that
allows us to prove equality of Laplace transforms for those τ .

Since the Maxwell equations and the Bérenger split problems are well posed
with at most exponential growth, the two Laplace tranforms are holomor-
phic. Therefore analytic continuation shows that it suffices to prove that

Û(τ)|R = V̂ (τ), 1 << τ ∈ R . (9.1)

Define U to be equal to V on R and U1 + U2 on Ω \R one has

L
(
τ,

τ

τ + σ1(x1)
∂1 ,

τ

τ + σ2(x2)
∂2

)
Û = F̂ .

For real τ , introduce new variables X(x) = (X1, X2, X3), suppressing the
dependence on τ , by

dXj

dxj
=

τ + σj(xj)

τ
, Xj(0) = 0 .

Laurence Halpern and Jeffrey Rauch

X–18



The change of variable is equal to the identity on R.

Then,

∂Û(X(x))

∂xj
=

∂Û
∂Xj

∣∣∣∣
X(x)

dXj

dxj
=

τ + σj(xj)

τ

∂Û
∂Xj

∣∣∣∣
X(x)

Therefore since F is supported where X = x one has

L
(
τ,

τ

τ + σ1(x1)
∂1 ,

τ

τ + σ2(x2)
∂2

)(
Û(X(x))

)
=
(
L(τ, ∂) Û

)∣∣
X(x)

= F̂ (X(x)) = F̂ (x).

Thus, Û(X(x)) satisfies the differential equation defining Û so by uniqueness

Û(X(x)) = Û(x) .

For x ∈ R, X(x) = x so Û(x) = Û(x), the desired relation (9.1). �
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