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ABSTRACT: We explain the connection between the différent approaches taken in [Be] 
and [Gr] in examining the tame kernel /^(Ofc), where Ok is the ring of integers of a 
number field k. In particular, we generalize the normic criterion in [Be, 2.4] by using 
Jaulent's work which gives links between K2 and S-genera. 

1. INTRODUCTION 

From [Ta] we have a pn-rank formula for K2(Ok), if k contains the pn-th roots of 
unity. There are m any publications that investigate the p"-rank, in particular for p — 2 
see for example [Ko]. It follows from [Ta] that the 2-rank of 1^(0* ) is at least ri, 
the number of real infinité places of k. Therefore the 2-primary subgroup of K2(Ok) is 
smallest if it is elementary abelian of that rank: 2-primK2{Ok) = (2Z/2)ri. The totally 
real number fields with this property are examined in [Be], where they are denoted as 
having property (*). The methods used in [Be] are based on the work of Conner and 
Hurrelbrink, using the exact hexagon defined in [C-H2] to examine the interplay between 
units, class numbers and ramification. The hexagon involves galois cohomology groups; 
parts of it were already introduced in [C-Hi], where one resuit is: "Let k be an arbitrary 
number field. The 2-Sylow subgroup of K2(Ok) is elementary abelian of rank ri iff 2 does 
not split in k/Q, the S-class number of k is odd, and k contains S-units with independent 
signs, where S is the set of infinité and dyadic places of k." 

A characterization of these number fields has been obtained in [Gr], even for arbi-
trary primes, by examining p-ramification. In [Gr] the tame kernel is defined in a new 
sense (the narrow one), which is more convenient for the examination of the 2-part. Us-
ing the notation suggested in [Ke], we dénoté it by K2(Ok)- It is related to the classical 
tame kernel by: K . 2 ( 0 k ) l ( O k ) = ( Z / 2 ) r i . The connection between p-ramification 
and I<2 is given by [Gr, Thm 1]: "Zetf k be a number field and p a prime. If the maximal 
real subfield of is contained in k, then dimpK2(Ok) = dimpT + 8; where 8 is the 
defect of Leopoldt conjecture at p in k, and T is the finite p-group which, in the maximal 
abelian p-extension unramified outside p, fixes the composite of ail 7LV-extensions of k." 
The results in [Gr] assume the validity of the Leopoldt conjecture, but this restriction 
is lifted in [G-J]. There, the notion of p-regular fields is introduced and the Leopoldt 
conjecture is verified for certain galois p-extensions of regular fields. 

Définition: A number field k is p-regular if the p-primary subgroup of K^(Ok) is 
trivial. 

In [Gr, Cor to Thm 1] a criterion for the triviality of the p-part of K^(Ok) in terms 
of idéal class groups is derived: "Let k be a number field that contains the p-th roots of 
unity. Then k is p-regular i f f p does not split in &/Q and the p-primary subgroup of the 
narrow S-class group of k is trivial, where S is the set of places of k lying over p." More 
équivalent criteria are given in [G-J, 2.1]. 



For p = 2 one obtains the above criterion from [C-Hi], but to see this we need to 
clarify a few définitions. The idéal class groups used in [Gr] are the ones that are classi-
cally referred to as narrow idéal class groups. That is, they are the quotient of the group 
of fractional ideals of k by the subgroup of principal ideals with totally positive genera-
tors. Similarly, the group of units Uk = {x G kx | vp(x) = 0 for ail finite places P} 
in [Gr] includes the corresponding restriction at infinité places. The resulting group of 
totally positive units will be referred to as Let S be a set of places of k. The S-ideal 
class group Clk,s is the quotient of the idéal class group Clk by Clk(S), the subgroup 
generated by classes of places in S. The group of S-units is Uk,s = {x 6 kx | vp(x) = 
0 for ail places P £ S}. Again, excluding infinité places from S results in the narrow 
S-ideal class group C/jJ" 5, and the totally positive S-units U £ s . The following exact se-

quence relates Cl~jïs to Clk,s (note that kx / • Uk,s) = 1 means that k contains 
S-units with independent signs): 

1 _ fc*/((fc*)+ . Uk,s) - Cli/Cl+(S) - Clk/Clk(S) - 1 

2. NORMIC CRITERION 

Since property (*) in [Be] is only a spécial case of 2-regularity, some of the explicit results 
in [Be] can be obtained by interpreting the results from [Gr] in the case p = 2. Some, 
however, do not follow in a straightforward manner. For example, the normic condition 
in the lift theorem [Be, 2.4] can be derived using S-genera theory. It follows as a spécial 
case of the following theorem. We will assume \iv to be contained in the base field, 
otherwise the notion of p-regular would have to be changed into p-rational; see [G-J], 
[J-N] and [M-N], 

Theorem: Let p > 2 be a prime, and let F be a number field that contains Let 
E/F be a Galois p-extension, and let S be the set of places lying over p, in F or E 
respectively. Then, E is p-regular if and only if: F is p-regular, p does not split in E, 
and (Upts '• UP s fi NE/F(E*)J = J^PeT E<P (E/F)> where the product is taken over T 
the set of ail tame ramified primes P in E/F, and e^(E/F) indicates the ramification 
index of P in the maximal abelian sub-extension in Ep/Fp. 

Proof: By the above characterization of p-regularity, we need to show that under the 
assumtion that p does not split in E we have: p-prim Clg s = 1 ^ p-prim Clp s = 1 

and : U£S D NE/F(E*)) = HPGT e'piE/F). If we let pCl dénoté the p-primary 
subgroup of Cl, we have from [Ja, Thm. III.2.12]: 

1 ri+G 1 - 1 ri+ 1 • npes^p . Jlpgr e<p(E/F) , , 
\PL/1E,S\ - \P F,Si ÏJPab . PI 7~~L T [«£7/^1 , 

[E -F] (U+s:U+snNE/F(E*)) 

where dp'iE/F) is the local degree and e'p(E/F) the ramification index in the maximal 
abelian sub-extension of Ep/Fp, and KE/F i s the knot number. If p does not split in E, 



K = 1 by [G-J, 2.5], and the above simplifies to: 

i CI+G i _ , r ] + i , I l p e r E.AP
B(E/F) 

(U+s : U+s n Ne/f(E*)) 

• 

For computational purposes, note that the p-rank of Up s / ( U p s ) p is r 2 (F) + 1, hence 

(yF,S : Upts i"1 Ne/f(E*)^J < r2(F) + 1. Furthermore, the concept of primitive ramifi-
cation may yield a more practically computable criterion; for the définitions we refer to 
[G-J, 1.1] and [G-J, 1.3]. From this point of view we obtain by [G-J, 2.3]: 

Corollary: Let F be a number field that contains fip, and let E/F be a Galois p-
extension. If F is p-regular then: the set T oftame ramified primes in E/F is p-primitive 
if and only if p does not split in E/F and ( U f s : Up s fl NE/p(E*)j = I7pgr e<p(E/F)-• 
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