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ABOUT BOLTZMANN’S H THEOREM FOR

THE LANDAU EQUATION

AUTOUR DU THÉORÈME H DE BOLTZMANN

L. DESVILLETTES

Abstract. We propose in this work new (and hopefully close to optimal)

variants of entropy production estimates for the Landau equation, in terms of

relative weighted Fisher information-like terms. We start by showing how the
same kind of estimates can be obtained for a simpler 1D model, sometimes

called Kac-Landau equation.

1. Introduction

Entropy production estimates (sometimes also called entropy/entropy produc-
tion, or entropy/entropy dissipation estimates) are functional inequalities which
relate two quantities D(f) ≥ 0 (entropy production, or entropy dissipation) and
H(f) − H(M) ≥ 0 (relative entropy), where D and H are functionals which can
involve integral and derivatives of their argument f . Those inequalities write in
general

(1) D(f) ≥ C(f) (H(f)−H(M)),

where C(f) ≥ 0 also involves quantities related to f (like moments, Lp norms, or
norms involving derivatives), and M is a given function.

Those estimates are useful in situations in which one considers an “autonomous”
evolution equation

(2) ∂tf = A(f),

where A can involve derivatives (case of a PDE) or integrals (case of an integral
equation), or at the same time both derivatives and integrals (as in the cases con-
sidered in this paper), and when the solutions of this equation satisfy an entropy
inequality

(3) ∂tH(f) = −D(f).

If the term C(f) which appears in eq. (1) involves only quantities which are con-
served (or more generally if C(f) is bounded) in the evolution of eq. (2), then
Gronwall’s lemma ensures that the solutions of eq. (2) converge exponentially fast
to M in terms of entropy, that is H(f) converges to H(M) exponentially fast. Often
the (exponential) convergence of f to M in some norm (typically L1) can then be
deduced from the (exponential) convergence in terms of entropy, thanks to specific
inequalities (such as Cźiszar-Kullback-Pinsker inequality, cf. [5], [16]).

Typical cases in which the method described above can be used in order to study
the large time behavior of a given equation can be found (among others) in the
theory of parabolic PDEs (cf. [19] for example), of linear integral equations (cf. [18]
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for example), and of coagulation-fragmentation equations (cf. [1] for example). In
the framework of kinetic theory (more precisely when collision kernels are involved),
estimates like (1) are related to the so-called Cercignani’s conjecture (cf. [4], [11]),
first proposed in the case of the Boltzmann equation.

This conjecture states that estimate (1) should hold when H and D are the
entropy and entropy production associated with the Boltzmann equation, with
C(f) involving only the mass, momentum and kinetic energy associated to f , and
(an upper bound of) the entropy. The history of the conjecture is recalled in detail
in [11]: it holds in a special case (sometimes called ”super hard spheres”), while it
has to be replaced by a weaker version in the other cases of interest (cf. [22], [20]).

We focus in this work on the Landau equation of plasma physics (cf. [17]), a model
introduced for modeling the collisions of charged particles interacting through the
Coulomb force. The same name is used for generalizations of this model which are
linked (by the so-called grazing collisions limit) to the Boltzmann equation. The
equivalent of Cercignani’s conjecture was proven for this model in the special case
of the so-called Maxwell molecules (cf. [12]), and a weaker version was obtained in
[3] in the physical case of the Coulomb interaction. This last paper uses a related
entropy production inequality stated in [7].

Our intent in this work is to present (in section 3) variants of the inequalities
stated in [12], [3] and [7]. These variants are close to optimal in some sense (this
is detailed in the sequel) and enable to obtain a simple proof of (a very slightly
weakened version of) Cercignani’s conjecture in the case of Landau’s equation for
hard spheres. For pedagogical purposes, we first show similar estimates on a simpler
(1D) model, sometimes called Kac-Landau, in section 2.

2. Kac-Landau equation

2.1. Kac equation and its entropy structure. The (spatially homogeneous)
Kac equation of kinetic theory describes a 1-dimensional rarefied gas in which col-
lisions conserve mass and kinetic energy (but not momentum), cf. [15]. It writes,
for f := f(t, v) ≥ 0,

∂f

∂t
(t, v) = QK(f)(t, v), f(0, v) = fin(v),

where QK is the quadratic Kac operator defined by

QK(f)(v) =

∫

w∈R

∫ π

−π

(
f(v cos θ − w sin θ) f(v sin θ + w cos θ)

−f(v) f(w)

)
dθdw.

We consider in this section the generalized operator (cf. [8] for the angular de-
pendence of the cross section):

QK(f)(v) =

∫

w∈R

∫ π

−π

(
f(v cos θ − w sin θ) f(v sin θ + w cos θ)

−f(v) f(w)

)
(v2 + w2)s/2 b(|θ|) dθdw,
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where s is a (positive or negative) real number, and the nonnegative function b
is (in the language of mathematical kinetic theory) cutoff (that is belonging to
L1([0, π])) or noncutoff (that is, not belonging to L1([0, π]), but such that θ ∈
[0, π] 7→ |θ|2 b(|θ|) belongs to L1([0, π]).

The weak formulation of this kernel writes, for suitable test functions ϕ:
∫

R
QK(f)(v)ϕ(v) dv =

1

4

∫

R

∫

R

∫ π

−π

(
f(v cos θ − w sin θ) f(v sin θ + w cos θ)

−f(v) f(w)

)[
ϕ(v) + ϕ(w)− ϕ(v cos θ − w sin θ)− ϕ(v sin θ + w cos θ)

]

(4) × (v2 + w2)s/2 b(|θ|) dθdwdv.
It is obtained by using the changes of variable (v, w) 7→ (w, v), and (v, w) 7→

(v cos θ−w sin θ, v sin θ+w cos θ) (pre/post collisional change of variable), together
with θ 7→ −θ. Note that this weak formulation holds when (v2 + w2)s/2 b(|θ|) is
replaced by a more general cross section B(v2 + w2, |θ|).

The conservation of mass and kinetic energy can be obtained by taking ϕ(v) = 1
and ϕ(v) = |v|2) in eq. (4):

∫

R
QK(f)(v)

(
1
|v|2

)
dv =

(
0
0

)
.

The entropy structure of the kernel is obtained by taking ϕ(v) = ln f(v) in
eq. (4): the fact that the resulting formula is clearly nonpositive can be seen as (the
first part of) Boltzmann’s H theorem for (the generalized) Kac kernel:
∫

R
QK(f)(v) ln f(v) dv =

1

4

∫

R

∫

R

∫ π

−π

(
f(v cos θ − w sin θ) f(v sin θ + w cos θ)

−f(v) f(w)

)[
ln

(
f(v) f(w)

)
− ln

(
f(v cos θ − w sin θ) f(v sin θ + w cos θ)

)]

× (v2 + w2)s/2 b(|θ|) dθdwdv ≤ 0.

We see that if b > 0 (everywhere, or a.e), then the identity

DK(f) := −
∫

R
QK(f)(v) ln f(v) dv = 0

implies that for all (or a.e.) v, w, θ,

f(v cos θ − w sin θ) f(v sin θ + w cos θ) = f(v) f(w),

that is, for some measurable function T ≥ 0,

f(v) f(w) = T (v2 + w2),

that we can rewrite
T (v2)T (w2) = f(0)2 T (v2 + w2).

Finally, it is a classical result that (under very weak assumptions on the regularity
of T ), one can find a, b ∈ R, such that T (x) = a exp(b x). Then, one can find
c ∈ R+ such that f(v) = c exp(b v2). Finally, under some integrability condition
on f ,

DK(f) = 0 ⇐⇒ ∃α ≥ 0, β > 0, ∀v ∈ R, f(v) = α exp(−β v2).
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This constitutes (the second part of) Boltzmann’s H theorem for (the generalized)
Kac kernel.

2.2. The entropy structure of the Kac-Landau equation. When b concen-
trates on grazing collisions, that is when one considers bε(|θ|) = cst

ε3 b (|θ|/ε), one
can see that, at the formal level (and choosing a suitable constant cst), that

QK,bε(f)(v)→ε→0 QKL(f)(v) :=
d

dv

[ ∫

w∈R
w (v2 + w2)s/2

×
{
w f(w)

df

dv
(v)− v f(v)

df

dw
(w)

}
dw

]
.

Under reasonable assumptions on f , s and b, it is possible to show that this
convergence rigorously holds (cf. the elementary arguments of [6] in the case of the
Boltzmann equation, and the much more elaborated treatment of the renormalized
solutions of the spatially inhomogeneous Boltzmann equation in [2]).

Still at the formal level (and choosing a suitable constant cst), it is easy to see
that

DK,bε(f)→ε→0 DKL(f) := −
∫

R
QKL(f)(v) ln f(v) dv

=
1

2

∫

R

∫

R
f(v) f(w)

∣∣∣∣w
f ′(v)

f(v)
− v f

′(w)

f(w)

∣∣∣∣
2

(v2 + w2)s/2 dwdv ≥ 0.

It is clear that (when f > 0 is integrable)

DKL(f) = 0 ⇐⇒ for a.e. v, w ∈ R, w
f ′(v)

f(v)
= v

f ′(w)

f(w)
,

⇐⇒ ∃β > 0, for a.e. v ∈ R, (ln f)′(v) = −β v,
⇐⇒ ∃α ≥ 0, β > 0, for a.e. v ∈ R, f(v) = α exp(−β v2).

We recover in this way (the two parts of) Boltzmann’s H theorem for Kac-Landau
kernel.

2.3. Entropy production estimates. In this subsection, we try to find a simple
expression (involving only one integral) IKL(f)≥0, and quantities C1(f), C2(f)>0
with a very simple dependence w.r.t f such that

C1(f) IKL(f) ≤ DKL(f) ≤ C2(f) IKL(f).

Such an estimate from above and below can be seen as close to optimal if C1(f) > 0
and C2(f) > 0 display a dependence w.r.t. f which is indeed very simple: we will
see in the sequel that it can be restricted to moments (provided that the mass and
energy of f are fixed).

We start with the following (using the notation s+ := s 1{s≥0}):

Proposition 1. Let f ≥ 0 belong to L1(R) and satisfy∫

R
f(v) dv = 1,

∫

R
f(v) v2 dv = 1,

and let s > −2. Then,
DKL(f) ≤ C2(f) IKL,s(f),

where

IKL,s(f) :=

∫

R
(1 + v2)s/2

∣∣∣∣
f ′(v)

f(v)
+ v

∣∣∣∣
2

f(v) dv,
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and

C2(f) := 2

∫

R
(1 + w2)1+s+/2 f(w) dw.

Proof: Introducing v w − v w inside the square in the integral, we see that

DKL(f) =
1

2

∫

R

∫

R
f(v) f(w)

∣∣∣∣w
f ′(v)

f(v)
− v f

′(w)

f(w)

∣∣∣∣
2

(v2 + w2)s/2 dwdv

≤ 2

∫

R

∫

R
f(v) f(w) |w|2

∣∣∣∣
f ′(v)

f(v)
+ v

∣∣∣∣
2

(v2 + w2)s/2 dwdv

≤ C2(f) IKL,s(f),

since (for s > −2)

(5) sup
v>0

(v2 + w2)s/2

(1 + v2)s/2
≤ |w|−2 (1 + w2)1+s+/2.

Note that following the proof above, the inequality still holds (up to a multi-
plicative constant) when s ∈ ]− 3,−2] if C2(f) is modified in order to include some
Lp norm of f .

Then, we turn to the

Proposition 2. Let f ≥ 0 belong to L1(R) and satisfy
∫

R
f(v) dv = 1,

∫

R
f(v) v2 dv = 1,

and let s ≤ 2. Then
DKL(f) ≥ C1(f) IKL,s(f),

where (with the notation of Proposition 1)

C1(f)−1 :=

∫

R
(1 + w2)1+(−s)+/2 f(w) dw.

Proof: We define

qf (v, w) := w
f ′(v)

f(v)
− v f

′(w)

f(w)
,

and try to express f in terms of qf . For this simple model, this is easily done by
using f(w)w as a multiplicator and by integrating w.r.t w. We see that

∫

R
f(w)w2 dw

f ′(v)

f(v)
− v

∫

R
f(w)

f ′(w)

f(w)
w dw =

∫

R
f(w) qf (v, w)w dw,

and therefore
f ′(v)

f(v)
+ v =

∫

R
f(w) qf (v, w)w dw.

As a consequence, thanks to Cauchy-Schwarz inequality,

IKL,s(f) =

∫

R
f(v)

∣∣∣∣
f ′(v)

f(v)
+ v

∣∣∣∣
2

(1 + v2)s/2 dv

=

∫

R
f(v) (1 + v2)s/2

∣∣∣∣
∫

R
f(w) qf (v, w)w dw

∣∣∣∣
2

dv

≤
∫

R
f(v) (1 + v2)s/2

(∫

R
f(w) (qf )2(v, w) (v2 + w2)s/2 dw

)
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×
(∫

R
f(z) z2 (v2 + z2)−s/2 dz

)
dv

≤
∫

R

∫

R
f(v) f(w)

∣∣∣∣w
f ′(v)

f(v)
− v f

′(w)

f(w)

∣∣∣∣
2

(v2 + w2)s/2 dwdv

× sup
v∈R

(1 + v2)s/2
∫

R
f(z) z2 (v2 + z2)−s/2 dz

≤ C1(f)−1DKL(f),

thanks to estimate (5) applied to −s instead of s.

As previously, following the proof above, the inequality still holds when s ∈ ]2, 3[
if C1(f) is modified in order to include some Lp norm of f .

2.4. comments and consequences. We first observe that in both cases s ∈ [0, 2[
and s ∈ ]− 2, 0], one of the quantites C1(f) or C2(f) is a fixed constant (remember
that the mass and the kinetic energy of f is 1), while the other one is a moment
of f of order between 2 and 4. The estimates of Propositions 1 and 2 are therefore
in some sense close to optimal.

Then we recall that the quantity IKL,s(f) is a weighted relative (to the centered
Gaussian) Fisher information. In the case when s ≥ 0, it is bigger than the standard
(non weighted) Fisher information. In that situation (more precisely when s ∈
[0, 2]), the Sobolev logarithmic inequality (cf. [14]) implies Cercignani’s conjecture
for Kac-Landau model.

Another consequence of Proposition 2 concerns the smoothness of the solu-
tions of Kac-Landau equation. More precisely, any solution (on a time interval
[0, T ]) of Kac-Landau equation (which satisfies the entropy inequality) is such that∫ T
0
DKL(f(t, ·)) dt ≤ C (where C is the relative entropy of the initial datum relative

to the centered reduced Gaussian). As a consequence (provided that the considered

solution conserves mass and kinetic energy, and that s ≤ 2),
∫ T
0
IKL,s(f(t, ·)) dt is

finite, so that
√
f ∈ L2([0, T ];H1

loc(R)). This regularity a priori estimate can then
be used to start a more thorough study of the smoothness/uniqueness of the solu-
tions of Kac-Landau equation (at least when s ≤ 2, and maybe also when s < 3).

3. Entropy production estimates for Landau’s equation

3.1. Definition and elementary properties of Landau’s operator. The (spa-
tially homogeneous) Landau equation of plasma physics (cf. [17]) writes ∂tf =
QL(f), where the Landau collision operator QL(f) is defined by

QL(f)(v) = ∇ ·
{∫

R3

ψ(|v − w|) Π(v − w)

(
f(w)∇f(v)− f(v)∇f(w)

)
dw

}
,

where

Πij(z) := δij −
zizj
|z|2

is the i, j-component of the orthogonal projection Π on z⊥ := {y / y · z = 0}, and,
in order to model the Coulomb interaction, ψ(|z|) = |z|−1.

For mathematical purposes, we sometimes consider different power laws for ψ,
with the following vocabulary, inspired from the theory of the Boltzmann equation
(cf. [7]):

Laurent Desvillettes
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• Hard potentials: ψ(|z|) = |z|γ+2, γ ∈ ]0, 1[,
• Maxwell molecules: ψ(|z|) = |z|γ+2, γ = 0,
• Moderetely soft potentials: ψ(|z|) = |z|γ+2, γ ∈ ]− 2, 0[,
• Very soft potentials: ψ(|z|) = |z|γ+2, γ ∈ ]− 4,−2].

Note that the very soft potentials include the Coulomb case considered in the study
of plasmas γ = −3. The case when γ = −2 can also be attributed to moderately
soft potentials (cf. [23] for arguments in this direction).

The weak formulation of Landau operator is obtained by performing an integra-
tion by parts, and the change of variables (v, w) 7→ (w, v). It writes

∫

R3

QL(f, f)(v)ϕ(v) dv

= −1

2

∫∫

R3×R3

f(v) f(w)ψ(|v − w|)
(∇f(v)

f(v)
− ∇f(w)

f(w)

)T
Π(v − w)

(
∇ϕ(v)−∇ϕ(w)

)
dvdw.

The conservation of mass, momentum and kinetic energy is a consequence of the
weak formulation when ϕ(v) = 1, v or |v|2/2:

∫

R3

QL(f, f)(v)




1
v

|v|2/2


 dv = 0.

Finally, the entropy production is defined by

DL(f) := −
∫

R3

QL(f)(v) ln f(v) dv

=
1

2

∫∫

R3×R3

f(v) f(w)ψ(|v − w|)
(∇f
f

(v)− ∇f
f

(w)

)T
Π(v − w)

(∇f
f

(v)− ∇f
f

(w)

)
dvdw

=
1

2

∫∫

R3×R3

f(v) f(w)ψ(|v − w|)
∣∣∣∣(v − w) ×

(∇f
f

(v)− ∇f
f

(w)

)∣∣∣∣
2

dvdw ≥ 0.

The fact that this quantity is nonnegative constitutes the (first part of) Boltzmann’s
H-theorem for the Landau operator.

It is clear that if DL(f) = 0 and f > 0, then (for a.e. v, w) ∇ff (v) − ∇ff (w) is

parallel to v − w, or equivalently

(v − w) ×
(∇f
f

(v)− ∇f
f

(w)

)
= 0.

We shall see in the sequel that this last equality holds (for f > 0 which are inte-
grable) if and only if

∃a, c ∈ R∗+, b ∈ R3, f(v) = a exp(b · v − c |v|2).

This constitutes the (second part of) Boltzmann’s H-theorem for the Landau oper-
ator.
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3.2. Already existing entropy production estimates for Landau operator.
For the special case of Maxwell molecules, that is ψ(z) = |z|2, it was shown in ([12])
that for all f ≥ 0 such that

∫

R3

f(v) dv = 1,

∫

R3

f(v) v dv = 0 and

∫

R3

f(v) |v|2 dv = 3,

one has

DL(f) ≥ C(f)

∫

R3

f(v)

∣∣∣∣
∇f
f

(v) + v

∣∣∣∣
2

dv,

where C(f) only depends on (an upper bound) of the entropy
∫
R3 f(v) ln f(v) dv

of f (this dependence can be made more precise, using directional temperatures).
A direct use of the monotonicity of the entropy dissipation w.r.t. ψ shows that when
ψ(z) ≥ c |z|2 (for some c > 0), the result above still holds (note that this does not
include the standard hard potentials, where ψ(z) |z|−2 → 0 when z → 0).

For soft potentials ψ(z) = |z|2+γ (with γ ∈ ] − 4, 0[), it is shown in [7] that for
all f ≥ 0 such that

∫
R3 f(v) dv = 1,

∫
R3 f(v) v dv = 0, and

∫
R3 f(v) |v|2 dv = 3, one

has

(6) DL(f) + 1 ≥ C(f)

∫

R3

f(v)

∣∣∣∣
∇f
f

(v)

∣∣∣∣
2

(1 + |v|2)γ/2 dv,

where, as in the case of Maxwell molecules previously discussed, C(f) only de-
pends on (an upper bound) of the entropy

∫
R3 f(v) ln f(v) dv of f . In [9], these

estimates were extended in the case when ψ decreases strongly (for example like
a Maxwellian) at infinity. They were also extended for hard potentials, but with
an extra dependence of C(f) (in (6)) w.r.t. some weighted Lp norm of f . Such a
dependence will be found again in the estimates presented later in this work.

One significant feature of estimate (6) and its extensions is that the left-hand
side is DL(f) + 1 and not DL(f). This is related to the fact that in the right-hand

side appears ∇ff (v) and not ∇ff (v) + v. We refer to [3] for estimates in the case of

soft potentials ψ(z) = |z|2+γ (with γ ∈ ] − 4, 0[) in which it is proven that for all
f ≥ 0 such that

∫
R3 f(v) dv = 1,

∫
R3 f(v) v dv = 0, and

∫
R3 f(v) |v|2 dv = 3, one has

(7)

DL(f) ≥ C(f)

(∫

R3

f(v) (1+|v|2)1−γ/2 dv

)−1 ∫

R3

f(v)

∣∣∣∣
∇f
f

(v)+v

∣∣∣∣
2

(1+|v|2)γ/2 dv,

where C(f) only depends on (an upper bound of) the entropy.

3.3. Examples of applications to the (spatially homogeneous) Landau’s
equation in the Coulomb case. Applications (reported here only when they
are relevant to the physical case, that is the one corresponding to the Coulomb
interaction) can be classified in two categories, those related to the smoothness of
the equation, and those related to its large time behavior.

Smoothness. Thanks to estimate (6), it was possible to show that, under reason-
able assumptions on the initial data, the solutions (of the spatially homogeneous
Landau’s equation in the Coulomb case) belong to a weighted L1

loc(R, L3(R3))-
type space, and thus are “standard weak solutions”, rather than only H-solutions
(cf. [21]). Then, it was shown in [13] that those solutions can be singular only on a
set whose size is controlled (in terms of Hausdorff dimension). Finally, estimate (6)
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should also help to produce results of perturbative nature for the (spatially homo-
geneous) Landau’s equation in the Coulomb case (cf. [10])

Large time behavior. Then, thanks to estimate (7), it was shown in [3] that the
solutions (of the spatially homogeneous Landau’s equation in the Coulomb case)
converge to the Maxwellian equilibrium with a controlled rate (like an inverse power
or like a stretched exponential, depending on the behavior when |v| → ∞ of the
initial datum).

3.4. Sharper entropy production estimates for Landau equation. In view
of (7), and taking into account the results of Section 2, a näıve guess would be
that when ψ(x) = |x|2+γ , a sharp (close to optimal) estimate would be, for some
well-chosen C(f), that

DL(f) ≥ C(f)

∫

R3

f(v)

∣∣∣∣
∇f
f

(v) + v

∣∣∣∣
2

(1 + |v|2)γ/2 dv, .

However, a slightly different estimate from above, which is close to optimal in some
sense, appears in the following:

Proposition 3. For hard or soft potentials ψ(z) = |z|2+γ (with γ ∈ ] − 3, 1]) and
f such that

∫
R3 f(v) dv = 1,

∫
R3 f(v) v dv = 0 and

∫
R3 f(v) |v|2 dv = 3, one has

DL(f) ≤ C+(f)

∫

R3

f(v)

(∣∣∣∣
∇f
f

(v) + v

∣∣∣∣
2

+

∣∣∣∣v ×
∇f
f

(v)

∣∣∣∣
2)

(1 + |v|2)γ/2 dv,

where

C+(f) := 8 sup
v∈R3

{∫

R3

f(w) (1 + |w|2) |v − w|γ (1 + |v|2)−
γ
2 dw

}
.

Moreover, C+(f) ≤ cstγ
∫
R3 f(v) (1 + |v|2)1+γ/2 dv if γ ≥ 0, and (for any δ > 0)

C+(f) ≤ cstγ
(∫

R3

f(v) (1 + |v|2)1+|γ|/2 dv + ||f (1 + | · |2)1+|γ|/2||L(3/(3−|γ|))+δ(R3)

)

if γ ∈ ]− 3, 0[, for some constant cstγ which depends only on γ (and δ).

Proof: We observe that

DL(f) =
1

2

∑

i<j;i,j=1,..,3

∫ ∫

R3×R3

f(v) f(w)
∣∣∣qfij(v, w)

∣∣∣
2

|v − w|γ dvdw,

where

qfij(v, w) = (vi − wi)
(
∂jf

f
(v)− ∂jf

f
(w)

)
− (vj − wj)

(
∂if

f
(v)− ∂if

f
(w)

)
,

which can also be rewritten as(
v × ∇f

f
(v)

)

ij

− wi
∂jf

f
(v) + wj

∂if

f
(v)

= vi
∂jf

f
(w)− vj

∂if

f
(w)−

(
w × ∇f

f
(w)

)

ij

+ qfij(v, w).

As a consequence, introducing vi wj − vj wi − vi wj + vj wi in the formula, we end
up with

DL(f) ≤ 8

∫ ∫

R3×R3

f(v) f(w)

[ ∣∣∣∣v ×
∇f
f

(v)

∣∣∣∣
2

+ |w|2
∣∣∣∣
∇f
f

(v) + v

∣∣∣∣
2 ]
|v−w|γ dvdw
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≤ 8

∫

R3

f(v)

[ ∣∣∣∣v ×
∇f
f

(v)

∣∣∣∣
2

+

∣∣∣∣
∇f
f

(v) + v

∣∣∣∣
2 ]{∫

R3

f(w) (1 + |w|2) |v−w|γdw
}
dv.

This concludes the first part of the estimate.

The second part is easy to get when γ ≥ 0, it relies on the Hölder’s inequality
when γ < 0, after cutting the integral between the part when |v − w| ≤ 1 and the
part when |v − w| ≥ 1.

Proposition 4. For hard or soft potentials ψ(z) = |z|2+γ (with γ ∈ ]−4, 1]) and f
such that

∫
R3 f(v) dv = 1,

∫
R3 f(v) v dv = 0 and

∫
R3 f(v) |v|2 dv = 3, one has

DL(f) ≥ C−(f)

∫

R3

f(v)

( ∣∣∣∣
∇f
f

(v) + v

∣∣∣∣
2

+

∣∣∣∣v ×
∇f
f

(v)

∣∣∣∣
2)

(1 + |v|2)γ/2 dv,

where

C−(f)−1 = 2B(f)

[
1 + a0(f)−2

(
3 + 8

∫
R3 |v|2 (1 + |v|2)γ/2 f(v) dv

infe∈S2

∫
R3(v · e)2 (1 + |v|2)γ/2 f(v) dv

)]
,

and

B(f) := sup
v∈R3

∫

R3

f(z) (1 + |z|2) |v − z|−γ (1 + |v|2)γ/2 dz,

a0(f) := inf
e∈S2

∫

R3

(v · e)2 f(v) dv.

Moreover, the quantities a0(f) and infe∈S2

∫
R3(v·e)2 (1+|v|2)γ/2 f(v) dv are bounded

below by a strictly positive quantity depending only on a bound (above) of the entropy∫
R3 f(v) ln f(v) dv. Finally,

B(f) ≤ cstγ
∫

R3

(1 + |v|2)1+|γ|/2 f(v) dv

if γ ∈ ]− 4, 0], and (for any δ > 0)

B(f) ≤ cstγ
(∫

R3

(1 + |v|2)1+γ/2 f(v) dv + ||f (1 + | · |2)1+γ/2||L(3/(3−γ))+δ(R3)

)

if γ ∈ [0, 1], for some constant cstγ which depends only on γ (and δ).

Proof: We first observe that without loss of generality, up to change of (orthog-
onal) basis, we can suppose that

∫
R3 f(v) vi vj dv = ai δij , where ai is a directional

temperature, that is ai :=
∫
R3 f(v) v2i dv.

Using the notation qfij of the proof of Proposition 3 (and denoting by qf the vector

associated to the antisymmetric matrix qfij), we recall that for i, j ∈ {1, 2, 3}, i 6= j,

(
v × ∇f

f
(v)

)

ij

− wi
∂jf

f
(v) + wj

∂if

f
(v)

= vi
∂jf

f
(w)− vj

∂if

f
(w)−

(
w × ∇f

f
(w)

)

ij

+ qfij(v, w).
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This equation can be inverted in such a way that v× ∇ff (v) and ∇ff (v) are written

in terms of qfij . Indeed, using the multiplicators f(w) and wj f(w) and integrating
w.r.t. w, one ends up with the identities:

(
v × ∇f

f
(v)

)

ij

=

∫

R3

f(w) qfij(v, w) dw,

(8) aj
∂if

f
(v) + vi =

∫

R3

f(w)wj q
f
ij(v, w) dw.

Then, thanks to Cauchy-Schwarz inequality,
∫

R3

f(v)

∣∣∣∣v ×
∇f
f

(v)

∣∣∣∣
2

(1 + |v|2)γ/2 dv

≤
∫

R3

f(v)

∣∣∣∣
∫

R3

f(w) qf (v, w) dw

∣∣∣∣
2

(1 + |v|2)γ/2 dv

≤
∫

R3

∫

R3

f(v) f(w) |qf (v, w)|2 |v − w|γ dw

×
{ ∫

R3

f(z) |v − z|−γ (1 + |v|2)γ/2 dz

}
dv

≤ 2DL(f) sup
v∈R3

∫

R3

f(z) |v − z|−γ (1 + |v|2)γ/2 dz ≤ 2DL(f)B(f).

Finally, for any i, j ∈ {1, 2, 3}, i 6= j,

∂if

f
(v) +

vi
aj

=
1

aj

∫

R3

f(w)wj q
f
ij(v, w) dw

so that thanks to Cauchy-Schwarz inequality,
∫

R3

f(v)

∣∣∣∣
∂if

f
(v) +

vi
aj

∣∣∣∣
2

(1 + |v|2)γ/2 dv

≤ a−2j
∫

R3

f(v)

∣∣∣∣
∫

R3

f(w)wj q
f
ij(v, w) dw

∣∣∣∣
2

(1 + |v|2)γ/2 dv

≤ a−2j
∫

R3

∫

R3

f(v) f(w) |qfij(v, w)|2 |v − w|γ dw

×
{∫

R3

f(z) |z|2 |v − z|−γ (1 + |v|2)γ/2 dz

}
dv

≤ a−2j DL(f) sup
v∈R3

∫

R3

f(z) |z|2 |v − z|−γ (1 + |v|2)γ/2 dz ≤ a−2j DL(f)B(f).

Using this last inequality, we see that
∫

R3

f(v)

∣∣∣∣
∂if

f
(v) + vi

∣∣∣∣
2

(1 + |v|2)γ/2 dv ≤ 2

∫

R3

f(v) v2i (1 + |v|2)γ/2 dv (1− a−1j )2

(9) + 2 a−2j DL(f)B(f).

We now use i, j, k ∈ {1, 2, 3}, all different. Thanks to identity (8), we see that

vi (a−1j − a−1k ) =

∫

R3

f(w) [a−1j wj q
f
ij(v, w)− a−1k wk q

f
ik(v, w)] dw,
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so that using the multiplicator (1 + |v|2)γ/2 f(v) and integrating w.r.t v the square
of this expression, we end up with the estimate

∫

R3

v2i (1 + |v|2)γ/2 f(v) dv (a−1j − a−1k )2 ≤ (a−2j + a−2k )DL(f)B(f),

or, more simply,

(aj − ak)2 ≤ (a2j + a2k)

( ∫

R3

v2i (1 + |v|2)γ/2 f(v) dv

)−1
DL(f)B(f).

Noticing that since a1 + a2 + a3 = 1,

(aj − 1)2 = (ai + ak)2 ≤ 2 (aj − ai)2 + 2 (aj − ak)2,

we obtain the estimate

(1− a−1j )2 ≤ 8 a−2j sup
l=1,2,3

( ∫

R3

v2l (1 + |v|2)γ/2 f(v) dv

)−1
DL(f)B(f).

Using this last result in estimate (9) and summing for i = 1, 2, 3, we end up with
the desired estimate.

The estimate of B(f) is obtained exactly as that of C+(f) in Proposition 3.
Finally, the quantities a0(f) and infe∈S2

∫
R3(v · e)2 (1 + |v|2)γ/2 f(v) dv are known

to be bounded below by a strictly positive constant when (an upper bound of) the
entropy of f is assumed to hold (and when

∫
R3 f(v) dv = 1 and

∫
R3 f(v) |v|2, dv = 3).

We refer to [7] for such estimates.

3.5. Comments. As can be seen in Propositions 3 and 4, the natural quantity
which appears when one studies the entropy production of the Landau equation
(with ψ(|z|) = |z|γ+2) is the weighted relative (with respect to a centered reduced
Gaussian) Fisher information with an extra term, that is

IL,γ(f) :=

∫

R3

f(v)

(∣∣∣∣
∇f
f

(v) + v

∣∣∣∣
2

+

∣∣∣∣v ×
∇f
f

(v)

∣∣∣∣
2)

(1 + |v|2)γ/2 dv.

Note that (in some sense) the weight appearing in IL,γ(f) is larger when one con-
siders the gradient in the “orthoradial” direction. This seems coherent with the
estimates known in the linear setting.

The terms C+(f) and C−(f)−1 are bounded above when a sufficient number
of moments of f and the entropy of f are bounded, and when moreover some Lp

norm of f is bounded when γ < 0 (soft potentials) in the case of C+(f), and when
γ > 0 (hard potentials) in the case of C−(f)−1. This structure is reminiscent of the
one exhibited in the case of the Kac-Landau equation, but slightly less favorable.
Indeed, only in the case when γ = 0 do the conditions include only the entropy
and moments of f . It seems therefore that Propositions 3 and 4 are not completely
optimal (also Proposition 3 does not hold when γ = −3), and that there is still
room for some improvement. Note finally that the use of multiplicators decaying
quickly at infinity enables to eliminate the need of moments in some situations, as
can be seen in estimate (6).

Finally, one can observe that Proposition 4 implies a weak version of Cercig-
nani’s conjecture for the Landau equation with true hard potentials, thanks to the
use of the Sobolev logarithmic inequality. Here, the term “weak” means that the
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conjecture only holds when some moments and Lp norms of f are assumed to be
bounded.
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