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Abstract. In the paper some new congruences modulo 64 for generalized Bernoulli
numbers By (2) belonging to quadratic characters (4), d < 0 are proved and for each

-1<v<H all negative d and odd k satisfying ords B, (¢) = v are found. In the second

part of the paper we shall deal with the case of positive d.
All results are consequences of [1] and [2].
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1. Introduction.

For the discriminant d of a quadratic field, let (4) denote the Kronecker symbol.
Denote by By , the kth generalized Bernoulli number belonging to the Dirichlet charac-
ter x.

For = > 0 put

t(z) = ), (g) a¥,
0<a<s
and for X C N U {0} denote by ty(z,a € X), ty(z,b]| a), ty(z,b 1 a), tx(z,b]| a) or
tr(z,a = r (mod b)) the above sum with the appropriate additional condition: a € X,
bla, bta, b|ja or a =r (modb). Set ty := tx(6), where § := [d|. If d = —4d* or +8d*,
where d* is the discriminant of a quadratic field then é* := |d*| and we continue to write
t; for the above sums defined for the discriminant d* in contrast with #; given for d.

For d < 0 we have t; = -—dB],(‘g), and for d > 0 we have {3 = de’(lg). Put
h(d) := —Bl,(g), if d < —4 and h(—3) = h(—4) := 1. Put ky(d) := 2,(2)> if d > 8 and
ka(5) = k2(8) := 4. It is known that h(d) equals the class number and k;(d) probably
(certainly up to 2-torsion and in many cases) equals the order of the group K3 of integers

of a quadratic field with the discriminant d.
It is known that BO,(Q) =0andfor k>1

By (4) =0 (1.1)

if and only if d > 0 and % is odd or d < 0 and k is even. Write a(-3) := %, v(—4) = %,
B(5) == 1, p(8) := %, and a(d), v(d), B(d), p(d) = 1, otherwise. Put £(-3) := a(-3),
£(—4) = v(—4), n(5) := B(5), n(8) := p(8), and £(d), n(d) := 1, otherwise.

Our purpose is for each —1 < v < 5, if d < 0 (in the first part of the paper), and
for 0 < v <5,if d > 0 (in the second one) to find all d and k such that ord, Bk,(j—”) =
ords k + v. In order to do it we need some new congruences of the generalized Kummer
congruences type modulo 64 but without any assumptions on k.

Set
Be(2)

P

Let us recall the generalized Kummer congruences (see [3]) imply the following:

br(d) :=

bi(d) = — (1= (5)) h(d)&(d) (mod2°+), (12)
ifd<0,d#—4,-8 k=1 (mod2%), k>a+2,a>1,and

bi(d) = 3 (1-2(2)) ka(dIn(d) (mod2**Y), (L3)
ifd>0,d#8 k=2 (mod2%),k>a+2,a> 1.

Also (1.2) implies
ords Bk,(i) >a+1 (1.4)



if (%) =1or (%) # 1 and orda h(d) 2 a+1+ (%), and

ordy By (4y = ordz h(d) — (3) (1.5)
if (4) # 1 and ord h(d) < a+ (4). Similarly (1.3) implies
ord; Bk,(g) >ordok+a+1, (1.6)
if ords ky(d) > a + 2, and
ordy By (4) = ordz k + ordz ky(d) — 1, (1.7)

otherwise.
In both the papers we discuss the above formulas for any k and a < 5.

In this part we prove the following:

THEOREM 1. Let d, 2¢d and k > 3 be the discriminant of an imaginary quadratic field
and an odd natural number respectively. With the above notation, the numbers B, (4)

are 2-integral and the following congruence holds:
bi(d) = —kp (1 - ($)) h(d)a(d) — 9251 ks(~4d) (mod 64),
where p := pui(d), ¥ := 9i(d), and 93d = 5, p3d = —d — 2, pus = =15, and py, 9 = 1,
otherwise.
If 2|d we get more complicated congruences. We prove the following:

THEOREM 2. Let d = —4d*, where d* is the discriminant of a real quadratic field
(i.e. d # —4), and let k > 3 be an odd natural number. Then the numbers B, (4) are

2-integral and we have:
bi(d) = J1ka(d*)B(d*) + F2h(d) + 93h(2d) (mod 64),
where ¥; := ¥;(d, k) € Z (¢ = 1,2,3) are of the form
J; = pik + g,

and

n=2(%), w=2(3-4(F) (7))
THEOREM 3. Let d = £8d*, d < 0, where d* is the discriminant of a quadratic field
(i.e. d # —8), and let k > 3 be an odd natural number. Then the numbers Bk’(%{_) are
2-integral and we have:
[ O1ko(—4d*) + F2h(d) + I3h(d*)a(d*) (mod64), ifd* <O,
)= { prka(d*)B(d*) + poh(d) + p3h(—4d*) (mod 64), if d* >0,
where 9; := 9;(d, k), p; := pi(d, k) € Z (i = 1,2,3) are of the form 9, = pk + ¢, and

91 = —1(k—1), 9y =4k -5, ¥3=(7-15(%))(k-1),

H1=—%(1—2(%))(k*1), po =8k -9, p3=>5(k-1).

Combining Thm. 2 and 3 with Cor. 1 to Thm. 1, 2 [2] we can get many new congru-
ences for generalized Bernoulli numbers modulo 64 (or 32).

bi(d
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Lemma 4 and the congruence (5.1) imply a weaker version of Thm. 1 and 2:

THEOREM 4. Let d < 0, 2|d, d # —4 be the discriminant of a quadratic field, and let
k > 3 be an odd natural number. Then the numbers B, (2) are 2-integral and we have:

be(d) = —h(d) (mod28-°rdzd),
n

2. Lemmas
We have divided the proof of the theorems into a sequence of lemmas.
LEMMA 1. Let d, 2¢d be the discriminant of a quadratic field. Then we have:

(i) Ifd > 0 (ie. 6§ =1 (mod4)) then
to(8,a = & (mod8)) = () to(8/8),
to(6,a =8+2 (mod8)) = - (1+ (%))
to(6,a = & +4 (mod8)) = to(6/4) — (4
to(6,a =6+ 6 (mod8)) = (%) to(6/4) ~

to(8/4) + (3) to(8/8),
) to(8/8),
(%) to(8/9)-
(i) Ifd <0 (ie. § =3 (mod4))) then
to(5,a = & (mod8)) = — (%) to(6/8),
to(6,a=6+2 (mod8)) = (%) te(6/4) — (%) to(6/8),
to(6,a =6 +4 (mod8)) = —to(8/4) + (%) to(8/8),
to(6,a=6+6 (mod8)) = to(6/2) — (1+ (%)) to(6/4) + (%) ta(6/8).

ProoOF. Let us note that

(&) ¥ (5H)=&H X @)
0<a<é/2, §/2<a<é,
a=§ (mod 4) 4la

(&) [to(6,41a) — to(8/2,4]a)]

d

=)

(&) Ito(8/4) — to(8/8)], (2.1a)

t0(6/2,a = 6 (mod4))

and

th(6/2,a=6+2 (mods) = (L) ¥ (F)=(& X @
=Ton sty

1,5, 0,5, 0
o o

() to(8,21a) ~ t0(6/2,2|a) — to(&,4|a) + t0(6/2,4|a)]
() [(3) to(8/2) — (1 + (£)) to(6/4) + to(6/8)] . (2.1b)
3



From this we conclude the lemma because
to(8,a =6 (mod8)) = (&) to(6,8]a) = (&) (2) ta(6/8),
to(6,a =6 +2 (mod8)) = (&) to(8,a = -2 (mod8))
= (&) (%) to(6/2,a = 3 (mod 1)),
to(6,a = 6+4 (mod8)) = () [ta(8,4a) — to(6,8]a)]
(&) [to(6/4) = (3) to(8/8)]
( )

to(6,a =6+ 6 (mod8)) =

I
—~
L
N’
/'\
v
o~
o
—
> |
~
}\9
Q
I
—
E)
O
(oW
e
~—
~—

For i > 0 set ¢, := ¢;(6,2ta). To prove the theorems we apply the following lemmas:

LEMMA 2. Let d be the discriminant of an imaginary quadratic field. Then we have:

() th=-(3) (2 (5)) A(d)e(d)
. , (%) dh(d)a(d), if 2td,
) h={ .
¥(d), if 2]d.
(iii) th = —d*h(d)y(d), if2|d.
(iv) th = C1(d)h(d)e(d) + ka(—4d) (mod 64) if 244,
where
Ci(d) := — (%) d+2 (%) - 1.
Co(d)h(d)a(d) (mod 64), if2td,
(v) th = ¢ 4(15v(d) — 14)h(d) (mod 64), if 4]|d,
8sgn d*h(d) (mod 64) if 8|d, d = +8d*,
where

Co(d) =3 (3)d+2(4) -4
More generally, for d # —4, —8 we have
((8-2(%)) 6ka(d*)B(d*) — 136h(d)+
+86h(2d) (mod 646), ifd=—4d*,2¢d",
—36ky(—4d*) — 116h(d)+
+2 (543 (%)) 6h(d*)a(d*) (mod 646), if d =8d*, d* <0,

(3—2(%)) 8ka(d*)B(d*) + 136h(d)~

\

—928h(—4d*) (mod 646), ifd = —8d*, d* > 0.



Here for d = —4d* or £+8d*, d* is the discriminant of a quadratic field or d* = 1, if
d=—4,-8.

PROOF. Since for d < 0 (see [3])
(6/2) = (2~ (7)) h()E(), (21)

(1) of the lemma follows immediately.
On the other hand for any d we have

th =t -2 (%) a(6/2). (2.2)

Also for d < 0 we have (see [3])
t1 = dh(d)é(d) (2.3)

and

1(6/2) = =34 (1= (3)) h(@)é(d) (2.4)

(cf. p. 255 [2]). Therefore (ii) of the lemma follows from (2.2).
In order to prove (iii) of the lemma, we apply (1.1). Then for d < 0 we have

Ba(y =0
Consequently from (3.1) (with F = §) we get
ty = —d*h(d)é(d). (2.5)
To prove (iv) let us note that for any d we have

th=2 Y. rti(d,a=r (mod8))— > r’to(6,a = r (mod8)) (mod 64).
1<r<7, 1<r <7,
r odd r odd

Hence for d < 0, 21d we obtain

th=21—tp+2 > (r—Dt(,a=r (mod8)) — > (r* = 1)te(6,a =r (mod8))

3<r<T, 3<r<T,
r odd r odd
=2t —tg+8 > rtg(§,a=r (mod8)) — 4t;(6,a =3 (mod8))+
3<r<T,
r odd
+4ty(6,a =7 (mod8)) — Y (r* —1)te(6,a =r (mod8))
3<r<T,
r odd
=2t ~to+ >, (1+8r— r)tg(8,a = r (mod8))—
3<r<LT,
r odd

— 24t9(8,a = 3 (mod 8)) + 4¢1(6,a = 3 (mod 4))

= 2t) — ty — 8t9(6,a = 3 (mod 8)) + 16t9(6,a =5 (mod 8))+
+ 8tp(8,a = 7 (mod 8)) + 4t1(6,a = 3 (mod 4))

= 2t] — ty — 8(6,a = 3 (mod 4)) + 16tg(6,a = 5,7 (mod 8))+
+4t1(6,a = 3 (mod4)) (mod64).



Consequently in view of Lemma 1 (ii) we deduce that
th =2t — th + 8t0(6/4) + 16 [3 (1 + (5)) to(8/2) — 2t0(8/4)] + 16t1(6/4) — 46t0(6/4)
= 2t] — th + 4(10 — 8)to(8/4) + 16t1(6/4) + 8 (1 + (§)) to(6/2) (mod 64).

Thus by Lemma 2(i), (ii) and (2.1), (iv) of the lemma follows because for d < 0, 2t d we

have

to(8/4) = 3 (1 + (%)) h(d)a(d), (2.6)
(see Thm. 7.1 [1]), and
11(8/4) = 15ka(—4d) + 3d (1 - ($)) h(d)a(d) (2.7)

(see Thm. 2(i) [2]).
In order to prove (v) let us notice that for any d we have

ts=3 > rix(a=r (mod8))—3 > r’t)(6,a = r (mod 8))+

1< <7, 1<,
r odd r odd
+ 3 rtp(6,a =r (mod8)) (mod?2°).
1<r<7,
r odd

Therefore in view of the congruence
to(6,a = r (mod8)) = 2rt1(8,a = r (mod 8)) — r’to(8,a = r (mod8)) (mod 64),

we see that

th=3 Y rti(,a=r (mod8))—2 Y r’t(6,a=r (mod8)) (mod64).
15r§d7, 1$r§g,
r o r o

From this it may be concluded that

th=3t+3 3 (r? =~ rtg(8,a =r (mod8)) — 2t;—

3<r<,
r odd
-2 Z (7'3 — Dtyp(6,a = r (mod8))
3<r <1,
r odd
=3ty — 20+ Y, (r° —3r+2)te(§,a =r (mod8))
i
r O

= 3t} — 2ty + 20t9(8,a = 3 (mod 8)) — 16¢9(6,a = 5 (mod 8))
+4to(6,a = 7 (mod 8))
= 3t} — 2ty + 20p(8,a = 3 (mod 4)) — 16t¢(6,a = 5,7 (mod 8)) (mod 64).

Consequently in virtue of Lemma 1(ii) we find that

th = 3t} — 2ty — 20to(6/4) — 16 [3 (1 + (%)) to(6/2) — 2to(8/4)]
= 31) — 2ty +12to(6/4) — 8 (1 + (%)) t0(6/2) (mod 64).



Thus by Lemma 2(i), (ii), (2.1) and (2.6) we obtain (v) of the lemma for 2¢d.

Now we are going to consider the case 2|d. Then for any 2|d, d # —4 and k we have

J 6/2 4 . /4 N s L
= t:(6/2) + () X_:O (3)¢—a)* = u(6/4) ~ (&) X_«; () (G-a) +
6/4 5/4

FE) S @60t -3 () e

a=0 a=0

because for 2|d we deduce that

(575=2) = (1) (=ofma) = (1) (g7wa) = - (1) (3)-
Therefore putting 7 := min(k,7) for k > 3 (i.e. 7 > 3) we have

ty = tr(6/4) — z()(g) (15 (&) + 1] tes (8/4) +

=0

3
(%)E() ~1)F*_i(6/4) (mod 645).

By the above, under the condition that (:df) = (—1)* we conclude that

tr =€k +¢ef (mod646),

where
3 . . .
e = e(d) = — }_:1 (3)(8/2)* [(=1)'(1 — 2%) + 1] ti(8/4)
= —kbtr_1(6/4) + 36% (5) te2(6/4) — (§) 8°t—s(6/4),
and

el = el(d) = — zr: (.)(5/2)i [(—l)i + 1] tr—i(6/4)

= %(2)6 tr_ 4((5/4) ()66tk 6(6/4)’

if k>4, and ) = 0, where \x = 0, if k <5, and A\ = 1, otherwise.
Consequently from (2.8) for £ = 3 and d < 0 we obtain

t3 = —36t2(8/4) + 36%1(6/4) — 6%0(6/4) (mod 646).

(2.8)

(2.9)

We will apply (2.8) in the proof of Lemma 5. For k£ = 3 this congruence is an equality.
We need consider three cases: d = —4d* or d = £8d*, where d* is the discriminant
of a quadratic field or d* = 1, if d = —4, —8. We follow the notation of Introduction.

First, let d = —4d*, d* > 0. Since for d > 0, 2t d we have

to(6/4) = h(—4d)

(2.10)
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(see Thm 7.1 [1]) in our case we observe that

to(6/4) = t5(6*,a =1 (mod4)) — t3(6*,a = 3 (mod4))
= 15(6*/4) — (%) t(6*/2) — t5(6*/4)) = 2t35(87/4)
= h(—4d*) = h(d).

Moreover we find that

t1(6/4) = t1(6*,a =1 (mod4)) — t1(6*,a =3 (mod 4))
= [~](8*%,4]a) + 6*t5(6%,4|a)] — [-t1(6*,a = 2 (mod 4))
+ 6*t5(8*,a = 2 (mod 4))]

= —4F3(6*/4) + 6*13(8%/4) + [2 (£) (5 /2) - aty(&° /4)] _
-8 [(%) 557/2) - 13(6°/4)]
=2 (%) t1(87/2) — 8¢1(6*/4) + 26*15(8/4).
Consequently, since for d > 0, 24d
1(6/2) = —3 (4= (§)) ka(DB(d),

and

11(8/4) = 3 (1+2(2)) k2(d)B(d) + 3dh(—4d),
(see Thm. 1 (i) [2]), by (2.10) in our case for d # —4 we get
11(6/4) = (4= (§)) kad")B(d").
Furthermore we have

t2(6/4) = t5(6*,a =1 (mod4)) — t5(6%,a =3 (mod 4))

(2.11)

(2.11a)

(2.12)

(2.13)

(2.14)

=9 Z rt1(6*,a =r (mod8)) — Z rzta(é*,a =r (mod8))—

r=1lorb r=1or5

-2 3 rt}(8*,a=r (mod8))+ 3 rity(6*,a=r (mod8))

r=3or7 r=3or7
= 2t7 — g + 8t}(6*,a =5 (mod8)) — 8t{(6*,a = 3 (mod 8))—
— 16t7(6*,a = 7 (mod 8)) — 24t§(6*,a =5 (mod 8))+
+ 10t5(6*,a = 3 (mod 8)) — 14t5(6*,a = 7 (mod 8))

=2} —t§ — 24t5(6*,a = 5 (mod 8)) — 24t5(8*,a = 3 (mod 8))+

+ 16t5(6*,a = 7 (mod8)) — 24t3(6*,a = 5 (mod 8))+

+ 10t5(6*,a = 3 (mod 8)) — 14¢5(6*,a = 7 (mod 8))
=2ty — g +16t3(6*,a = 5,7 (mod 8))—

— 14¢5(6*,a = 3,7 (mod8)) (mod64).

Consequently by #§' = 0 and Lemma 1(i) we find that

t2(6/4) = 268" +16 [(1+ (%)) to(8" /4) — 2t5(6/8)] + 14£}(6*/4)
= 2t} +32t3(6*/8) + 2 (15+ 8 (%)) t4(6*/4) (mod 64).

(2.14a)



On the other hand for d > 0, 24 d we have
t0(6/8) = § (%) h(—4d) + 3h(—8d) (2.15)

(see Thm. 7.1 [1]). Therefore by ¢} = 0, together with (2.12), (2.2) and (2.10) in our case
for d # —4 we get

ta(8/4) = (4 (%) — 1) ka(d*)B(d*) — h(d) + 8h(2d) (mod 64). (2.16)
Now we can apply (2.9). From (2.11), (2.14) and (2.16) we deduce that
th=t3=[3(1-4(%)) + 36 (4 (3))] skala)Ba")+

+ (3 — 6%)6h(d) — 246h(2d) (mod 648).

Hence and from Cor. 1(i) to Thm. 1 2], (v) of the lemma for 4||d follows.
Now let d = +£8d*. Since for 24 a we have

() + (%) (#%) = (&) (1 + (—1)%), (2.17)
we find that
5

t(6/4) = (8" + Y () (26* - a)

a=0
5
-1 - (8) ) (e (Y
_2(15
= 2t1(6*,a =3 (mod4)) + 26*[te(6*,a =1 (mod 4))—
—t(8*,a =3 (mod4))]. (2.17a)

Therefore for d < 0 we have
t1(6/4) = 2 (45) [3t5(6*,a = 3 (mod8)) — 7t5(8*,a =7 (mod8))] +
+28* [t5(6*,a =1 (mod8)) — t5(6*,a =5 (mod8)) -
— (£) t5(6*,a =3 (mod8)) + (%) t5(6*,a = 7 (mod 8))]
)

=2(%) (3-6")t5(6",a =3 (mod8)) +2 (L) (6* - 7)t(6*,a =7 (mod 8))+
+  26%4(6,a _1 (mod 8)) — 26*t4(6*,a = 5 (mod8)) (mod16).

Consequently by Lemma 1 if d = #8d*, d < 0 then we observe that
11(6/4) = 4 (%) t3(6°/8) =2 (&) (1+ (&) + (§)) 5(6*/0)+
+2(2- (%)) t5(6°/2) (mod16).
Now, let d = 84*, d* < 0. Then since for d < 0, 2{d
t0(6/8) = § (5~ (%)) h(d)a(d) — jh(3d) (2.18)
9



(see Thm. 7.1 [1], again), by (2.1) and (2.6) in our case we see that
11(6/4) = 6 (1— (%)) h(d*)a(d*) + h(d) (mod 16). (2.19)
Similarly, if d = —8d*, d* > 0, d # —8 then by (2.10) and (2.15) we obtain
t1(6/4) = —2h(—4d*) + h(d) (mod16). (2.20)

Now the lemma will be proved as soon as we can find t2(6/4) modulo 64. But
applying (2.17) for any d we get

& &
t(6/4) = t2(8") + X () (26" -0 = L () + (5) ()] (¥) o™+
+482 Y (-7 () -4 Y )T (Ha

0<a<é" 0<a<é
2ta 2{a

= 2t5(6*,a = 1 (mod4)) + 46**[to(6*,a = 1 (mod4)) — to(6*,a = 3 (mod4))]—-
— 48* [t1(8%,a =1 (mod 4)) — t1(8*,a =3 (mod 4))]
= 2[2t1(6*,a =1 (mod 8)) — t5(6*,a =1 (mod8)) — 10t7(6*,a =5 (mod 8))+
+ 25t5(6*,a = 5 (mod 8))] + 46*[t4(6*,a = 1 (mod 8))—
—t5(6",a =5 (mod8)) + (%) (£5) t5(6*,a =3 (mod8))—
— (&) (%) t5(8*,a =17 (mod8))]-
— 46" [t;‘(a*,a =1 (mod8)) — t1(6*,a =5 (mod8))+
+ (&) (&) (8" a =3 (mod8)) — (&) (&) (6,0 =7 (mod8))]
= 2(1 — 26" 4 26*?)t}(6*,a = 1 (mod 8))—
—2(25 — 106* 4 26*?)t4(6*,a = 5 (mod 8))+
+46* (L) (45) [~£1(6",a = 3 (mod 4)) + 146(6*,a = 7 (mod 8))]+
+ 46** (:di) (%) [t5(6%,a = 3 (mod4)) — 2t5(6*,a =7 (mod 8))]
=2(26"+3 -4 ({’—1)) t4(6*,a =1 (mod8))—
~2 (26" +11 +4 (-E;T)) t5(6*,a =5 (mod 8))—
~8(6" +1) (&) (%) t6(6%,a =7 (mod 8))+
+48° (&) [z (1L+ (&) 6210) - (5) 6", 41a)] +
+482 (&) (1- (&) ta(6*,4]a) (mod64), (2.20a)

because
t} (6*,a = 6* — 3(modd)) = } (1 + (£5)) t1(6*,2a) — (£5) t1(6",4]a),

and for d* < 0
t5 (8%,a = 3(mod4)) = —t1(6*,4]a).

10



Consequently for d < 0 by Lemma 1 we deduce

ta(6/4) = —46" [(1+ (%)) (§) i /2) - 4 (&) i /)] +20 (&) 13(6°/8)+
+2 (26" -5 (%) +2) 15(8"/2)+
+2[28" -5 (%) +6—12(4)] t5(6°/4) (mod 64),
because t§(6*/2) = 0, if d* > 0, and by (2.6) we have t5(6*/4) = 0, if d* < 0, ( ) =—1.
We now turn to the cases. Let d = 8d*, d* < 0. Then from (2.1), (2.6), (2.7) and
(2.18) we obtain
12(6/4) = 16}(6"/4) — 2065(6° /8) + 2 (26" + 13) 13(6* /4)+
+2(26* - 5 (%) +2)t5(6*/2)
= ka(—4d") + 5h(d) + 2 (13 - 5 (%)) h(d*)a(d*) (mod64),  (2.21)

because t5(6*/4) =0, if d* < 0 and (%) = —1, again.
Likewise, if d = —8d*, d* > 0, d # —8 then by t§(6*/2) = 0, (2.10), (2.12), (2.13)
and (2.15) we find that
t2(6/4) = —86* ( ¢ ) 61(6%/2) + 16t1(8* /4) + 20t5(6*/8)+
+2 (26" -5 (%) - 6) t3(6*/4)
=3 (1-2(%)) k2(d*)B(d*) + 5h(d) - 2 (5 — 4 (%)) A(~4d")
(mod 64). (2.22)
Now to finish the proof of the lemma it suffices to use (2.19), (2.21), if d = 8d*,

d* < 0 or (2.20), (2.22), if d = —8d*, d* > 0 together with (2.9). Let us note in the case

8|d we have
th = t3 = —36t2(6/4) + 36%1(6/4) (mod 646).

This gives immediately the congruences modulo 646 of (v) of the lemma for 8 |d. The
congruences modulo 64 follow easily from them and Cor. 1(i) to Thm. 1, 2 [2]. n

LEMMA 3. Let X be be a subset of the set of the odd natural numbers. For given z > 0
and any d we have:

ti(z,a € X) = lc—;—"ta“(x,a €X)-— k—g_zta(x,a € X) (mod64),

where k = ¢ (mod 2), o € {0,1}.

PROOF. It is easily seen that for natural 24a and even k

=22 241 (mod64).

Q

Therefore for even k and any discriminant d the lemma follows. Furthermore, the above

congruence implies

aF k_;l_as - k—;la +a (mod64),

if £ is odd. Hence the lemma for odd & follows easily. [ |
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COROLLARY. For any d we have:

o { Ko, — 224 (mod64),  if 2]k,
k ==

L — B340 (mod 64), if 24k,

]
LEMMA 4. Let d be the discriminant of an imaginary quadratic field. Then we have:
(i) If + > 2 then
_ [ Au(d,i)h(d)a(d) + ik2(—4d) (mod 64), if21td,
271 —id?h(d)y(d) (mod64), if 2|d,

where

Ar(d,i) =325 (1~ () +2i(2(3) -1 ($)d) -2(%) +1.
(ii) Ifi > 1 then
b = Az(d,)h(d)a(d) — 2%~ 2ky(—4d) (mod 64), if 24d
w { As(d,1)h(d) (mod 64), if2]d,

where

Ax(dyi) =251 (1~ (§)) +2 ((3) -2+ (3) d) + (§) 4, if 2144,
Ag(d,i) := i [7(d)(60 ~ d) + 8] + dv(d), if 41|d,
Ag(d,i) := i(8sgnd* — d) + d, if 8|d, d = +8d*.

PROOF. Let 7 > 3. We start with the following obvious congruence:
t; =2'(4) 1,(6/2,24a) + 1, (mod64), (2.23)

where i = 0 (mod2), o € {0,1}. Hence and from Corollary to Lemma 3 for ¢ > 2 we
obtain

ty = 2% (%) to(6/2,24a) + ty
= 2% (%) [to(6/2) — (%) to(6/4)] +ith — (i — 1)ty (mod 64).

Now, if 21 d then (i) of the lemma follows immediately from the above congruence, (2.1),
(2.6) and Lemma 2(i), (iv). If 2|d then it is an easy consequence of Lemma 2(i), (iii).
Similarly from (2.23) and Corollary to Lemma 3 for ¢ > 1 we get

taiyy = 271! (%) t1(6/2,2ta) + thiy
= 2%+ (4) [t1(6/2) - 2 (%) t1(8/9)] + ity — (i — 1)t} (mod64).
Now, if 24 d then (ii) of the lemma is an obvious consequence of Lemma 2 (i), (v),

(2.4) and (2.7). If 2|d then it follows immediately from Lemma 2(i), (v). The lemma is
proved. |
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LEMMA 5. Let d, 2|d, d # —4, —8 and k > 5 be the discriminant of an imaginary
quadratic field and an odd natural number respectively. Then we have:

(5 (k+3+4(%)) (5)oka(a)B(d*) — Asbh(d)+
+2(8) (k — 7)6h(2d) (mod 648), if d=—4d*, d* >0,

] —(5)8ka(—4d*) + Asbh(d)+
£ +2(7-15 (%)) (5)6h(d*)a(d*) (mod64s), if d=8d", d* <0,
~3(1-2(%)) (§)8ka(d*)B(d*) — AsSh(d)+

+10(5)6h(—4d*) (mod 64), if d=—8d*, d* >0,

vt ), 4y =€)+ (£5) b, whee = <40, . 1244 ()
if4||d, resp. 8|d.

PROOF. We begin by proving the lemma in the case 4| d, d # —4. Applying (2.8) for
2tk, k> 5 we get

ty = —kbti_1(6/4) + 38°(§) tk_a(8/4) — 16(5) 6t0(8/4)—
—2(5)6%1(8/4) — 32 (§) 6t0(6/4) (mod 646).

Thus by Lemma 3 for 2t k, k£ > 5 we deduce that

te = —k6 [55102(8/4) — F210(6/0)] + 38 (3) [F5203(6/4) - 500(6/4)] -
—16(%)6to(6/4) — 2(})6%1(8/4) — 322k (§)t0(6/4)

Lk —3)(5)8%3(6/4) — (§)6ta(6/4) — 167 [(3) (k — 5) + 8(%)] ta(6/4)+

+ [ 16(8) — 320k (8)] 6t0(6/4) (mod 648). (2.24)

On the other hand in this case by t§' = 0 and Lemma 1(i) we have

t3(6/4) = t3(6*,a =1 (mod4)) — ¢3(6*,a =3 (mod4))
= 3t](6*,a =1 (mod4)) — 2¢5(6*,a =1 (mod 4))+
+ 5t7(6*,a = 3 (mod4)) — 10t5(6*,a = 3 (mod 4))
=3t} — 2t + 2t3(6*,a = 3 (mod4)) — 8¢3(6*,¢ =3 (mod 4))
= 3t} + 6t5(6*,a =3 (mod 8)) — 2t§(8*,a = —1 (mod 8))—
— 8t3(6*,a =3 (mod4)) = 3t} — 2t5(6*,a =3 (mod4))—
— 8t3(6*,a = —1 (mod 8)) = 3t} + 2t§5(6*/4)—
—a (14 (%)) th(8*/4) + 8t5(6*/8) = 3t -
—2(1+2(%)) t5(6"/4) + 8¢5(8*/8) (mod 16),
13



and by (2.12) (together with ¢} = 0 and (2.2)), (2.10) and (2.15) for d # —4 we obtain
ts(8/4) = 3 (4 (%) — 1) ka(d)B(d*) — h(d) + 2h(2d) (mod 16).
Consequently by (2.24) together with (2.11), (2.14) and (2.16), the lemma for 4 ]| d follows,
because 2| h(d), h(2d), 4| ky(d*), and 4| h(d), if (%) = 1.
Now, consider the case 8|d. From (2.8) in this case we have
ty = —k6tr_1(6/4) + 36%(5)te—2(6/4) (mod 645),

and in consequence by Lemma 3 for 24k, £ > 5 we deduce that
ty = —k6 [55242(6/4) — 55210(6/4)| + 38° (5) [2534s(8/4) — 55211(6/4))
= —(5)6t2(6/4) + 362(§)t1(6/4) + 252 6t0(8/4) (mod 646). (2.25)
On the other hand in view of (2.17), putting d = +8d* we get

(5 = 606+ 3 () = 2 [(2) + (5) (2] (5)

= a=

= 2t4(6*,a =1 (modd)) = 2t5(6*,a = 1 (mod8)) — 24(6*,a = 5 (mod 8)),

8

and in consequence by Lemma 1 we see that
to(8/4) = 4 (L) t5(6*/8) +2 (1 -2 (%)) (%) to(6*/4) — 2 (5) 5(6*/2),  (2.252)

because t3(6*/2), resp. t5(6*/4) =0, if d* > 0, resp. d* < 0, (%—) = —1 (see (2.6)).
Thus by (2.1), (2.6) and (2.18) in the case d* < 0, and by (2.10) and (2.15) in the
case d* > 0, d # —8 we obtain
to(6/4) = h(d).
Thus the lemma for 8|d follows from (2.25) together with the above formula and (2.19),
(2.21) in the case d* < 0, and (2.20), (2.22) in the case d* > 0, because 4| h(d), h(—4d*),
if (%) =1. u

3. Used formulas.

It is known that for £ > 0, a Dirichlet character x with the conductor f and f|F
the following formula holds:

F
By = F*=' Y x(a)Bi(a/F) (3.1)

a=0

(see Proposition 4.1 [3]). Here Bi(z) denotes the kth Bernoulli polynomial. It is known
that for k > 0

14



where B; are ordinary Bernoulli numbers. Hence and from (3.1) for F = 2f and x(—1) =
(—1)* we obtain

Biy = (21)F 1Zx )Bi(a/2f)
— @) l[zx )Bulaf2) + 3o x(F — 2)Be(252)
a=0

= (21)" (1 + x(=1)(-1)F) Zx )Bi(a/2f)

a=

_E()sz ((2f)F 1,

1=0
Therefore for k£ > 2 we conclude that
k-2

By y = ZO (’f)QBk_,'(Qf)k_l-i — ktg_1 + %tk. (3.2)

4. Proof of Theorem 1.

We start with the formula (3.2). For k£ > 3, 2tk and x = (4), d < 0 it states that

k: 3

Bk,(‘—’) = (2,+1)2Bk 24— 1(25)k —2i- 2t2,+1 ktk_l—{-%tk. (41)

NI

..
il
o

Thus in view of the von Staudt—Clausen theorem for p = 2 and Lemma 4 we see that the
numbers B, () are 2-integral unless d = —4. Then we have 2 ||t} and ord, Bk,(g) =—1.

Let us ap}.>1y the formula (4.1) to the case 24d and k > 7. Then we have

6‘Bk,(if-) E. (2,+1)2Bk 2i-1 2k —%i- 25k —2i- lt2,+1 kéty_1 + t (mod64). (4.2)

k3
6Bk,(-4) = h(d)a(d) Z (2,'{;.1)2Bk—2i—l2k_2i_26k_2i—1A2(d,i)—
l i=k—'23—2
k3
—-kz( 4d)2k_4 Z (21+1)2Bk g4 15k —2i—-1_
i=k3_9

~ k6 [A1 (d,57) h(d)a(d) + 252 ka(—4d)] + A (d,552) h(d)a(d) (mod 64).
15



From this, in view of 4|ky(—4d) and k > 9 it follows
6By (#) = As(d, k)h(d)a(d) + d(§)ka(~4d) (mod64),
where
Ag(d, k) =32(8) +8(5) (3) d+2(§) (§)d® + kday (d,55) + 42 (4, 552) .

The task is now to find A4 modulo 64. Indeed we have

Ag(d, k) = 32(F) + 8(5) (4)d+22 (g) (g)d3+

(%)—2+()) ()+2—32() 8(1)
V(&) (d+2+8 (%) +2(5) (~d+8~-7(

gg)_z_(g)d) 2 (%) 532(§)+§

We need consider two cases. If (%) = 1 then we see that

As(d, k) =32(8) +8(5) +22(5) — k+1
= (k— 1) [2(k — 3)(k ~ 5) + 3(1 — 2k)(k — 3) + 11k — 1]
=(k—1)[(k—3)(4k+1) + 11k — 1]
=4(k—1)%(k+1)=0 (mod64).

Let (%) = —1. Then we have
Ag(d, k) = 32(5) +24(5) +2(5) (21 — 2d) + k(2d — 3) + 3 (mod 64).
Therefore in the case k =1 (mod4) we conclude that

Ag(d k) =24(5) —10(5) —9(k — 1) + 2d
= (k—1)[(k—3)(1 —2k) — 5k — 9] + 2d = 2(k* — 1) + 2d (mod 64),

and in the case £k =3 (mod4) we get

As(d, k) = 32(8) +24(%) + 11k(k ~ 3) — 3(k — 3) + 16 + 2d
=(k-3)2k-1)(k-5)+(k—-1)4k—-9) + 11k - 3]+ 16+ 2d
(k= 3)[~(k — 1)(2k +3) + 11k — 3] + 16 + 2d

2k —3)(5k —1)+16 +2d = 2(k% — 1) + 2d (mod 64).

16



On account of the above for £ > 9 the following congruence
6By ¢y = (K — 4’ +d) (1= (%)) M(d)a(d) + 9'd(3) k2(~4d) (mod 64) (4.3)

holds with g’ = ¥' = 1, and consequently after an easy computation the theorem for

k > 9 follows.
If k = 3 then from (3.1) we have

533,(2) = 2d%t; + 3dty + t3.

Therefore by Lemma 4, (2.3) and (2.5) we deduce that
6By (4) = [~d* + Aa(d,1)] h(d)a(d) — ko(—4d) (mod64).

Consequently the congruence (4.3) with p' = 3 + 2d and ¥’ satisfying 3d¥' = —1 holds,
and in consequence the theorem for £ = 3 follows.
If k =5 then from (3.1) we have

535’(Ig) = —§d4t1 + -23—0(12153 + 5dty + ts.

Thus by Lemma 4, (2.3) and in view of 4| ko(—4d)

6B5,(.g) = A5(d)h(d)a(d) + 10dk2(—-4d) (mod 64),
where
As(d) := —24d + 28(d — 1) Ag(d, 1) + 5dA1(d,2) + As(d, 2).

After a computation this congruence implies (4.3) with x' = 17 and ¥’ = 1, and so the

theorem for k = 5 follows.
Finally, if ¥ = 7 then from (4.2) we find that

5B7,(g) = 32t + 24t3 + 14d2t5 + Tdte + t7 (rnod 64).

Therefore by Lemma 4, (2.3) and in virtue of 4|k3(—4d) we observe that

6B, (4) = As(d)h(d)a(d) + 5dky(—4d) (mod 64),

’

where

As(d) := 32 4 24A2(d, 1) + 14d® A5(d, 2) + TdA1(d, 3) + Aa(d, 3).

This yields (4.3) with g’ = ¢’ = 1, and consequently the theorem for k¥ = 7. The theorem
is proved. [
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5. Proofs of Theorems 2 and 3.

We start with the formula (4.1). In the case 2|d and k > 3 it implies the congruence
6By (1) = 6(3)8%th—2 — kbt_1 + 11 (mod 64).
But Lemma 4 for k > 5 and (2.3) for £ = 3 give
64516 (5) 6%tz 2.
Consequently we get the congruence
5Bk’(_l.§) = —kbtr_1 + t (mod 646). (5.1)

On the other hand by Lemma 4 we have

16(5)6h(d) (mod648), if 4] d,

—kbtr_q = (¥)63h(d E{
o1 = (3)8°h() 0 (mod 645), if 8]d,

and consequently, from (5.1) and Lemma 5 for ¥ > 5, or Lemma 2 for k¥ = 3 the
theorems follow at once because of the divisibilities 4 | k2(d*), 2 | h(d), h(2d), and

8| ka(d*), 4|h(d), h(2d), if (%) =1 in the case d = —4d*. |
6. Corollaries to Theorem 1.

In the corollaries below let us adopt the notation of Theorem 1. The following
congruences follow immediately from the above theorem and Cor. 1, 2 to Thm. 2 {2].

COROLLARY 1. If (%) =1 and k > 3 then we have:

bi(d) = —551ky(—4d) (mod 64),

and
be(d) = 8(3 + () = 2(k — 1)h(8d) = (k ~ 1)ka(~8d) (mod 16(3 + (7)),
where k := 1, if § = p =T (mod 16) is a prime number and k # 1 (mod8), and « := 0,

otherwise.
Moreover if 6 = p = ~1 (mod 8) is a prime number then we have

bk(d) = 2(k — 1)(p + 1 + h(8d)) (mod 64). n

COROLLARY 2. If (521-) =1 and k > 3 then we have:
(i) ordy Blc,(g) > 4.
(i) ords Bk,(g_) =4 <= 16| k2(—4d) (or 4||h(8d)) and k = 3 (mod4).
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(iii) ords Bk,(.g) =5 <= (16| k2(—4d) and k = —3 (mod8)) or (32} k2(—4d) and

k=3 (mod4)).

(iv) ordy Bk,(%z_) >6 < k=1 (mod8) or (32| k2(—4d) and k = -3 (mod8)) or
64 | k2(—4d).

(v) If § = p= —1 (mod 8) is a prime number then we have:

ordy Bk’(g) =4 <= p="7 (mod16) and k =3 (mod 4),

ord, Bk,(g) =5 < (p=7 (mod16) and k = —3 (mod38)) or
(p = —1 (mod16) and 8|[A(8d) and k = 3 (mod 4)),

ords Bk,(g) > 6, otherwise. [ |

COROLLARY 3. If (g) = —1 and k > 3 then we have:
bi(d) = —2X(6k — 5)h(d)(d) — 2(k — 1)h(8d) (mod 16(3 + (F))),

where ) := A\i(d), and A3 = 2v3 — p3, As = ps, and A\ = 1, otherwise.
Moreover if § = p =3 (mod 8) is a prime number then

bi(d) = —20,h(d)a(d) — 2(k — 1)h(8d) (mod 64),

where 0y := 0;(d), and
0r = (6k —5)Ax + (p—3)(k - 1). [

The above corollary and Theorem 1 imply the following:

COROLLARY 4. If (—g) = —1 and k > 3 then we have:

(i) ordy Bk,(:—’) > 1.

(i) ords Bk’(.g) =1 < 2th(d) (or 4| k2(—4d), or 2|| k(8d), or 4| k;(—8d)) <=
6 = p=3 (mod8) is a prime number.

(iii) ords Bk’(:_i) =2 <= 2| h(d) (or 8| k2(—4d)).

(iv) ords Bk’(.g) =3 <= 4| h(d) and [k = 1 (mod4) or (k = 3 (mod4) and
4| h(8d))].

(v) ords Bk,(g) =4 < {8] h(d) and [k = 1 (mod8) or (k = —3 (mod8) and
4|h(8d))'or (k=3 (mod4) and 8|k(8d))]} or (16|h(d) and k = 3 (mod4) and
4] h(84d)).

(vi) ordy Bk’(‘g) =5 <= [8| h(d) and 16 || k2(—4d) and k = 3 (mod4) and
%h(d)a(d) # & (%) ko(—4d) (mod4)] or {16 || h(d)) and [(k = 1 (mod8) and
16 | k2(—4d)) or (k = =3 (mod8) and 32 | ka(—4d)) or (k = 3 (mod4) and
64 | ko(—4d))]} or {32| k(d) and [(k = —3 (mod 8) and 16 || k2(—4d)) or (k =
(mod 4) and 32 || k2(—4d))]}.



(vii) ords Bk’(g) >6 <= [8]| h(d) and 16 || ko(—4d) and k = 3 (mod4) and

th(d)a(d) = 75 (}) k2(~4d) (mod4)] or {16 || k(d) and [(k = —3 (mod8) and
16 || k2(—4d)) or (k = 3 (mod4) and 32| kz(—4d))]} or {32 h(d) and [(k = 1
(mod 8) and 16 | k2(—4d)) or (k = —3 (mod8) and 32 | k2(—4d)) or (k = 3
(mod 4) and 64| kz(—4d))]}. n

If £t =1 (mod2%), a < 5 then the congruence of the theorem implies the congru-
ence (1.2) and so this is a generalization of this congruence. If £ = 1 (mod2%) then

Theorem 1 leads to
be(d) = ~ku (1~ (5)) h(d)a(d) (mod2°+/71),

where f := ordy ko(—4d)(i.e. f>2,0r f>4,if (g—) =1, cf. (1.2)).
In the case (%) =1 by the congruences of Cor. 1, for any k we get a fairly straight-
forward generalization of the formula (1.4) for ¢ < 5 (see Cor. 2(iv)). Also in this case

we get formulas of the type of (1.5) (see Cor. 2(ii), (iii), (v)). In the case (5‘2‘—) = -1,
Cor. 4 gives an extension of the formula (1.5) for a < 5.
In the second part of the paper we shall present analogous congruences and formulas

o (1.3) and (1.6), (1.7).

7. Corollaries to Theorems 2, 3 and 4.

Applying Cor. 1,2 to Thm. 1, 2 [2] to Theorems 2,3 and 4 in the notation of these
theorems we obtain the following:

COROLLARY 1. If4||d and k > 3 then we have:
(1) ord, B ( ) = -1, ifd= -4, and OI‘ng (g) >1, ifd < —4.
(ii) ordg B, k(2) =V 1<v <3 < 27| h(d).
(i) ord2 B k(2) = 4 <= {16 || h(d) and [k = 1 (mod4) or (k = 3 (mod4) and
32| ka(d*))]} or (32| h(d) and k = 3 (mod4) and 16 || ko(d*)).
(iv) ordy B, (4= 5 <= [16]| h(d) and 16]| kz(d*) and k = 3 (mod4) and ky(d*)

(d*) +
h(d) = 16 (1~ (})) (mod64)] or {32 || h(d) and [k = 1 (mod8) or (k = 5
(mod 8) and 32| ky(d*)) or (k = 3 (mod4) and 64 | k2(d*))]} or (64 | h(d) and
k =3 (mod4) and 32| k2(d*)),

ordy Bk’(g) > 6, otherwise.

COROLLARY 2. If8|d and k > 3 then we have:
() ord, B ( ) > 0.
(ii) ordy B b(2) = v,0<v <3 < 2Y||h(d) (i.e. ordy Bk,(ﬂ) =0 < d=-8)
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(iii) Ifd* <0 and (%) =1 then:

ordy Bk’(‘g) =4 <= {16||h(d) and [k =1 (mod 4) or (k =3 (mod4) and
4|h(d*)]} or (32| h(d) and k =3 (mod4) and 2| h(d*)),

ords Bk,(.é) =5 <= (16| h(d) and k =3 (mod4) and 2| h(d*) and ko(—4d")+
8h(d*)a(d*) = — (}) h(d) (mod64)) or {32]|h(d)
and [k =1 (mod 8) or (k = -3 (mod8) and 4|h(d"))
or (k = 3 (mod4) and 64| ky(—4d*) + 8h(d*)a(d"))]}
or {64|h(d) and [(k = —3 (mod8) and 2|| k(d*)) or
(k =3 (mod4) and 32| ka(—4d*) + 8h(d*)a(d*))]},

ord; B, (%) > 6, otherwise.
Ifd* < 0 and (d?) = —1 then:

ord, Bk,(-f!) =4 <= {16||h(d) and [k =1 (mod4) or (k=3 (mod4) and
ka(—4d*) = 12h(d*)a(d*) (mod 32))]} or (32| h(d) and
k =3 (mod4) and 16| ko(—4d*) + 20h(d*)a(d")),

ords Bk,(j-’) =5 <= (16]| h(d) and k =3 (mod 4) and
ka(—=4d*) + 20(d*)a(d") = — (%) h(d) (mod 64)) or
{32||h(d) and [k =1 (mod8) or (k = —3 (mod8) and
ka(—4d*) = 12h(d*)a(d*) (mod 32)) or (k =3 (mod4)
and ky(—4d*) = —20h(d*)a(d*) (mod 64))]} or {64|h(d)
and [(k = —3 (mod8) and 16 || ky(—4d*) + 20h(d*)a(d*))
or (k=3 (mod4) and 32|| kz(—4d*) + 20h(d*)e(d*))]},

ords Bk,(g) > 6, otherwise.
(iv) If d* > 0 then

ord, Bk,(f_i) =4 < {16||h(d) and [k =1 (mod4) or (k =3 (mod4) and
k2(d*)B(d*) = 2h(—4d") (mod 32))]} or (32| h(d) and
k=3 (mod4) and 16|| ky(d*)B(d*) — 2h(—4d%)),
ords Bk,(.g) =5 <= [16]| h(d) and k = 3 (mod 4) and (1 ( )) ky(d*)B(d*)
+2h(~4d*) = (}) h(d) (mod 64)]
or {32||h(d) and [k =1 (mod 8) or (k = —3 (mod 8)
and (1-2(%)) ka(d*)B(d*) = —2h(~4d*) (mod 32))
or (k=3 (mod4) and (12 (%)) ka(d*)B(d*) =
— 2h(—4d*) (mod 64))]} or {64|h(d) and
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[(k = =3 (mod8) and 16 || ky(d*)B(d*) — 2h(—4d*))
or (k=3 (mod4) and
321 (1-2(%)) ka(d)B(d") + 2h(—4d")]},

ord; By (4) > 6, otherwise.

Corollaries to Theorems 2, 3 and 4 are extensions of the formulas (1.4) and (1.5) for
2|d and a < 5.

REMARK. If d = —4 then by Lemma 4 and the congruence (5.1) we get
2bi(d) = 18 + R (mod 32),

i.e.
Ep_1 =14 — 2 (mod 32),

where E; denotes the :th Euler number. This congruence completes Theorem 4.

8. Proofs of Corollaries to Theorems.

Corollaries to Theorem 1 follow immediately from this theorem and Cor. 1, 2 to
Thm. 2 [2]. It remains to prove Corollaries to Theorems 2, 3 and 4. Indeed, Corollaries 1,
2(i), (i1) (2(ii) for v < 2) are easy consequences of Theorem 4. To prove Corollary 1(iii),
(iv) let us notice that by Cor. 2(i), (ii) to Thm. 1 [2], 16 | h(d) implies 4 | A(2d) and
16 | k2(d*). Therefore we have

9(k — 1)h(2d) (mod64), if k=1 (mod4),

D1kz(d*)B(d*) + I3h(2d) = —ky(d*) — 2(k + 1)h(2d) (6.1)
(mod 64), if k=3 (mod4).

This yields (iii) at once. To prove (iv) let us make the following observation. If a,b,c € Z
then

a+c¢,b=16 (mod32) } a+c=b (mod64) } _ (6.2)

a+b+c=32 (mod64) b= 16 (mod32)

Combining this with (6.1) gives (iv) because by Cor. 2(iii) to Thm. 1 [2], 16 || h(d)
and 16| k2(d*) imply 4 || h(2d), and if 16| h(d) then 8|h(2d) if and only if 32]ky(d*).

We now turn to Corollary 2(ii) (for v = 3), (iii), (iv). Let d* < 0. If (512—) =1
then by Cor. 2(i) to Thm. 2 [2] we find that 16 | k2(—4d*) and 2| h(d*), if (%—) = —
then by Cor. 2(iii) to the mentioned theorem the divisibility 8|A(d) implies 2| k(d*) and
8| ky(—4d*). Moreover we have
( —EZL[ka(—4d*) + 8h(d*)a(d*)]

(mod 64), if (d?) =1,
O1ka(—4d") + F3h(d*)a(d*) = TR -
L ks (—4d*) + 20h(d*)a(d")]

\ (mod 64), if (4)=-1.
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Hence and from Cor. 1(i) to Thm. 2[2],(ii) for » = 3 follows immediately. Indeed, 8| h(d)
yields 16 | 91ko(—4d*) + 93h(d*)a(d*) in both the cases. To prove (iii) it suffices to use
Cor. 2(i) ((i), resp. (iii), if (%) =1, resp. —1) to Thm. 2 [2]. In fact, if (%) =1 and
16 || A(d) then by the mentioned corollary we have 32 | k2(—4d*). Now Corollary 2(iii)
follows from (6.3) and (6.2).

Now let d* > 0. Then by Cor. 2(i) to Thm. 1 [2], 8| A(d) implies 4 | A(—4d*) and
8| k2(d*). Moreover we have

prka(d*)B(d*) + psh(—4d") = ~571 [3 (1 =2 (%)) ka(d*)B(d") — 10h(—4d")] . (6.3)

Thus by Cor. 1(i) to Thm. 1 [2] we get (ii) for v = 3. Then the left hand side of (6.3) is
congruent to —4 (1 +3 (%—)) h(—4d*) = 0 (mod 16).

To prove (iv) it is sufficient to use (6.3), and also (6.2),if 16|| k(d) and k = 3 (mod 4).
This completes the proof. [ |
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Abstract. The paper is a continuation of my earlier paper on this subject. We prove
analogous congruences as in that paper, but for positive discriminants d. Also for each
0 < v <5 all positive d and even k satisfying ord, Bk,( ay = + ords k£ are found.

The proofs are similar in spirit to proofs of (3], and based on ideas of [1] and {2],
again.

In the third part of the paper we shall study related problems, but from a p-adic
measure point of view.
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1. Notation.

We follow the notation of [3]. Let d stand for the discriminant of a quadratic field.
Denote by (4), resp. By, the Kronecker symbol, resp. the kth generalized Bernoulli
number belonging to the Dirichlet character x. Set § := |d|. Write h(d) := -—Bly(.g), if
d < —4 and h(-3) = h(—4) := 1. Put ky(d) := Bz,(?)’ if d > 8 and ky(5) = k2(8) := 4.
Let z > 0 and X C NU {0}. To simplify the notation we continue to write (as in
[3]) te(z), te(z,a € X), resp. ti(z), tj(z,a € X) for sums of the kth powers of natural
numbers taken from 0 to z, involving quadratic characters (4), resp. (‘—1—), where d* is
the discriminant of a quadratic field satisfying d = —4d* or +8d*. Write t := t;(6) and
th, := tx(6,2 % a).

Let us recall that BO’(‘Q) =0, and for k > 1

By (2) =0 (1.1)

if and only if (—_'—%) # (—=1)*. Write o(—3) := %, B(5) := %, p(8) == %, and a(d), B(d),
p(d) := 1, otherwise. Put 5(5) := B(5), n(8) := p(8), and n(d) := 1, otherwise. Set

2. Theorems.

Our purpose is for each 0 < v < 5 to find all positive d and even k such that
ordy B, (4y = v+ ordz k. We prove some new congruences between generalized Bernoulli

numbers of the Kummer congruences type modulo 64 but with deleted assumptions on k.
For a deeper discussion of it we refer the reader to [3].
In this part we prove the following generalizations of the congruence (1.3) of [3]:

THEOREM 1. Let d, 2t d and k > 4 be the discriminant of a real quadratic field and
an even natural number respectively. With the above notation, the numbers bi(d) are
2-integral and the following congruence holds:

be(d) = (2k ($) + k +2) ph(—4d) + § (—k — 2 (%) + 1) 9k2(d)B(d) (mod 64),
where p := pr(d), 9 := 9x(d), and

pe=—d+10+4(4), ue=8+5(%),
ds=2d+8(4)+7, de=-4(2)-11,

and pp, 9 = 1, otherwise.



The case 2|d is more complicated. We prove the following:

THEOREM 2. Let d = —4d*, where d* is the discriminant of an imaginary quadratic
field, and let k > 4 be an even natural number. Then the numbers b(d) are 2-integral
and we have:

bi(d) = F15k2(d) + 92h(d*)a(d*) + 93h(—2d) (mod 64),
where ¥; := ¥;(d, k) € Z (i = 1,2,3) are of the form 9 = pk + ¢, and
h=k—1, d3=—4(k—2),
= -3(1= () (-2 +3(1+ (£)) (1= ()):
THEOREM 3. Let d = £8d*, d > 0, where d* is the discriminant of a quadratic field

(i.e. d # 8), and let k > 4 be an even natural number. Set A := 1, if k = 4, and ) := 0,
otherwise. Then the numbers bi(d) are 2-integral and we have:

@ { 913ky(d) + 92h(—d) + 93h(—4d*) (mod64),  if &* > 0,
bk d) =
p13ka(d) + pah(—d) + p3h(d*)a(d*) (mod64), if d* <0,
where 9; := 9;(d, k), pi := pi(d, k) € Z (i = 1,2,3) are of the form 9, p = pk + ¢, and

dr=k—1, dy=138(k-2)+16), d5=—4(%)(k-2),
p=k-1, pa=(4(%)+1)(k-2)+16),  ps=8(k-2).

Combining Thm. 2 and 3 with Cor. 1 to Thm. 1, 2 [2] we can get many new congru-
ences for generalized Bernoulli numbers modulo 64 (or 32).
Lemma 6 and the congruence (5.1) give a weaker version of Thm. 2 and 3:

THEOREM 4. Let d > 0, 2|d be the discriminant of a quadratic field, and let k > 4 be
an even natural number. Then the numbers bi(d) are 2-integral and

bi(d) = 2ka(d)p(d) (mod 26—°rd29),

3. Lemmas.

We shall need Lemma 1 [3]. Likewise in [3], the proofs of the theorems fall naturally
into a sequence of lemmas. First we shall prove a lemma of the kind of the above
mentioned lemma:

LEMMA 1. Let d, 24+d be the discriminant of a quadratic field. Then we have:
(i) If d > 0 then

t1(6,a = 6 (mod8)) = (§) [~8t1(8/8) + 6t0(6/8)],

t1(6,a = 6+2 (mod8)) = 4 [t1(6/2) — (2(3) + 1) t1(6/4) +2(3) 11(6/8)] -
—6 [~ (1+ (%)) te(8/4) + (§) to(6/8)] ,



t1(6,0 = 6+ 4 (mod8)) = —4 [t1(6/4) — 2 () ta(6/4)] +
+6 [to(6/4 ( ) t0(8/8)] ,
t1(6,a = 6+ 6 (mod8)) =8 (4 )[t1(5/4 —t1(8/8)] — (%) 6 [to(6/4) — to(6/9)].

(ii) If d < 0 then
t1(6,a = 6 (mod8)) = (%) [81(8/8) — 6ta(6/8)],
=8

() [ta(6/4) — :(8/8)] = (3) 6 [to(6/4) — to(8/8)],
t1(8,a=68+4 (mod8)) =4 [t:(6/4) — 2 (%) t:(6/8)] +
+6[~ta(6/4) + (5) to(8/8)] ,

t1(6,a = 6+6 (mod8)) =4 [t2(6/2) — (2(§) +1) ta(6/4) +2(3) t2(6/8)] -
-4 fole/2) - (1+ () (6/0) + (4

t1(6,a = 6 + 2 (mod 8))

)
) to(8/8)] -
PROOF. First, let us notice that by (2.1a,b) [3] we have

11(6/2,a=6 (mod4)) =— (&) ¥ (5) (6 —a)+6to(8/2,0 = § (mod4))
ami ol
=— (&) X (&) a+6te(8/2,a=6 (mod4))
6/23:56,

= ( ) [£1(6,4]a) — 11(6/2, 4] )] + 6t0(8/2,a = § (mod 4))
—4 (%) [t1(6/4) — 11(6/8)) + 6 () [ta(8/4) — to(8/8)],

and similarly

t1(8/2,a=6+2 (mod4)) = — (&) 3 (&) a+6te(8/2,a=6+2 (mod4))
§/2<a<$,
=- (%
1

a=2 (mod4)

[t1(6,2]a) — t1(6,4a) — 1:1(8/2,2]a)+
+t(
-2(
+6

7)

/2,4]a)] + 6to(6/2,a = § + 2 (mod 4))

) [() ta(872) — (2+ (5)) ta(6/4) + 2t2(8/8)] +
2 [(%) to(6/2) - (1 + (£)) ta(6/4) + to(6/8)] -

Applying the above and Lemma 1 [3] gives the lemma because

t1(8,a =6 (mod8)) = — (&) t1(6,8]a) + 6to(6,a = § (mod8))
= —8 (%) (%) t1(6/8) + 6to(6,a = § (mod 8)),



t1(8,a = 6+2 (mod8)) = ~ (&) t1(6,a = —2 (mod8)) + bte(6,a = §+2 (mod 8))
= —2(4) (4) ta(6/2,a =3 (mod 4))+
+ 6tg(6,a = 6 + 2 (mod 8)),
t1(6,a =6 +4 (mod8)) = — (&) t2(6,a = 4 (mod8)) + 8to(6,a = § + 4 (mod8))
— (&) [t1(6,4]a) — t1(8,8| a)] + bto(8,a = 6 +4 (mod 8))

= —4 (<) [u(6/9) -2 (£) u(8/9)) +
+ 6to(6,a = 6 + 4 (mod 8)),

t1(6,a =646 (mod8)) = — (_il) t1(6,a =2 (mod8)) + 6tp(6,a = 6 + 6 (mod 8))
= -2 (—_d—l) (g) t1(6/2,a =1 (mod 4))+
+ 6to(6,a = 6 + 6 (mod8)).

|
LEMMA 2. Let d be the discriminant of a real quadratic field. Then we have:
(i) ty = 0.
(i) th=3(4) (1~ (%)) k2(d)B(d).
2d (%) ka(d)B(d), if 2+d
(i) 4={ (5) k(@B(d), i 244,
dka(d)p(d), if2]d.
(iv) ty = 3d%ka(d)p(d),  if 2|d.
(v) ty = 3C(d)ka(d)B(d) + 2dh(—4d) (mod64),  if 24d,
where
C(d):=2d-4+(4).
PROOF. Since ty =0, and for d > 0
to(d/?) =0,
(i) of the lemma follows easily.
For any d and ¢ we have
th =t; — 2 (3) ti(8/2). 3.1)

Therefore (ii) follows from ¢; = 0 and (2.12) [3] immediately.
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On the other hand for d > 0 we have
b = dka(d)n(d). (32)
Therefore to prove (iii) of the lemma it suffices to note that
ty = 2t2(6/2) — 2dt1(6/2)
and to use (2.12) [3] and (3.1). Then we have
t(d/2) = =34 (2 - (7)) ka(d)n(9),

and

£ = [1 +2(4) - (g)z] dky(d)n(d).
Now we prove (iv) and (v) of the lemma. If d > 0 then by (1.1) we deduce that
Bs() =0
Consequently for d > 0 from the formula (3.1) of [3] (with F = d) we get
ts = $d°ka(d)n(d). (3.3)

This gives (iv). We now turn to (v). For any d we have

13(8/2) = t1(6/2,2ta) = t1(6/2) — 2 (&) t1(6/4) (mod8).
Hence and from (2.12,13) [3] for d > 0, 24d we obtain

t3(d/2) = -3 (2 -3 (%)) k2(d)B(d) — }d (3) h(—4d) (mod8).

Thus (v) follows from (3.1) and (3.3). This completes the proof of the lemma. |

Similarly as in [3], combining the above lemma with Corollary to Lemma 3 of [3]
yields:
LEMMA 3. Let d be the discriminant of a real quadratic field. Then we have:

(i) If ¢ > 2 then

! { [id (5) —2%°] ka(d)B(d) (mod64), if 214,
* = idky(d)p(d) (mod 64), it2]d.

(ii) ifi > 1 then

i ? j — 922 - mo i
bpinn = { ;élz(d, Vk2(d)B(d) + 2(i — 2%-2)dh(—4d) (mod 64), if 21d,
5td*ky(d)p(d) (mod 64), if 2|d,

where

A(d,i)=3-2% (3-2(3)) —di(d+2)+2 (4 (%) - 1).



PROOF. As in the proof of Lemma 4 of [3], let us note that if 2|d then ¢; = ¢, and if

2%+d and 7 > 3 then .
ti = 2' (§) to (d/2,24a) + t} (mod 64), (3.4)

where 1 = 0 (mod2), o € {0,1}.
Since to(d/2) = t, = 0, applying Cor. to Lem. 3 [3] to (3.4) for i > 2 we get

tai = 2% (§) to(d/2,2t a) + th; = —2% (%)2 to(d/4) + ity (mod 64). (3.5)

Hence and from Lemma 1 (iii), (i) of the lemma for 2|d follows immediately. In order
to prove (i) in complete, it remains to consider the case 21d. Then in view of (2.10) [3],
(3.5) and Lemma 1 (iii) imply

thi = —2% " h(~4d) + 2id ($) k2(d)B(d) (mod 64).

Consequently (i) of the lemma for 2 ¢ d follows by Cor. 1 (i) to Thm. 1 [3] that implies
the congruence

ky(d)B(d) = 2h(—4d) (mod 16). (3.6)

We now turn to (ii) of the lemma. From (3.4) and Cor. to Lem. 3 [4] for i > 1 we get

taip1 = 224 (4) t1(d/2,24a) + thipy
= 9%+ (1) [t1(d/2) — 2 (§) ta(d/4)] + ity — (i — 1)t} (mod64).  (3.7)
Hence and from Lemma 1 (ii), (iv), (ii) of the lemma for 2 |d follows easily. If 2{d then

by Lemma 1 (i), (v) and (2.12,13) of [3], and (3.6), (3.7), an easy computation shows
that (ii) of the lemma follows. Thus the lemma is proved. |

We next prove the following:

LEMMA 4. Let X be a subset of the set of the odd natural numbers. Put X(r) := {a €
X |a =r (mod8)}. Then for any z > 0, d and even k we have:

te(z,a € X) = $ta(z,0 € X) + (1 - §) to(z,0 € X(£1))+
+9 (3572 = %) to(,a € X(£3)) (mod 2°72¥+9),

PROOF. First, let us notice that for any natural k¥ the congruence a = r (mod 8) implies

k . .
dF=(a-r+r)f=% (’f) (a—r)rFt = rk 4 k(o —r)r*14
1=0
+ (}2“) (a—7)r*2 4 (a— r)’c (mod gordz k+6),
because for : > 3 . 5
AT 93i
orda (a S ) > ords T > 21 > 6.
2! !

Consequently in the case even k, k > 4 the congruence a = r (mod 8) with odd r leads

to
aF =r* +k(a—r)r+ %(a —7)? (mod 20742 ¥+6),



because for k > 3 we have
ordz(a — r)’c > 3k > orda k + 6.
Thus for even k£ > 4 and odd r we get the congruence
af =rk — %rz + gaz (mod 20742 ¥+6)

if a = r (mod8). Hence the lemma follows immediately. Indeed we have

tiza€X)= Y ti(z,a€X,) = ty(z,a € X)+

r=+1,43
+ > r? (Tk_2 - %) to(z,a € X;) (mod gord: k+6),
r=+1,43
n
COROLLARY. For any d and even k we have:
=t + (1-§)to(6,a = %1 (mod8))+

+9(3%2 — %) to(6,a = £3 (mod8)) (mod 202 5+6),

n

LEMMA 5. Let d and k > 4 be the discriminants of a real quadratic field and an even
natural number respectively. Put Ai, resp. . := 1, if k <8, resp. k = 4 and A\g, 7 := 0,
otherwise. Then we have:

(i) If 24d then
ty = 3(1 = 3% — A2F + 4k)h(~4d) + kd (§) k2(d)B(d) (mod 20742 5+9),
(ii)) If d = —4d*, where d* is the discriminant of an imaginary quadratic field then

tr = 3(3k + 5)kdky(d) + Az(d, k)kdh(d*)a(d*) — 4(k — 2)kdh(—2d)

(Il’lOd 2ord2 k+6d),
where
Ag(d k) = (24" +15 = (§)) k+2 (@ =3+2 (%)) (1+ (&) +
+2(11+5(%)).

(iii) If d = £8d*, where d* is the discriminant of a quadratic field (i.e. d # 8) then
( 5 Lkdky(d) + [13(k — 2) + 16mE]kdh(—d)
—4 (%) (k — 2)kdh(—4d*) (mod 202 k+5), if d* > 0,

bLkdky(d) + [(4 (%) +1) (k —2) + 16m¢] kdh(~d)+
[ +8(k — 2)kdh(d*)a(6*) (mod 2074z k+64) if d* < 0.




PrOOF. We have
te = 2 (4) te(d/2) + &,

and
2k =0 (mod 201’d2 k+6, zordz k+5, resp. 201'd2 k+2)’

if k> 10, k =8 or 6, resp. k£ = 4.
Hence and from (2.10) [3] we get

tr =t — 2P 1A h(—4d) (mod 20792 %46,
because by to(d/2) = 0 we have
tr(d/2) = to(d/2,24a) = — (§) to(d/4) (mod2),
or (mod16), if k= 4.
On the other hand applying Lemma 1 (i) [4] gives
to(d,a = £1 (mod8)) = —to(d,a = +3 (mod 8)) = to(d/4).

Now to prove (i) of Lemma 5 it suffices to use Corollary to Lemma 4, (2.10) [3] and
Lemma 2 (iii).

Our next concern will be the case 2|d. Then by (2.7a) [3] for d > 0 and even k we
obtain

k
t = te(d/4) — 3 (5)(d/2) (=1 ti_i(d/4) +z:() 1)¥=ty_i(d/4)—
1=0 1=0
k .
=3 (5)d/2)te-i(d/4)
1=0
=ti(d/8)~-2 Y (§)(d/2)t- ,(d/4)+2()d'( 1)F =t _i(d/4).

0<z<k
t even

Therefore we have

=te(d/9) -2 Y (})(d/2)th-i(d/4) - 2mi(d/2)*to(d/4)+
0<i<n,

+ Z () di(~1)t_i(d/4) + mrd*to(d/4) (mod 2% *+5q), (3.8)

where 71 := min(k,2(6 — ordz d)), 72 := 2(4 —ordad), 7 :=1, if k = 4 and 8|d, and
Ar := 0, otherwise. Indeed, if 4 || d, resp. 8 | d then each of the following numbers:
ords [2(’:) (d/2)i] for even 1 > 10, resp. 7 > 8 and ords [(’f)d'] for ¢ > 5, resp. i > 3
equals at least ords k+ordz d+6. So do the numbers ord2[2(d/2)¥] for k > 10, resp. k > 6
and ord, (dk) for k > 4 because

2k+1 " resp. 22F = 0 (mod 20792 F+8)
for k > 10, resp. £ > 6, and

22k+l, 23k =0 (rnod 20rd2 k+9)
for k > 6.
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We need consider the cases. First, let d = —4d*, where d* is the discriminant of an
imaginary quadratic field. Then by (3.8) we have

e=t(d/)-2 Y (§)(d/2) tei(d/a)+
0<i<min(%,8),

+ Z( )d‘( 1 tk (d/4) (monOrdz k+6d)

1=0

Therefore putting ) := 0 for i > k and t,(z) := 0 for s < 0 we get
]

ty = —kdty_1(d/4) + 1d° (’°)t,c 2(d/4) — (§) d*te_s(d/4)+
+ 7 (5)d*te—a(d/4) — 35 (§) d%tu_s(d/4) — 135 (§) d*tr_s(d/4) (mod 2°72F+5g).
Hence, by Lemma 3 (3] (applied to the sums t_;(d/4), tx_2(d/4) and t;_4(d/4)) we find
that
te = —kd [E2t5(d/4) — 22y (d/4)] +
+ 38 (5) [5521ad/4) - Bt to(d/4)] - (
+5(5)d* [5522(d/4) - 55510(d/4)] - 5
— 15 (5) d*to(d/4)
= —kd*52t3(d/4) + Gy(d)ta(d/4) + [kdi52 — (3)d®] ta(d/4)-
%(d)to(d/4) (mod 2742 *+5q),

w A~

)d*t1(d/4)+
(§)d®to(d/4)~

wl"‘

where
and

Consequently we get

te = —kdi32t3(d/4) + G}/ (d)kdta(d/4) + (~15% + 14) kdty (d/4)+
+ GV (d)kdtg(d/4) (mod 2072 F+64)  (3.9)

where

Gi(d) = —d' [~ () (12+ (%) +8(5) s +12 (%) (&%) -4 (%) +13]

+ (=145 (=) -7 (- (&) 7]

(k=3)(k=5)(k—T7)=k—5 (mod4),

o] o

Vd)=d [- (1+4(5))

Indeed we have



and

k(k —2)(k —4)(k—6) =0 (mod?27),
and consequently we find that
Hd) = —[(k — 4) +13d"*(k — 2)(k — 3)(k — 6)—

— 4k — 2)(k — 4) + 2(k — 2)(k — 4)(k — 6)|dd* (%)
= —da* (%) { k? + 5k + 12 + 28d*? (mod 2°"2¥+64), if k =0 (mod 4),
a —k% 4 k (mod 20142 F+6) if k=2 (mod4).

Therefore we obtain

Gi(d) = —kdGY (d) (mod 2072 ¥+64),
Moreover we see that
1(d) = —dd* (k — 2)(3)[1 + 13d*(k — 3)(k — 4)]
(-18-8(%)) (5-1) (mod2ods*+6) if k =2 (mod4),
=k (1048(4)) (E-1) 435 (4)
(mod 20742 k+6) if k=0 (mod4).

and consequently

G%(d) = kdGY'(d) (mod 20742 %+64),
On the other hand we have
ti(d/4) =t} (6*,a =1 (mod4)) —t}(6*,a =3 (mod4)), (3.10)
and so by (2.1), (2.6) [3] (cf. (2.11) [3]) we deduce that
to(d/4) = —15(6*,a =2 (mod 4)) + t5(6*, 4|a)
= [~ (§) 5(6°/2) +15(8* 14)] + t5(6* /4)
= 2t5(6*/4) — (%) £5(8°/2)
= (2- (%)) k(d)a(d), (3.11)
and by (2.1), (2.4), (2.6), (2.7) of [3] (cf. (2.11a) [3]) we find that
t1(d/4) = t](8*,a =2 (mod 4)) — t1(d*,4|a) — 6*t5(6*,a =2 (mod 4))+
+68°5(6%,4a) = 2 (%) 11(6*/2) — 8#1 (8" /4)+
— (%) 6*t5(6° /2) + 26"t5(6* /4)
= —3ka(d) + (%) — 2) d*h(d*)a(d"). (3.12)
Moreover by (2.10) and (2.14a) [3] we get
ta(df4) = 2tF — 5 + 16t5(6*,a = 5,7 (mod 8))—
— 14t5(6*,a = 3,7 (mod 8)) (mod 64). (3.13)
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On the other hand in view of Lemma 1(ii) [3] we have

16t5(8*,a = 5,7 (mod 8)) — 14t5(6*,a = 3,7 (mod 8))
=8 (1+ (%)) t5(6*/2) — 18t5(8*/4), (3.14)

and so (3.13) together with (2.1), (2.6) [3] and Lemma 2 (i), (ii) [3] imply the congruence
ta(d/a) = (2(%) d* + (%) — 2) h(d*)a(d*) (mod 64). (3.15)

We are left with the task of determining of ¢3(d/4) modulo 64. Since a = r (mod 8)

yields the congruence
a® = 3ar? — 2r3 (mod 64), (3.16)

it may be concluded by (3.10) that

ts(d/4)=3 >, r*i(6*a=r (mod8)) -2 Y r3t4(8*,a = r (mod8))—

r=1lorb r=1orb
—3 Y rj(8,e=r (mod8))+2 Y. r*tj(8*,a=r (mod8))
r=3or7 r=3o0r7

= 3t;(8*,a =1 (mod8)) + 11¢j(6*,a =5 (mod8))—
—2¢5(8*,a =1 (mod 8)) + 6¢5(6*,a =5 (mod8))—
— 27t1(8%,a = 3 (mod 8)) — 19¢](6*,a = 7 (mod 8))—
—10t3(6*,a =3 (mod 8)) — 18ty(6*,a = 7 (mod 8))

= 3t} — 2t§' — 16t} (5*, = 5,7 (mod8))—

(mo

— 22t7(6*,a = 3 (mod4)) — 32ty(6*,a = 3 (mod8)) (mod64).
(3.17)

But in virtue of Lemma 1 (ii) [3] we have
t3(8*,a = 5,7 (mod8)) = —2t5(6*/4) + 3 (1 + (%)) th(6*/2)
(cf. (3.14)), and
13(8%,a =3 (mod8)) = t5(8*/4) — 3 (1+ (%)) 5(6*/4).
Moreover we have
£1(6*,a = 3 (mod4)) = t1(6*,4]a) — 6*t5(8*, 4]a) = 413(6*/4) — 8*14(8*/4).
Therefore (3.17) implies
ts(d/4) = 3t} — 23 +2 (116" + 8 (%) — 8) t5(6/4)-
~8 (14 (%)) th(6*/2) — 24t3(6* /4) — 32t5(6"/8) (mod 64).

Now it is sufficient to apply Lemma 1 (i), (ii) [3] and the formulas (2.6), (2.1), (2.7),
(2.18) of [3]. Then we get

ta(d/4) = —3ka(d) + [ (2+ (%)) & +16 (%) — 14| h(d")a(d")+
+ 8h(—~2d) (mod 64).
11



Applying the above congruence together with (3.11), (3.12) and (3.15) to (3.9) gives

= 3(3k + 5)kdky(d) + A(d, k)kdh(d*)a(d*)—
— 4(k — 2)kdh(—2d) (mod 2°Td2F+64)

where

Ald k) = -52 - (24 (%)) d* +16 (%) —14] +
FR(8) + (4) - GF@ + (15§+14)((§) -9 -+
+GY @) (2- (%))

Now the proof of Lemma 5 in the case 4 || d will be completed as soon as we can prove

that
A(d, k) = Az(d, k) (mod 64). (3.18)

Indeed putting GY' = m”’% +n" and G} = m“’% + n', we have
A(d, k) = A'(d, k)5 4 A"(d, k),

where

AR = [0+ (4)) 7 -16(8) +1d] + (0 (4) ¢ + (4) ~2) '+

+15(2~ (%)) d*+m™ (2- (%)),

and
A"k = [- 2+ (%)) & +16(F) - 14] + (2(%) & + (5) -2)n"+
+14((%) - 2)d* +n"
Thus in virtue of
AR = { (@ +3+4(Z%)) (mod6a), if (27 =1,
4(d* + 8) (mod 64), if (%)=-1,

and

< | 28D+ () + 52 (mod6a), i

(3.18) follows.
Similar arguments apply to the case 8|d. Then by (3.8) we have

te=te(d/a) -2 Y (5)(d/2)te-i(d/4) — 2mi(d/2)*t0(d/4)+
1<i<min(k,6),

+ Z (})d'(=1)'tx_i(d/4) + mpd¥to(d/4) (mod 2% F+0q).
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Therefore we get

ty = —kdtr_1(d/4) + %(’;) d*te_y(d/4) — k(k — 2)d*to(d/4)-
— 8md?ty(d/4) (mod 20742 F+64),

because

ords %(’é) d® >ords k+9,

and

tr_4(d/4) = to(d/4) (mod4).
Hence and by Lemma 3 [3] (applied for the sums #;_; and ¢;_5) we obtain

ty = —kd [A52t5(d/a) — 521(d/0)] + 3 (5) 4 [552ta(d/4) — SPto(d/4)] +
+ k(k — 2)d*(1 — m)to(d/4) (mod 2042 k+64),

Thus we have

ty = —kd232t3(d/4) + (§) (k — 2)d*ta(d/4)+
+ kd¥24,(d/4) + SkdH}to(d/4) (mod 2792F+84)  (3.19)
where
Hy = —(k=1)(k—4) +8(k = 2)(1 — m).
On the other hand putting d = £8d*, from(2.25a) [3], by (2.10), (2.15) [3] in the case
d* > 0 and by (2.18), (2.6), (2.1) [3] in the case d* < 0 it follows that
to(d/4) = h(—d). (3.20)
Moreover by (2.17a) 3] for d > 0 we have

t1(d/4) = 2 (£5) [~£1(6*,a = 3 (mod8)) + t(6*,a = —1 (mod8))] +
+28*[t5(6*,a =1 (mod8)) — £5(6*,a = —3 (mod 8))+
+ (%) t5(6*,a =3 (mod8)) — (%) t5(6*,¢ = —1 (mod 8))]

Therefore Lemma 1 and Lemma 1 [3] imply

ti(d/a) =2[-4(5) 16 /2) +4 (4 + (%)) t1(6*/4)-
—16t3(8*/8) — 6* (2+ (%)) to(6* /4) + 26" 15(5%/8)] +
+28" [ =2 (1+ (%)) 15(6°/4) + 4t3(6*/9)]
= -8 (%) 11(6*/2) + 8 (4 + (§)) t1(67/4) — 3243(6*/8)~
—28* (3 (%) +4) t5(6*/4) + 126*t3(6*/8),
13



if d* > 0, and
t1(d/4) = -2 [~4 (%) £1(6*/4) + 16¢1(8*/8) + 8" () t5(8"/4) — 26°43(8°/8)] +
+28% = ($) t5(6*/2) +2 (14 (%)) ta(87/4) — 4t5(8*/8)]
=8 (%) t1(6%/4) — 32t1(67/8) — 28" (%) t6(6*/2)+
+28" (24 (%)) (6 /4) — 48*t5(6*/8),
if d* < 0.
Thus since for d > 0, 24d
11(6/8) = ggka(8d) — g5 (34~ ($)) ka(d)B(d) + 55 [(§) h(—4d) + h(-84)],
and for d < 0, 24d
11(6/8) = ggk2(—8d) + g5 () ka2(—4d) — 35 [(1 = (%)) h(d)a(d) — h(84)]
(see Thm. 1,2 [2]), in our case for d # 8 we conclude that
t1(d/4) = 26*h(—d) — ka(d) (3.21)

because of (2.10), (2.12), (2.13), (2.15) of [3] in the case d* > 0, and of (2.1), (2.6), (2.7),
(2.18) of [3] in the case d* < 0.
Now we shall prove the lemma as soon as we find t3(d/4), t3(d/4) modulo 64. But

using Lemma 1 and (2.20a)[3] we get
ta(d/4) = 46* [(1+ (45)) (%) t1(6°/2) — 4 (&) 187 /9)] +
+2 (28" +2-5(%)) t5(6*/2)+
+2(26" - 13 (%) (§) -3 -11 (%)) ta(6*/9)+
+4((%) - 4) t5(6*/8) (mod 64),
because £5(6*/2) =0, if d* > 0.
We now turn to the cases, again. Let d = 8d*, d* > 0, d # 8. Then by (2.12), (2.13),
(2.10) and (2.15) of [3] we obtain
ty(d/4) = 8 (2 - (%)) t(6"/2) — 16¢5(8" /4)+
+2 (26" — 13 (%) — 14) t5(6* /4) — 1265(5*/8)
= (5—2(%)) k2(d*)B(d") — 3h(—d) + 2h(~4d*) (mod 64),
(3.22)

because 2| h(—4d*) and 4| kz(d*).

Likewise, if d = —8d*, d* < 0 then by (2.7), (2.1), (2.6) and (2.18) of [3] we deduce
that

ta(d/4) = —16t5(6*/4) +2 (26" +2 -5 (%)) ta(6*/2)+
+2(26* — 11)t3(8*/4) — 20t5(6*/8)
= —ky(—4d*) + 5h(—d) +2 (1 +3 (%)) h(d*)a(d") (mod64)
(3.23)

because t5(6*/4) =0, if (%) = —1, d* <0.
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The same method goes for ¢3(d/4). Then by (3.16) we have

t3(d/4) = Z t3(d/4,a =r (mod8))

r=+1,+3
=3 Y r’t(d/t,a=r (mod8))—-2 > rtg(d/4,a=r (mod8))
T=:l:l,:|:3 T=il,ﬂ:3

= 3[t1(d/4,a = £1 (mod8)) + 9t1(d/4,a = £3 (mod 8))] —
—2[ —to(d/4,a = —1 (mod8)) — 2Ttp(d/4,a = -3 (mod8))+
+to(d/4,a =1 (mod8)) +2Tte(d/4,a = 3 (mod8))]
= 3t1(d/4) + 2to(d/4,a = —1 (mod8)) — 2ty(d/4,a =1 (mod8))—
— 18t9(d/4,a = —3 (mod 8)) + 18tp(d/4,a = 3 (mod 8))
= 3t1(d/4) — 2to(d/4) + L(d) (mod 64), (3.24)

where

L(d) := 4to(d/4,a = ~1 (mod 8)) — 16t9(d/4,a = —3 (mod 8))+
+ 20to(d/4,a = 3 (mod38)).

But by the formula
to(d/4,a =r (mod8)) = ¢(6*,a =r (mod8)) — (——1)%1t0(6*,a = 26* — r (mod 8))
(cf. (2.17) [3]) we see that

L(d) = 4[to(6*,a = —1 (mod 8)) — to(6*,a = 26* + 1 (mod 8))]—
— 16[to(8*,a = —3 (mod 8)) + tp(8*,a = 26* + 3 (mod 8))]+
+20[to(6*,a = 3 (mod 8)) — t4(8*,a = 26* — 3 (mod 8))),

and consequently for d > 0 we have

—16t5(6*,a = —1 (mod 8)) — 16¢5(6*,a =3 (mod 8))+
L(d) = +32t3(6*,a = —3 (mod8)), if d* > 0,

16t5(6*,a = —3 (mod 8)) — 16t5(6*,a =1 (mod 8)), if d* < 0.
Therefore by Lemma 1 [3] we obtain
L(d) =16 (%) t5(6*/2) — 16 (£5) (5) t5(6°/4) + 32t5(6* /8) (mod 64),

and consequently by (2.10), (2.15) of [3], if d* > 0, and by (2.1), (2.6), (2.18) of [3], if
d* < 0 we conclude that

L(d) = 8 (4;) h(~d) (mod 64).
Thus (3.24) together with (3.20) and (3.21) implies the congruences

ta(d/4) = —3k(d) + 6(d* + 1)h(—d) (mod 64), (3.25)
15



if &* > 0, and
t3(d/4) = —3ka(d) + 2(d* + T)h(—d) (mod 64), (3.26)

if d* < 0.

Now to finish the proof of the lemma it remains to substitute (3.20), (3.21), (3.22)
or (3.23), and (3.25) or (3.26) into (3.19).

If d* > 0 then we have

tr = 3(k — 1)(k — 2)ky(d*)B(d")kd + Hy (d)h(—d)kd+
B ky(d)kd + 2(k — 1)(k — 2)d*h(—4d")kd (mod 2°%*+54),
where

H(d) := =3(d* +1)(k —-2) — 3(k - 1)(k —2)d* + (k — 4)d* + d*H,
= 9(k — 2) + 167 (mod 32),

because 4| ka(d*) and 2|h(—4d*).
Now to get the congruence of the lemma for d* > 0 it is sufficient to use Cor. 1 (ii)
to Thm. 1 [2] i.e. the congruence

ka(d*)B(d*) = 6h(~4d*) —4 (2 (%)) h(—d) (mod 32).
Indeed by the divisibilities 2| h(—4d*), h(—d) and 4| h(—d), if (%) = 1, we find that
3(k — 1)(k — 2)k2(d")B(d") + H"(d)h(~d) + 2(k — 1)(k — 2)d*h(—4d")
= 2(k — 1)(k — 2)(d* + 1)h(—4d*) + [4(k — 2) + 9(k — 2) + 16mx]h(—d)
= —4 (%) (k - 2)h(—4d") + [13(k — 2) + 16m¢]h(—d) (mod 64).
We now turn to the case d* < 0. Then we have
te = (k—1)(k—2) (2(%) — 1) ka(—4d*)kd + H}'(d)h(~d)kd+
+ 5 by (d)kd — 2(k — 1)(k — 2) (5 ~ (%)) h(d")a(d")kd (mod 274 *+64),
where

HY'(d) :== —(k —2)(d* +7) — 5(k — 1)(k — 2)d* — (k — 4)d* — d*H},
=k — 24 167 (mod 32),

because 2| h(—4d*), h(—d), and 4| k2(—4d*). Now to obtain the congruence of the lemma
for d* < 0 it suffices to apply Cor. 1 (ii) to Thm. 2 [2] i.e. the congruence

ka(~4d*) =6 (%) [7((%) - 1) h(d")a(d") + 2h(~d)] (mod 32).
In fact by the divisibility 2| h(—d) we conclude that
(k—1)(k—2)(2(%) - 1) ka(—4d") + HY'(d)h(~d)-

—2(k—1)(k—2) (5 (%)) h(d)a(d*) = [(4 (%) +1) (k- 2) + 16m] h(—d)+
+ 8(k — 2)h(d*)a(d*) (mod 64).

The proof of the lemma is complete. [ ]
Now we shall prove a weaker version of (ii), (iii) of the previous lemma.
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LEMMA 6. Let d > 0, 2|d be the discriminant of a quadratic field, and let k > 4 be an
even natural number. Then we have:

ty = $kdky(d)p(d) (mod 20742 %+6),
PROOF. By Lemma 4 for any d we get

tk = Etz + (1 — %) t0(6,a =41 (rnod 8)) + 9 (3k_2 - %) t0(6’a =43 (mOdS))
= %tz + (1 - -’25) to + (3F — 4k — 1)to(6,a = £3 (mod8)) (mod 20742 ¥+6),
(3.27)
On the other hand we have

to(6,a = £3 (mod8)) =to(§/4,a = %3 (mod8))+ Y (gig)+
0<a<é/4,
a=6/243 (mod 8)

+ Y () T G

0<a<6/4, 0<a<5/4,
a=—6/243 (mod 8) a=6+3 (mod8)

= 51+ 52 + 53 + 54,

where S; denotes the ¢th sum (summand) of the left hand side of the above equality.
Thus in view of

to(d/4), if 4)|d,
P 4]
2to(d/4,a = £3 (mod 8)), if 8|d,
and to(d/4 i 4| d
2to(d/4,a = £1 (mod8)), if 8|d,
we obtain

to(6,a = £3 (mod 8)) = 2ty(d/4).
Consequently (3.27) implies
tr = £ty 4+ 2(3F — 4k — 1)to(d/4) = 5t (mod 2072 k+6),
because

3¢ 4k —1=—-2%+ 4(’2‘) + 8(’;) + 16(2)
= —2k + 2k(k — 1) — 4k(k — 1)(k - 2) — 2k(k ~ 1)(k — 2)(k — 3)
= —2k + 2k(k — 1) + 4k(k — 2) — 2k°(k — 2)+
+ 2k2(k —2) —6k(k—2)=0 (mod gord: k+5)_

Hence and from Lemma 2, the lemma follows. |

17



4. Proof of Theorem 1.

We start with the formula (3.2) [3]. For £ > 2, 2|k and x = (i), d > 0 it states that

L
2 .
By (1) = Zﬂ (%)2Bi—2i(2d)¥ =2 g — kte_y + Tt (4.1)

Thus by the von Staudt—Clausen theorem for p = 2 and Lemma 3 we see that for any
d > 0 the numbers B, (¢) are 2-integral and by Lemma 4 so are the numbers bi(d)

because for 2¢{d we have
ordy(1 — 3% — X;2%) > ordy k,

and for 2|d we have
ordg t;, > ordg k + ordy d.

Let us use the formula (4.1) to the case 2¢d and k > 8. Then we get
dBk’(g) = 2 (;)2Bk-2i2k_2i_ldk_2itzi — kdtg_1 + t; (mod 20792546y

because in view of 8|ty; for i > 2 and 4|t3, and

8

2
ordg — > 4
s

for s = k — 2: > 6, we have

ords [(;)Qk‘zi_ltﬁ], resp. ords [(’2“)2’“'3] >ordy k+6

fori§§—3, resp. k > 8.
Hence for k > 8 we obtain the congruence

dBy (2 = ~&(8)d* tia + 3(5) d*tez — kdti_y + tx (mod 202546,
Therefore by Lemma 3 for t;_4, tg_2, te_1 and Lemma 4 (i) for ¢ we deduce that
dBy (2= - BE)d [552d (4) — 2*7] ka(d)B(d)+

%( )& [72d (3) - 25°] ka(d)B(d)-

— kd [} A1 (d,%52) ka(d)B(d) + 2 (552 — 257*) dh(—4d)] +

+ 31— 3% — 2" + 4k)h(—4d) + kd (§) k2(d)B(d) (mod 207 F+),
Consequently by 2|h(—4d) and 4 |k2(d) we find that

dBy (ay = [(k = 2)(k — 4 - 2°7%) +3(k = 1)(k - 2) (g) + 3(k — 2)(d +2)—
~3(2(4) ~1) [kdky(d)B(d)+
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Hence by the divisibility 4| h(—4d), if (%) = 1 we obtain the congruence

bu(d) = Hy(d)ko(d)B(d) — 7 (2 (5) — 1) ka(D)B()+
+[-k+2049 (lizg*k—""‘)] dh(—4d) (mod 64), (4.2)

where

Hi(d) = [2(1+ (2)) +d+8x] 552,

because for even k

ordy(1 — 3%) = ordy k + 2,

Consequently, since for & > 8
ERE IOt Ny
:=1 1<i58,
1£T
=—k—2(k-1)(k-2)— 3k —-1)(k—2)(k-3)—
—4(k - 2)(k—4) — (k—2)(k—4)(k—6)
= —k+5(k — 1)2(k —2) — (k — 2)(k — 4)(k  6)

=2(2-1-4(5%)) (mod32)
and
Hd=(1+(4)k-2)+%-d+80%=5(3-1)+
+3((&5) 1) (2(4) - 3+d) +8X\ (mod16),

Theorem 1 for k > 8 follows from (4.2), the divisibilities 4 | k2(d), 2 | h(—4d) and the
congruence (3.6). Indeed, by the mentioned congruence we have

8Ark2(d)B(d) = 16\t dh(—4d) (mod 128),
2(k — 2)ka2(d)B(d) = 4(k — 2)dh(—4d) (mod 64),
3k(d = Dky(d)B(d) = k(d — 1)dh(—4d) (mod 64),
(1 — d)ko(d)B(d) = 2(1 — d)h(—4d) (mod 64).

Therefore we get

=3[(k-2(%) - ) + (k- z)( (%) — 3+ d)] k2()B(d)+
(—k + 2)dh(—4d)
=1 [~k —6(%) +3+2k(%)] k2(d)B(d) + (2 — k)h(—4d) (mod 64),
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and consequently Theorem 1 follows from (3.6), i.e. from the congruence
k((%) +1) ka(d)B(d) = 2k ((4) +1) h(—4d) (mod 64).
Consequently we deduce that
ba(d) = [d* +d +5(§) — 3| ka(d)A(d) — Ph(~4d) (mod 64).

Hence Theorem 1 (i) for £ = 4 follows immediately.
If k = 6 then from (4.1) we get

dBG,(i‘-) = —8d4t2 + 10d2t4 — 6dts + tg.
Therefore by (3.2), Lemma 3 (used for ¢4, t5) and Lemma 5 (i) (used for ¢6) we find that
dBg (ay = 6d [5 (3) — $41(d,2)] k2(d)B(d) + +24d*h(~4d) (mod2"d
(2) =64 [5(3) — 141(d,2)] k2(d)B(d) + +24d°h(~4d) (mod 2°d).

Hence Theorem 1 (i) for k = 6 follows easily, and the proof of the theorem is complete.
|

5. Proofs of Theorems 2 and 3.

The proof starts with the formula (4.1). In the case 2 |d and k£ > 4 (in view of
g0rd2d42 | 4,.) it gives the congruence

dBy (s) = ~kdtg_ +t; (mod g0rdz E+67) (5.1)
because for 1 < lzc- -1

2 k—21

But by Lemma 3 (ii) we have

= 4(k — 2)kz(d) (mod64), if 4] d,
T 00 (mod 64), if 8|d,

and consequently by Lemma 5 (ii), (iii) the theorems follow at once. |
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6. Corollaries to Theorems.

COROLLARY 1. Let d and k > 4 be the discriminant of a real quadratic field and an
even natural number respectively. Then we have:

(1) ords Bk’(g) >ordyk+1,ifd 74 8, and ord; Bk,(i‘!) =ordg k, if d = 8.
(ii) ordy By (4) =ordgk+v,1<v <3 = 2V | k2(d).

The next corollary is an immediate consequence of the previous one and Theorem 1.

COROLLARY 2. Let d, 2td and k > 4 be the discriminant of a real quadratic field and
an even natural number respectively. Then we have:

(1) ords Bk,(:_i) =orde k+4 < 32| ka(d) and [k = 2 (mod4) or (k =0 (mod4)
and 16| h(—4d))].

(ii) ordy By sy =orda k+5 <= [32|{ k(d) and k = 0 (mod 4) and 8| h(~4d) and
Lh(—4d) # %k2(d)B(d) (mod4)| or {64] kz(d) and [k = 2 (mod8) or (k = 2
(mod 8) and 16 | h(—4d)) or 32| h(—4d)]} or {128|| k2(d) and [(k = 0 (mod 4) and
16 || h(—4d)) or (k = —2 (mod 8) and 8 || h(—4d))]},

ord; Bk’(g) > ord; k + 6, otherwise. |

COROLLARY 3. Let d = —4d*, where d* is the discriminant of an imaginary quadratic
field, and let k > 4 be an even natural number. Then we have:

(i) ord, Bk,(‘g) =ordyk+4 {(%—) =1 and 32 || kz(d)} or { (%—) = —1 and
32| k2(d) and [8[h(d*) or (4][h(d*) and k =2 (mod4))]}.

(i) If (%—) =1 then:
ord Bk,(:_i) =ordy k+5 <= {64] kz(d) and [k =2 (mod4) or (k =0 (mod4)
and 2|h(d*))]} or (128|k2(d) and k = 0 (mod 4) and 21 h(d*)),
ordsy Bk,( 2 > ords k + 6, otherwise.

If (%—) = —1 then:

ordz By ¢y = ordp k +5 = [32)| k2(d) and 4|| h(d*) and k =0 (mod 4) and
wk2(d) = —1 (%) h(d")e(d*) (mod4)] or
{64 || k2(d) and [k =2 (mod 8) or
(k= —2 (mod8) and 8|h(d*)) or
(k=0 (mod4) and 16|k(d*))]} or
{128 k2(d) and [(k = —2 (mod 8) and 4| h(d"))
or (k =0 (mod4) and 8| h(d*))]}.

ords Bk, (4) > ordy k + 6, otherwise.
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COROLLARY 4. Let d = —8d*, where d* is the discriminant of an imaginary quadratic
field, and let k > 4 be an even natural number. Then we have:

(i) If (%) =1 then:

ord, Bk,(-_é) =ordek +4 < {32 H kz(d) and [2 | h(d*) or
(24 h(d*) and k = 2 (mod 4))]} or
(64 |k2(d) and 2t h(d*) and k =0 (mod 4)),

ords B, ;4\ =orda k + 5 <= [32| k2(d) and 2|h(d*) and k =0 (mod 4) and
k(%)

64| ka(d) + 4h(—d) + 32 (gZ7) h(d")a(d")]

or {64 || k2(d) and [k = 2 (mod 8)

or (k= -2 (mod 8) and 2|h(d"))

or (k=0 (mod4) and

32| h(—d) + 8h(d*)(d*))]} or {128]kz(d)

and [(k = —2 (mod 8) and 24 h(d*)) or

(k=0 (mod4) and 16 || h(—d) + 8h(d*)a(d"))]},

ords Bk,(g) > ords k + 6, otherwise.
(i) If (%) = —1 then:

ord, Bk,(.g) =ords k+4 < {32]| k2(d) and [16 | h(~d) or (8| h(—d) and
k =2 (mod4))]} or [64]k2(d) and 8] h(—d)
and k =0 (mod4)),
ords Bk,(‘g) =ordg k+5 < [32” ky(d) and 8||h(—d) and k =0 (mod4) and
sgk2(d) = —§ (g27) h(—d) (mod 4)]
or {64 || ky(d) and [k =2 (mod 8)
or (k = —2 (mod8) and 16|h(—d))
or 32| h(—d)]} or {128 |k;(d)
and[(k =0 (mod4) and 16||dh(—d))
or (k = —2 (mod8) and 8| h(—d))]},

ord, Bk,( 4 > ordy k + 6, otherwise.

COROLLARY 5. Let d = 8d*, where d* is the discriminant of a real quadratic field, and
let k > 4 be an even natural number. Then we have:

(1) ordy Bk,(.g) =ordy k+4 <> {32 kz(d) and [16|h(—d) or (8||h(—d) and k = 2
(mod 4))]} or (64 |k2(d) and 8||h(—d) and k =0 (mod 4)).

(ii) ordz By (a) = ordok +5 <= [32 ]| k2(d) and 8 || h(~d) and k = 0 (mod4)
and %kz(d) = —% (%) h(~d) (mod4)] or {64 || k2(d) and [k = 2 (mod 8) or
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(k = —2 (mod8) and 16 | h(—d)) or 32 | h(—d)]} or {128 | kz(d) and [(k = —2
(mod 8) and 8||h(—d)) or (k=0 (mod4) and 16 ||h(—d))]},
ord, Bk,( a) > ords k + 6, otherwise.

7. Proofs of Corollaries.

Corollary 1(i) for 21d is an obvious consequence of Theorem 1 and the divisibilities
2| h(—4d), 4| k2(d), and for 2|d of Theorem 4. In order to prove (ii) of this corollary for
2t d we use the congruence (3.6). In fact, in view of this congruence Theorem 1 implies

be(d) = [(k(§) + 5 +1) u+3 (~k—2(%) +1) 9] ka2(d)B(d) (mod 16),

and consequently

bi(d) = —3 (3 -2 (%)) k2(d)B(d) (mod 16).

Hence Corollary 1(ii) for 24 d follows immediately because g, resp. ¢ = 1 (mod4, resp. 8).

Corollary 1(ii) for 2|d up to the case » = 3 and 8|d is an obvious consequence of
Theorem 4. If 8 | d then we consider two cases. First, let d* > 0. Let us note that if
8| h(—d), then we have 16 |92h(—d), ¥3h(—4d*), and consequently Corollary 1(ii) in the
case v = 3, d* > 0 follows from Cor. 2(iii) to Thm. 1 [2] that states that 16 || k2(d) if and
only if 8 || h(—d) and 8 |h(—4d*), or 16| h(—d) and 4| h(—4d*). Now, let d* < 0. Then
16| pu3. If ('—iz-) =1 then by Cor. 2(i) to Thm. 2 [2], 16 || k2(d) if and only if 8 || h(—d),

and consequently Corollary 1(ii) for d* < 0, (%) = 1 follows easily. If (%) = —1 then
16 | ugh(—d), p3h(d*)a(d*) because in view of Cor. 2(ii) to Thm. 2 [2], 16 || k2(d) if and
only if 16 | A(—d) and 2 || h(d*), or 8 || h(—d) and 4 | h(d*). This completes the proof of
Corollary 1.

Now we prove Corollary 3. Let d = —4d*, where d* < 0. We consider two cases,
again. If () = 1 then 4 | h(—2d), and 32| d3, and so 32 | 92h(d*)a(d*) + P3h(—2d).
Therefore Corollary 3(i) for (%) = 1 follows. Also, in the case (%—) = 1 the divisibility
32 | k2(d) implies 8 | h(—2d) (see Cor. 2(i) to Thm. 2 [2]). Consequently we get (ii) of
Corollary 3 in this case easily. We turn to the case (%) = —~1. Then by Cor. 2(iii) to
Thm. 2 [2], 32| k2(d) if and only if 4 || A(d*) and 4| h(—2d), or 8| k(d*) and 8| h(—2d).
Thus in both the cases we have 9,h(d*)a(d*) +J3h(—2d) = 2(k—2)h(d*)(d*) (mod 32).
This completes the proof of Corollary 3(i). Likewise, by the used above arguments we
get (ii) of the corollary and its proof is complete.

Now we consider the case 8|d. If d* < 0 and (%) = 1 then by Cor. 2(i) to Thm. 2 [2],
32 | k2(d) if and only if 16 | A(—d). Consequently we have psh(—d) + p3h(d*)a(d*) =
0, resp. 16 (mod32) if and only if 2 | A(d*), or 2 1 h(d*) and k = 2 (mod4), resp.
2t h(d*) and 2 t h(d*). This gives the first part and the beginning of the second one
of Corollary 4(i). Similar considerations apply to the remaining one of the corollary.
To prove (ii) of it let us note that in virtue of Cor. 2(iii) to Thm. 2 [2], 32 | k2(d) if
and only if 16 | h(—d) and 4 | h(d*), or 8| h(—d) and 2 || h(d*). Thus 2| h(d*) and
p2h(—d) + psh(d*)a(d*) = (k —2)h(—d) = 0, resp. 16 (mod 32) if and only if 16 |h(—d),
or 8||h(—d) and k = 2 (mod4), resp. 8||h(—d) and k£ =0 (mod4). This gives the proof
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of the first part of Corollary 4(ii) and the beginning of the second one of it. The remaining
one may be handled in the similar way. It remains to prove Corollary 5. Then by Cor. 2
to Thm. 1 [2], 32| k2(d) if and only if 8 || h(—d) and 4 || h(—4d*), or 16 t A(—d) and
8t h(—4d*). Therefore ¥yh(~d) + 93h(—4d*) = (k — 2)h(—d) = 0, resp. 16 (mod 32) if
and only if 16 | h(—d), or 8|/ h(d*) and k = 2 (mod 4), resp. 8||h(—d) and k =0 (mod 4).
This establishes (i) and the beginning of (ii) of Corollary 5. The similar reasoning applies
to the remaining part of the corollary, and Corollaries to Theorems are proved. |
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