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FRACTIONAL KELLER-SEGEL EQUATIONS

SAMIR SALEM AND LAURENT LAFLECHE

Abstract. This note summarizes some results provided in the papers [14, 17], concern-
ing the study of the fractional Keller-Segel model. This diffusion aggregation equation
arises in the modeling of the chemotaxis motion of bacteria. The diffusion part consists
in a fractional Laplacian, and the aggregation kernel is up to the Newtonian one. In the
case where the aggregation and diffusion are well balanced, we present how this model
can be obtained from an interacting particle system. Then we present some results about
well-posedness of the model when the diffusion is not overtaken by the aggregation, and
finite time blow-up in the opposite case.
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1. Introduction

1.1. Chemotaxis model. Biologists observed the following phenomenon. In an environ-
ment where Dictyostelium discoideum bacteria are cultivated, not long after the experi-
menter makes the bacteria colony starve by stopping the supply of the chemical substance
they feed with, the colony starts to shrink into a sort of slug or mushroom. This forma-
tion is meant to help in the survival of a sufficient fraction of the colony, so that it can
start colonizing a more suitable environment. The motion of the bacteria is based on
chemotaxis, that is the motion of microorganisms toward an increasing or decreasing gra-
dient of a chemical substance to which they are either attracted or repulsed. And this
phenomenon is essential in our understanding of the formation of multicellular life beings.
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The parabolic-elliptic Keller Segel equation is a simple mathematical model which re-
lates this biological phenomenon. More precisely the evolution of the density of bacteria ρt
and the concentration of chemoattractant ct is given by the equation

∂tρt + χ∇ · (ρt∇ct) = ∆ρt.,

−∆ct = ρt,
(1.1)

where χ > 0 is a sensitivity parameter encoding the intensity of the attractiveness of
the chemoattractant. We refer to [3] for a proper biological and mathematical motiva-
tion. This model has been extensively studied, especially in dimension 2 which is the
best understood and which makes particular biological sense in the context of bacteria
motion. Some blow up phenomena are known to arise if the initial mass is too large
[3, Corollary 2.2], and global well posedness holds when the mass is small enough [7].

1.2. α-stable processes. Let α ∈ (0, 2) and M be a Poisson random measure (see
for instance [6, Definition 2.3, Chapter V]) on R+ × Rd of intensity ds × cd,α|x|−d−αdx,
where cd,a is some normalization constant. Denote M̄ its compensated measure, i.e.
M̄(ds, dx) = M(ds, dx)−ds×cd,α|x|−d−αdx, and denote (Zt)t≥0 the following Lévy process

Zt =

∫

[0,t]×Rd
xM(ds, dx). (1.2)

Due to Ito’s rule for jump processes [1, Theorem 4.4.7, p 226] we have for a test function
φ smooth enough

φ(Zt) = φ(Zs) +

∫

[s,t]×Rd

(
φ(Zu− + x)− φ(Zu−))

)
M̄(du, dx)

+ cd,α

∫ t

s

∫

Rd

φ(Zu + x)− φ(Zu)− x · ∇φ(Zu)

|x|d+α dx du.

(1.3)

The process (Zt)t≥0 defined in (1.2) is an α-stable Lévy process, i.e. (Zt)t≥0 has the same
law as (u−1/αZut)t≥0 for any u > 0. Necessarily, such a process can only exists for α ∈ [0, 2]
[6, Exercice 2.34, Chapter VI], the case α = 0 corresponding to the null process, and the
case α = 2, to the standard Brownian motion. It is well known, but we also see from (1.3),
that the infinitesimal generator of some α-stable Lévy process is the fractional Laplacian
−(−∆)α/2 of exponent α/2 ∈ (0, 1), defined for smooth function φ ∈ C∞c (Rd) as

− (−∆)α/2φ(z) = cd,α

∫

Rd

φ(z + x)− φ(z)− x · ∇φ(z)

|x|d+α dx, (1.4)

(see [13] for equivalent definitions of the fractional Laplacian).
Some bacteria are known for their ”run and tumble” motion, therefore their trajectories

are better described by Lévy flights than Brownian motion (see for instance [4]). This
inclines to replace the classical diffusion in the evolution equation of the density of bacteria
with a fractional diffusion.
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Therefore not only for the purpose of modeling, but also because of the recent popularity
of fractional diffusion equation, the problem

∂tρt + χ∇ · (ρt∇ct) + (−∆)α/2ρt = 0,

(−∆)(4−a)/2ct = ρt,
(1.5)

has been studied under various perspectives by different authors in the case a = 2 (see for
instance [12],[8],[4],[2]). The aim of this paper is to describe several results about equation
(1.5) for general values of the couple (a, α)

2. Derivation of the model from many particles system

This section summarizes some results of [17]. We discuss here the derivation of the
model (1.5) from an interacting particle system. Define Ka on Rd as

Ka(x) = − x

|x|a ,

so that the fractional Poisson equation in (1.5) can be rewritten

(−∆)(4−a)/2ct = ρt ⇐⇒ ∇ct(x) = Ka ∗ ρt(x)

For (a, α) ∈ (0, 2)× (0, 2) and N ≥ 1 let (Z it)i=1,··· ,N,t≥0 be N independent α-stable Lévy
flights on Rd, (X1

0 , · · · , XN
0 ) a random variable on RdN independent of the N Lévy flights

and consider the particle system evolving on the plane defined as

X i,N
t = X i

0 +
χ

N

∫ t

0

N∑

j 6=i
Ka(X

i,N
s −Xj,N

s )ds+ Z it , i = 1, · · · , N. (2.1)

In this note, we will deal only with the case a = α, as is is shorter to describe, but more
interesting results concerning the case a < α can be found in .

2.1. Chaos. For the sake of completeness we recall some basic notions on the topic of
molecular chaos, and refer to [18] for some further explanations. We begin with the

Proposition 2.1 (Proposition 2.2 of [18]). Let be (uN)N≥1 be a sequence of symmetric
probabilities on EN (E a polish space), (X1, · · · , XN)N≥1 a sequence of random vector of

law uN , and µN = 1
N

∑N
i=1 δXi the emprical measure associated to this vector. Then

(i) uN is u chaotic if and only if (µN)N≥1 converges in law (weakly in P(E)) toward
u ∈ P(E).

(ii) The sequence of random variables (µN)N≥1 is tight if and only if the sequence of
law of X1 under uN is tight.

Our aim is to prove that the dynamic (2.1) propagates chaos i.e. that if one starts
this dynamic from some initial condition which law is ρ0-chaotic, the law of the solution
at time t > 0 to (2.1) is ρt-chaotic, with ρt the solution at time t > 0 to (1.5) starting
from ρ0. Or equivalently, due to the above Proposition, to prove that

µN0 =
1

N

N∑

i=1

δXi,N
0

∗,(L)
⇀

N→+∞
ρ0 =⇒ µNt =

1

N

N∑

i=1

δXi,N
t

∗,(L)
⇀

N→+∞
ρt.
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If the second convergence holds only up to the extraction of a subsequence, i.e. we are
interested in weaker result of the type

µN0 =
1

N

N∑

i=1

δXi,N
0

∗,(L)
⇀

N→+∞
ρ0 =⇒ ∃(Nk)k≥1 µNkt =

1

N

N∑

i=1

δ
X
i,Nk
t

∗,(L)
⇀

k→+∞
ρt,

with ρt some solution at time t > 0 to (1.5) starting from ρ0, then we talk in this case,
we talk of convergence/consistency rather than propagation of chaos.

2.2. Convergence/consistency of particle system (2.1). In the rest of this section,
we aim at sketching the proof of a convergence/consistency result in the case a = α.
The key point in order to prove such a result for the particle system (2.1) is to get an
estimation of the expectation of some singular function of the distance between the first
and second particle (by ex changeability). The idea is to give a bound from below of the
Ito’s correction of the process (|Zt|ε)t≥0 with ε ∈ (0, 1) and (Zt)t≥0 some 2 dimensional
and α-stable Lévy process.

In view of Proposition 2.1, it is enough in order to prove the desired conver-
gence/consistency result, to show the tightness of the trajectory of the first particle of
the system, namely

X1,N
t = X1

0 +

∫ t

0

χ

N

N∑

j>1

Ka(X
1,N
s −Xj,N

s ) ds+ Z1
t := X1

0 + JN,1t + Z1
t .

The only sequential part of this process is
(
(JN,1t )t∈[0,T ]

)
N≥1, so that it is enough to show its

tightness, to deduce the tightness of the law of
(
( 1
N

∑N
i=1 δXi,N

t
)t∈[0,T ]

)
N≥1, due to point (ii)

of Proposition 2.1, i.e. there is a subsequence of
(
( 1
N

∑N
i=1 δXi,N

t
)t∈[0,T ]

)
N≥1 converging in

law.
Then let be 0 < s < t < T and note that for any p ∈ (1, α/(α− 1))

∣∣JN,1t −JN,1s

∣∣ ≤ 1

N

N∑

j>1

∫ t

s

∣∣X1,N
u −Xj,N

u

∣∣1−a du

≤ |t− s|(p−1)/p 1

N

N∑

j>1

(∫ T

0

|X1,N
u −Xj,N

u |(1−α)p
)1/p

≤ |t− s|(p−1)/p
(

1 +
1

N

N∑

j>1

∫ T

0

|X1,N
u −Xj,N

u |(1−α)p du
)

:= |t− s|βZT
N,p.

(2.2)

The tightness of the (JN,1t )t∈[0,T ], easily follows from a bound of the expectation of ZT
N,p

uniformly in N (see for instance [11, 10, 9]). Indeed for any R > 0, by Ascoli-Azerla’s
Theorem the set

KR :=
{
f ∈ C([0, T ],Rd), f(0) = 0, sup

0≤s<t≤T

|f(s)− f(t)|
|s− t|β ≤ R

}
,
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is compact. Then using Markov’s inequality yields

sup
N≥1

P
(

(JN,1t )t∈[0,T ] /∈ KR
)

= sup
N≥1

P
(
ZT
N,p ≥ R

)

≤ R−1 sup
N≥1

E
[
ZT
N,p

]
,

and the sequence
(
(JN,1t )t∈[0,T ]

)
N≥1 would be tight by Prokhorov’s Theorem, should the

desired bound hold. In this purpose we have the

Proposition 2.2. Let be 1 < α = a < 2 and (X i,N
t )i=1,··· ,N,t≥0 a solution to equation (2.1)

for an initial condition with law (FN
0 )N≥1 ∈ Pκ(RdN) for some κ ∈ (1, a). There exists

χa > 0 such that if χ ∈ (0, χa) then it holds for any T > 0 and some ε ∈ (0, 1)

sup
N≥1

E
[
ZT
N,α−1

α−ε

]
du ≤ sup

N≥1

∫ T

0

sup
1≤i 6=j≤N

E
[
|X i,N

u −Xj,N
u |ε−a

]
du <∞.

The proof of this proposition is based on [10] itself inspired by [16]. We sketch it below

Proof. Denote Zi,j
s := X i,N

s −Xj,N
s note that it solves

Zi,j
t = Zi,j

0 −
χ

N

∫ t

0

N∑

k 6=i,j

(
Zi,k
s

|Zi,k
s |a
− Zj,k

s

|Zj,k
s |a

)
ds

− 2χ

N

∫ t

0

Zi,j
s

|Zi,j
s |a

ds+

∫

[0,t]×Rd
x
(
M̄i − M̄j

)
(ds, dx).

Since Mi and Mj are independent, the process
(∫

[0,t]×Rd x
(
M̄i − M̄j

)
(ds, dx)

)
t≥0 is equal

in law to the process
(∫

[0,t]×Rd 21/axM̄i(ds, dx)
)
t≥0. Then applying Ito’s rule to Zi,j

s with

φ(x) = |x|ε for some ε ∈ (0, 1) is not possible, since the φ defined so is not C2 (not even
Ca), but let us perform the computations for the sake of the sketch. We then have

φ
(
Zi,j
t

)
= φ

(
Zi,j

0

)
−
∫ t

0

χε

N
|Zi,j

s |ε−2Zi,j
s ·

( N∑

k 6=i,j

(
Zi,k
s

|Zi,k
s |a
− Zj,k

s

|Zj,k
s |a

))
ds

−
∫ t

0

2χε

N

∣∣Zi,j
s

∣∣ε−a ds

+

∫

[0,t]×Rd

(
φ
(
Zi,j
s− + 21/ax

)
− φ

(
Zi,j
s−

)
− 21/ax · ∇φ

(
Zi,j
s−

))
Mi(ds, dx)

+

∫

[0,t]×Rd
21/ax · ∇φ

(
Zi,j
s−

)
M̄i(ds, dx).

Taking the expectation kills the last martingale term, replaces the Poisson measure
Mi(ds, dx) with its intensity dscd,a|x|−d−αdx so that with the change of variables 21/ax→ x

Exp. no III— Fractional Keller-Segel equations
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and definition (1.4) it holds

E
[
|Zi,j

t |ε
]

= E
[
|Zi,j

t |ε
]
−
∫ t

0

εχ

N
E
[
|Zi,j

s |ε−2Zi,j
s ·

( N∑

k 6=i,j

( Zi,k
s

|Zi,k
s |a
− Zj,k

s

|Zj,k
s |a

))]
ds

−
∫ t

0

2χε

N
E
[
|Zi,j

s |ε−a
]
ds+ 2

∫ t

0

E
[
−(−∆)a/2φ(Zi,j

s )
]
ds.

(2.3)

Then using some Fourier’s analysis yields for some constant cε,a > 0

−(−∆)a/2φ(x) = εcε,a|x|ε−a.

Then the symmetry of the roles played by the particles yields

E
[
|Zi,j

s |ε−2Zi,j
s ·

( N∑

k 6=i,j

( Zi,k
s

|Zi,k
s |a
− Zj,k

s

|Zj,k
s |a

))]
≤ 2(N − 2)E

[
|Zi,j

s |ε−a
]
,

so that in the end we obtain

E
[∣∣Zi,j

0

∣∣ε]+ 2ε (cε,a − χ)

∫ t

0

E
[
|Zi,j

s |ε−a
]
ds ≤ E

[∣∣Zi,j
t

∣∣ε]

≤ E
[
|X i,N

t |κ
]

+ E
[
|Xj,N

t |κ
]
,

and the result is proved thanks to the moment estimate, provided that

χ < χa = sup
ε∈(0,1)

cε,a. �

3. Study of the continuum model

This section summarizes some results of [14]. We discuss here some aspects og equation
(1.5) depending on the set of parameters (α, a) ∈ [0, 2)× [0, d). We shall distinguish three
different regimes:

• if a < α, we are in the diffusion dominated case,
• if a = α, we are in the fair competition case,
• if a > α, we are in the aggregation dominated case.

These appellations are inspired from [5], where a nonlinear diffusion is considered.
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Figure 1. The three different regimes in the plane (α, a). The set α+a < 1
has to be excluded, see Proposition (3.1) below.

For the rest of the section we will denote the fractional Laplacian operator of exponent
α/2 defined by 1.4 by ∆

α
2 , without loss of generality. We define

Mk =

∫

Rd
ρ(x)〈x〉k dx,

L1
k the set of the ρ ∈ L1 such that Mk <∞ and L lnL the set of the ρ ∈ L1 such that

∫

Rd
ρ ln(ρ) <∞.

3.1. Propagation of moments. The fractional Laplacian induces restrictions on the be-
haviour at infinity. In particular, the integration by parts fails when one tries to compute
the derivative of moments of order greater than the order of the fractional Laplacian.
However, we can still prove the propagation of moments of low order, provided that
a+ α > 1, as stated in the next proposition.

Proposition 3.1. Assume a < 2 if α < 1, k ∈ [(1 − a)+, α) and the initial condition
verifies ρin ∈ L1

k. Then

ρ ∈ L∞loc(R+, L
1
k).

The proof consists in differentiating moments of order k of the form and using Gronwall’s
inequality. It uses the fact that for such weight functions it holds

∆
α
2 (〈x〉k) ≤ Cd,k,α〈x〉k−α,

for k ∈ (0, α).

Exp. no III— Fractional Keller-Segel equations
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3.2. Lebesgue norms estimates. In the diffusion dominated case α > a, we have an
immediate regularization in stronger Lebesgue spaces even if the initial data is only in L1

initially.
In the aggregation dominated case, it seems no more possible to get such gains of

regularity, and two distinct behaviours appear. In the case of an initial condition with
a small initial particular Lebesgue norm, the solution will remain in this Lebesgue space
and spread out in the sense that this Lebesgue norm will converge to 0. If the solution
is in this space but is not small enough, blow-up can occur in certain cases and one can
only prove the boundedness in Lebesgue spaces on a given finite time interval depending
on initial conditions.

The critical case α = a is a sort of mix of the two above behaviours, since we obtain
both a regularization property from the L1 space to some Lp space for p > 1, and a
smallness condition on the mass that induces two behaviours. In the case of small initial
mass, we again find the convergence to 0 in the Lp norm, and in the converse case, we
could only prove a local in time propagation of the Lp norm. However, it remains an
open problem to know whether or not a blow-up can occur or if the Lp norm remains
bounded for larger times in this situation. These results can be summarized as follows
(see Proposition 3.3 in [14]):
Proposition 3.2.

• When a < α and p = q′ ∈ (1, pa), it holds

‖ρ‖Lp ≤ CM0 max(t−d/αq,Md/q(α−a)
0 ), (3.1)

where C > 0 is a constant depending on d, a, α, p and χ.
• When a > α, then for any p ∈ (pa,α, pa), there exists two constants C =
Ca,α,pM0(χM0)

−d/(a−α)q and C in = Ca,α,p(‖ρin‖Lp) such that

‖ρin‖Lp < C =⇒ ‖ρ‖Lp ≤ C inM0t
−d/αq (3.2)

‖ρin‖Lp > C =⇒ ρ ∈ L∞((0, T ), Lp) (3.3)

‖ρin‖Lp = C =⇒ ρ ∈ L∞(R+, L
p), (3.4)

where T < Ca,α,p(χ,M0)‖ρin‖−pbLp with b := α/(p(α− a) + d(p− 1)).
• When a = α, then there exists a constant Ca,d,p > 0, such that for any p ∈ (1, pa),

χM0 ≤ Ca,d,p =⇒ ‖ρ‖Lp ≤M0(C
inb)−1/bt−d/αq (3.5)

χM0 ≥ Ca,d,p =⇒ ρ ∈ L∞((0, T ), Lp), (3.6)

where C in is a nonnegative constant depending on the initial data and

T >
1

bC in

(
M0

‖ρin‖Lp

)αq/d
.

Again, the proof relies on a Gronwall’s estimate. It consists in trying to use the dissi-
pation of Lp norm coming from the fractional Laplacian in the spirit of Nash’s inequality
to control the nonlinear term, the latter being controlled by Lebesgue norms thanks to
Hardy-Littlewood-Sobolev’s inequality.
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3.3. Well-posedness. Our results on well-posedness depends as for the Lebesgue esti-
mates on the relative position of α and a. In all the cases we assume some initial moments
by taking ρin ∈ L1

k with k ∈ (0, α). We obtain the following results.
Theorem 3.1.

• When a < α, then there exists a unique and global solution.
• When a = α then there exists a unique global solution if ρin ∈ L lnL and
χM0 < Ca,d for a universal constant Ca,d > 0 and there exists a unique solution
on [0, T ) for a time T > 0 depending on the initial condition if ρin ∈ Lp for a
given p > 1.
• When a > α and ρin ∈ Lp with p ∈ (pa,α, pa), then again there exists a unique

solution on [0, T ) for a time T = Tρin > 0 depending on the initial condition and
there is a constant Cχ,p(M0) such that if

‖ρin‖Lp ≤ Cχ,p(M0), (3.7)

then the solution is global.

The proof of the existence and the uniqueness relies on an approximation argument and
a stability estimate in the Wasserstein distance W2, reminiscent of the proof of uniqueness
for the Vlasov equation by G.Loeper [15]. This estimate requires an priori estimate on
the L1((0, T ), Lpa) norm of the solution, which, in the sub- and super-critical cases can be
proved rather straightforwardly by using the above Proposition 3.2, coming back to the
equation and integrating in time the variation of the Lp norm.

In the critical case a = α, a good condition of regularity for the initial space density is
to assume finite entropy. In this case, in the same spirit as for the estimates in Lebesgue
norms, we get the following bound on the entropy

∫

Rd
ρ ln(ρ) + 4C−1a,d (χM0 − Ca,d)

∫ t

0

|√ρ|2
H
a
2
≤
∫

Rd
ρin ln(ρin),

where Ca,d can be evaluated in terms of the optimal constants for the Gagliardo-
Nirenberg’s and Hardy-Littlewood-Sobolev’s inequalities.

From this inequality and Sobolev’s embeddings, we obtain a bound on the L1((0, T ), Lpa)
norm in case of small mass also in the critical case. All these cases can be summarized
by writing that the solution to (1.5) satisfies

ρ ∈ L1((0, T ), Lpa), (3.8)

as soon as the initial condition ρin verifies

• ρin ∈ L1 if a < α
• ρin ∈ L1

k ∩ L lnL and M0 is small if a = α
• ρin ∈ Lp if a > α.

Remark that we can take T as large as we want when the Lp estimates are global in time.

3.4. Blow-up. In the aggregation case a > α, under fixed mass and large Lp norm, only
a local in time existence can be proved, and this is optimal since we can prove that a
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blow-up occurs (i.e. the solution cannot remain in L1) if the initial data ρin is even and
concentrated enough in the sense that

∫

Rd
ρin〈x〉k ≤ C∗χk/2(a−k)M (2a−k)/2(a−k)

0 , (3.9)

for a given constant C∗ = Cd,a,α,k. The proof consists in introducing a particular kind of
weight

m(x) := 1 + ϕ(|x|)|x|a + ϕc(|x|)|x|k.
where ϕ ∈ C∞c is an even nonincreasing cut-off function, and showing that if a solution ρ
exists for a sufficiently large time T , then

∫

Rd
ρm →

t→T ∗
0,

for a finite time T ∗ < T , which is a contradiction. One of the ingredients of the proof
is the fact that for a > α,

∣∣∆α
2 (|x|aϕ)

∣∣ ≤ C〈x〉−(d+α) and
∣∣∆α

2 (|x|kϕc)
∣∣ ≤ C〈x〉k−α which

implies that

∆
α
2 (m) ≤ C〈x〉k−α.
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