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On some new congruences between 
generalized Bernoulli numbers, I 

Abstract . In the paper some new congruences modulo 64 for generalized Bernoulli 
numbers Bk ^ belonging to quadratic characters (7) , d < 0 are proved and for each 
—1 < v < 5 ail negative d and odd k satisfying ord2 Bk ^ = v are found. In the second 
part of the paper we shall deal with the case of positive d. 

Ail results are conséquences of [1] and [2]. 
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For the discriminant c? of a quadratic field, let (7) dénoté the Kronecker symbol. 
Dénoté by B^ x the kth generalized Bernoulli number belonging to the Dirichlet charac-
ter x-

For x > 0 put 

**(*)••= E 
0 < a < s c 

and for X C N U {0} dénoté by tk(x,a G X), tk(x,b | a), tk(x,b \ a), tk(x,b || a) or 
th(x,a = r (mod 6)) the above sum with the appropriate additional condition: a € X, 
b\a, b\ a, b\\a or a = r (modb). Set tk := tk(S), where S := \d\. If d = —4d* or ±8d*, 
where d* is the discriminant of a quadratic field then S* := \d*\ and we continue to write 
f f . for the above sums defined for the discriminant d* in contrast with given for d. 

For d < 0 we have t\ = —dB1 and for d > 0 we have t2 = dB2 ^dy Put 
h(d) := if d < - 4 and h(-i)'= h(-i) := 1. Put k2(d) := B2,(&)> if d > 8 and 

k2(5) = k2(8) := 4. It is known that h(d) equals the class number and k2(d) probably 
(certainly up to 2-torsion and in many cases) equals the order of the group K2 of integers 
of a quadratic field with the discriminant d. 

It is known that BQ ^ = 0 and for k > 1 

Bk{i) = 0 (1.1) 

if and only if d > 0 and k is odd or d < 0 and k is even. Write a(—3) := 7(—4) := 
/?(5) := J, p(8) := and a(d), 7 ^ ) , f3(d), p(d) = 1, otherwise. Put f ( - 3 ) := a ( - 3 ) , 
f ( - 4 ) := T(~4), T}(5) := 0(5), 7/(8) := p(8), and £(D), rj{d) := 1, otherwise. 

Our purpose is for each — 1 < v < 5, if d < 0 (in the first part of the paper), and 
for 0 < v < 5, if d > 0 (in the second one) to find ail d and k such that ord2 Bk ^ = 
ord2 k -f v. In order to do it we need some new congruences of the generalized Kummer 
congruences type modulo 64 but without any assumptions on k. 

Set 

h ( d ) : = 

Let us recall the generalized Kummer congruences (see [3]) imply the following: 

bk(d) = - (l - ( f ) ) h(d)((d) (mod2 a + 1 ) , (1.2) 

if d < 0, d ± - 4 , - 8 , k = 1 (mod2a), k > a + 2, a > 1, and 

bk(d) = J ( l - 2 ( f ) ) k2(d)r,(d) (mod2 a + 1 ) , (1.3) 

if d > 0, d ± 8, k = 2 (mod 2°), k > a + 2, a > 1. 
Also (1.2) implies 

ord2 ^ > a + 1 (1.4) 



if ( | ) = 1 or ( f ) and ord2 h(d) > a + 1 + ( f ) , and 

ord2 ^ = ord2 h(d) - ( f ) (1.5) 

if ^ 1 and ord2 h(d) < a + Similarly (1.3) implies 

ord2 Bk ^ > ord2 k -f a + 1, (1.6) 

if ord2 k2(d) > a + 2, and 

ord2 -#*;,(<<) = or^2 k + ord2 k2(d) - 1, (1.7) 

otherwise. 
In both the papers we discuss the above formulas for any k and a < 5. 
In this part we prove the following: 

THEOREM 1. Let d,2\d and k > 3 be the discriminant of an imaginary quadratic field 
and an odd natural number respectively. With the above notation, the numbers Bk ^ 
are 2-integral and the following congruence holds: 

bk(d) = -kfi ( l - ( f ) ) h(d)a(d) - d) (mod64), 

where /J, := $ := flk(d), and $3d — 5, fisd - —d — 2, ^ = —15, and = 1, 
otherwise. 

If 2 \d we get more complicated congruences. We prove the following: 
THEOREM 2. Let d = —Ad*, where d* is the discriminant of a real quadratic field 
(i.e. d ^ —4), and let k > 3 be an odd natural number. Then the numbers Bk ^ are 
2-integral and we have: 

bk{d) = ê1k2(d*)l3(d*) + thh{d) + ê3h(2d) (mod 64), 

where 1 : = 19i(d, k) € Z (i = 1,2,3) are of the form 

1h = Pik -I- qi, 
and 

P2 = 1 + ( t ) . ® = - 2 ( 3 + 2 © ) ( 2 " ( t ) ) + 7 . 
» = 2 ( f ) , « = 2 ( 3 - 4 ( ^ ) ( f ) ) . 

THEOREM 3 . Let d = ± 8 d * , d 
< 0, where d* is the discriminant of a quadratic field 

(i.e. d ^ —S), and let k > 3 be an odd natural number. Then the numbers Bk ^ are 
2-integral and we have: 

f tfifc2(-4<f ) + ê2h(d) + ti3h(d*)a(d*) (mod64), ifd* < 0, 
I fiik2(d*)p(d*) + fi2h(d) + fiih(-Ad*) (mod64), ifd* > 0, 

where t?,- := i9i(d, k), m := m(d, k) G Z (i = 1,2,3) are of the form /j, = pk + q, and 

^ = -*(k - 1), 02 = 4 k- 5, = (7 - 15 (4-)) (k - 1), 

/H = - f ( l - 2 ( 4 - ) ) ( * - l ) , fi2 = Sk-9, fi3 = 5(k — 1). 
Combining Thm. 2 and 3 with Cor. 1 to Thm. 1 ,2 [2] we can get many new congru-

ences for generalized Bernoulli numbers modulo 64 (or 32). 



Lemma 4 and the congruence (5.1) imply a weaker version of Thm. 1 and 2: 

THEOREM 4. Let d < 0, 2 I d, d —4 be t i e discriminant of a quadratic field, and let 
k > 3 be an odd natural number. Then the numbers Bk ^ are 2-integral and we have: 

bk(d) = -h{d) (mod26-°rd2<i). 

2. Lemmas 

We have divided the proof of the theorems into a sequence of lemmas. 

LEMMA 1. Let d, 2\d be the discriminant of a quadratic field. Then we have: 
(i) If d > 0 (i.e. 8 = 1 (mod4)J then 

t0(8,a = 8 (mod8) )= ( f ) t0(8/8), 

t0(8,a = 8 + 2 (mod8)) = - ( l + (§ ) ) t0(8/4) + ( f ) t0(8/8), 

t0{8,a = 8 + 4 (mod8)) = t0(8/4) - t0(8/8), 

t0(8, a = 8 + 6 (mod 8)) = ( f ) t0(8/4) - ( f ) t0(8/8). 

(ii) If d < 0 (i.e. 8 = 3 (mod 4))) then 

t0(8,a = 8 (mod 8)) = - ( f ) t0(8/8), 

t0{8,a = 8 + 2 (mod8)) = ( f ) t0{8/4) - ( f ) <0(*/8), 

t0(8, a = 8 + 4 (mod 8)) = -t0(8/4) + ( f ) t0{8/8), 

t0(8,a = 8 + 6 (mod8)) = t0(8/2) - ( l + ( f ) ) t0(Sf4) + ( f ) t0(6/8). 

PROOF. Let us note that 

to{8/2,a = 8 (mod4)) = E ( À ) = ( 4 ) E ® 
0<a<6/2, 6/2<a<8, 

a=S (mod 4) 4|a 

= ( 4 ) [ t o ( ^ 4 | « ) - t o ( V 2 , 4 | a ) ] 

= ( : i ) [*o(* /4 ) - to (* /8 ) ] , ( 2 J a ) 

and 

0<a<«/2, S/2<a<S, 
a=6+2 (mod 4) a = 2 (mod 4) 

= & ) [ e œ - E © i 
S/2<a<S, 6/2 <a<5, 

2| a 4|a 

= ( A ) 21 a) - t0{8/2,21 a) - tQ(8,41 a) + t0(8/2,41 a)] 

= ( é ) [ ( I ) MW2) - ( l + ( f ) ) to(8/4) + t0(8/8)] . (2.1b) 
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From this we conclude the lemma because 

t0(6, a = 8 (mod 8)) = t0(8, 81 o) = (§) t0(8/8), 

t0(8,a = 8 + 2 (mod8)) = = ~2 (mod8)) 

= ( é ) {l)to(S/2,a = 3 (mod4)), 

tQ (8, a = 8 + 4 (mod 8)) = [<0(S, 41 a) - t0 (8,81 a)} 

= ( i ) [*o(*/4) - © t 0 m \ , 

i0(<5,a = (5 + 6 ( m o d 8 ) ) = ( ^ ) f 0 ( £ , a = 2 (mod8)) 

= ( À ) ( f ) * o ( * / 2 , a = l (mod4)). • 

For i > 0 set t[ := ti(8, 2 fa). To prove the theorems we apply the following lemmas: 

LEMMA 2. Let d be the discriminant of an imaginary quadratic ûeld. Then we have: 

(i) t'0 = - ( l ) ( 2 - ( l ) ) h ( d ) a ( d ) . 

t, = f dh(d)a(d), if2\d, 
1 l dh{d)~f(d), if2\d. 

(iii) t'2 = -d2h(d)~/{d), if2\d. 

(iv) t'2 = Ci(d)h(d)a{d) + k2(-4d) (mod 64) if 2\d, 

where 
C^d) :=-2 (%)d+ 2 ( l ) - l . 

(v) 

where 

( C2(d)h(d)a(d) (mod64), if2\d, 

t'z = | 4(157 (d) - U)h(d) (mod64), ifi\\d, 

[ 8sgnd*h(d) (mod64) if8\d, d=±8d*, 

ifd=-4d*,2fd*, 

C2(d) :=3(f)d + 2 ( | ) - 4 . 

More generally, for d ^ —4, —8 we have 

( 3 - 2 8k2(d*)f3{d*) - 138h(d)+ 

+88h(2d) (mod64<5), 

-38k2(-4d*) - 118h{d)+ 

+ 2 (5 + 3 8h(d*)a(d*) (mod 646), if d = 8d*, d* < 0, 

(3-2 8k2(d*)f3(d*) + 13^(d)-

-28h(-U*) (mod 646), if d = -8d*, d* > 0. 



Here for d = —4d* or ±&d*, d* is the discriminant of a quadratic field or d* = 
d = - 4 , - 8 . 

PROOF . Since for d < 0 (see [3]) 

t0(S/2) =(2- ( I ) ) h(d)i{d), 

(i) of the lemma follows immediately. 
On the other hand for any d we have 

= 2 ( f ) h ( ê / 2 ) . 

Also for d < 0 we have (see [3]) 
t! = dh(d){(d) 

and 
h(S/2) = -\d(l - ( 0 ) h(d)((d) 

(cf. p. 255 [2]). Therefore (ii) of the lemma follows from (2.2). 
In order to prove (iii) of the lemma, we apply (1.1). Then for J < 0 we have 

B2,(l) = 0-

Consequently from (3.1) (with F = 6) we get 

t2 = -d2h(d)i{d). 

To prove (iv) let us note that for any d we have 

<2 = 2 rt\(8,a = r (mod8)) — £ r2<0(<Ç,a = r (mod8)) (mod64). 
l < r < 7 , l < r < 7 , 
r odd r odd 

Hence for d < 0, 2\d we obtain 

t'2 = 2t[ - t'0 + 2 {r-l)h(S,a = r ( m o d 8 ) ) - £ (r2 - a = r ( m o 

3<r<7, 3<r<7, 
r odd r odd 

= 21\ - t'0 + 8 <* = r (mod 8)) - 4<i{6, a = 3 (mod 8))+ 
3<r<7, 
r odd 

+ 4<i(6,a = 7 (mod8)) — 5 1 (r2 - l)*o(6,a = r (mod8)) 
3<r<7, 
r odd 

= 2t[ ~t'0+ 5 3 (1 + 8r - r2)<o(<5, a = r (mod 8 ) ) -
3<r<7, 
r odd 

— 24to(6,a = 3 (mod8)) + 4h(8,a = 3 (mod4)) 
= 2<i - <o - 8<0((Ç,a = 3 (mod8)) + 16<0(<$,a = 5 (mod 8))+ 

+ 8t0(8,a = 7 (mod8)) -f Ati(8,a = 3 (mod4)) 
= 2t[ - t'Q - St0(8,a = 3 (mod4)) + 16t0(8,a = 5,7 (mod 8))+ 

+ 4h(6,a = 3 (mod4)) (mod64). 



Consequently in view of Lemma 1 (ii) we deduce that 

*'2 = 2t\ - *'0 + 8t0{6/4) + 16 ( l + ( § ) ) t0(S/2) - 2*0(tf/4)] + 16<i(«/4) - Mt0(6/4) 

= 2t[ - *'0 + 4(10 - <5)*o(<V4) + 16<i(^/4) + 8 ( l + ( f ) ) t0(S/2) (mod64). 

Thus by Lemma 2(i), (ii) and (2.1), (iv) of the lemma follows because for d < 0, 2-f d we 
have 

to(*/4) = è ( l + ( I ) ) h(d)a(d), (2.6) 

(see Thm. 7.1 [1]), and 

t!(«5/4) = â*a(-4</) + Jrf ( l - ( I ) ) &(d)a(d) (2.7) 

(see Thm. 2(i) [2]). 
In order to prove (v) let us notice that for any d we have 

t'3= 3 2 = r (mod8)) - 3 ^ r 2 * ^ , a = r (mod8))+ 
l < r < 7 , l < r < 7 , 
r odd r odd 

+ r3to(S,a = r (mod8)) (mod29). 

Therefore in view of the congruence 

l < r < 7 , 
T odd 

t2(6,a = r (mod8)) = 2rti(6,a = r (mod8)) - r2t0(6,a = r (mod8)) (mod64), 

we see that 

t'3 = 3 £ r2h(S,a = r (mod8)) - 2 £ r3t0(S,a = r (mod 8)) (mod64). 
l < r < 7 , l < r < 7 , 
r odd r odd 

From this it may be concluded that 

t'3 = 3<i -I- 3 ( r 2 ~ l)rto(6,a = r (mod 8)) - 2*'0-
3<r<7, 
r odd 

- 2 ( r 3 - l ) * o ( £ , « = r (mod8)) 
3<r<7, 
r odd 

= 31\ - 2i'0 + £ (r3 - 3r + « = ** (mod 8)) 
3<r<7 , 
r odd 

= 3*i - 2*'0 + 20t0(S,a = 3 (mod 8)) - 16h(S,a = 5 (mod 8)) 

+ 4*o(<$,a = 7 (mod 8)) 

= - 2*'0 + 20t0(8,a = 3 (mod4)) - 16*0(6,a = 5,7 (mod 8)) (mod64). 

Consequently in virtue of Lemma l(ii) we find that 

*'3 = 3*i - 2*o - 20*0(6/4) - 16 [\ ( l + ( f ) ) h{8/2) - 2t0(S/A)] 

= 3*; - 2*'0 + 12*o(£/4) - 8 ( l + ( I ) ) t0(S/2) (mod64). 



Thus by Lemma 2(i), (ii), (2.1) and (2.6) we obtain (v) of the lemma for 2 \ d . 
Now we are going to consider the case 21d. Then for any 2 \ d , d ^ —4 and fc we have 

fi/2 6/4 
** = t*(*/2) + ( é ) E ( ! ) ( * - «)fc = h M ) - ( i ) E ( ! ) ( ! - « ) + 

a=0 o=0 
fi/4 fi/4 , 

+ ( À ) E O i ' - M © ( ! + « ) . P-T.) 
a=0 a=0 

because for 2 | d we deduce that 

( i j i ^ ) = {ét) = = _ ( À ) ( ! ) • 

Therefore putting T := min(fc, 7) for fc > 3 (i.e. T > 3) we have 

tk=tk(s/4) - e © a y [ ( - i ) * - - ( À ) + 1 ] tu-i m ) + 
i=0 

+ ( 4 ) E © ^ ( - l ) * " ^ - . - ^ ) (mod 646). 
i=0 

By the above, under the condition that (^y) = (—l)k we conclude that 

tk=e'k + ek (mod 646), (2.8) 

where 

4 == e'k(d) = - E ( î ) (* /2Y [ ( - l ) ' ( l - 2') + l ] tk_i(8/4) 
i=1 

= -kSt^S/4) + \82{^)tk_2{8!4) - g)*V3(*/4), 

and 

e'I := = - E © ( W [ ( -1 ) ' + l] t k - i W ) 
i=4 

if fc > 4, and £3 = 0, where Àjt = 0, if Ar < 5, and Xk = 1, otherwise. 
Consequently from (2.8) for fc = 3 and d < 0 we obtain 

h = -38t2(8/4) + ^82t1(8/4)-83t0(8/4) (mod646). (2.9) 

We will apply (2.8) in the proof of Lemma 5. For fc = 3 this congruence is an equality. 
We need consider three cases: d = —4d* or d = ±8d*, where d* is the discriminant 

of a quadratic field or d* = 1, if d = —4, —8. We follow the notation of Introduction. 
First, let d = -id*, d* > 0. Since for d > 0, 2\d we have 

<„(5/4) = \h(-id) (2.10) 



(see Thm 7.1 [1]) in our case we observe that 

t0(S/4) = t*0(8*,a = 1 (mod4 ) ) - t* 0 {6* ,a = 3 (mod4)) 

= <0 0 7 4 ) - ( ( T ) w r m - *o(«74)) = 2*2(^/4) 

= h(-4d*) = h(d). (2.11) 

Moreover we find that 

t1{8/4) = t*1(8*,a = 1 (mod4)) — t\(8*,a = 3 (mod4)) 
= H Î ( < 5 + , 4 | a ) - | - 6 + ^ ( r , 4 | a ) ] - H Î ( r , a = 2 (mod4)) 

+ 8%(8*,a = 2 (mod4))] 
= —4tl(8*/4) + 8*t*0(8*/4) + [2 ( f ) t\{6 + /2) - 4<Î(«V4) -

= 2 (*§-) < î (^/2) - 8<î(£74) + 26*tZ(6*/4). (2.11a) 

Consequently, since for d > 0, 2\ d 

h(8/2) = - l ( 4 - ( D ) k 2 ( d ) m , (2.12) 

and 
h(8/4) = (7 + 2 ( f ) ) *2((0/9(d) + (2.13) 

(see Thm. 1 (i) [2]), by (2.10) in our case for d ^ —4 we get 

(2-14) 

Furthermore we have 

t2(8/4) = t*2(8*,a = l (mod4)) — t2(8*,a = 3 (mod4)) 
= 2 £ rt\{8\a = r ( m o d 8 ) ) - £ r2t*0(S*,a = r (mod8) ) -

r = l or 5 r = l or 5 

- 2 £ = r (mod8)) + £ r2^(<S*,a = r (mod8)) 
r=3 or 7 r=3 or 7 

= 2 ^ ' + = 5 (mod8)) - 8tl(8*,a = 3 (mod 8 ) ) -
— 16^(6*, a = 7 (mod8)) -24t*0(8*,a = 5 (mod8))+ 
+ 10*S(6*,a = 3 ( m o d 8 ) ) - 1 4 ^ ( 6 * , a = 7 (mod8)) 

= 2 - to' - 24*5(5*,a = 5 (mod 8)) - 24^(6*, a = 3 (mod 8))+ 
+ 16^(6*, a = 7 (mod 8)) -24t*0(8*, a = 5 (mod 8))+ 
+ 101*0{8*, a = 3 (mod 8)) - Ut*0(S*, a = 7 (mod 8)) 

= 21*0' - t*0' + 16^(<5*, a = 5,7 (mod 8 ) ) -
- 14^(6*, a = 3,7 (mod8)) (mod64). (2.14a) 

Consequently by = 0 and Lemma l(i) we find that 

t2(8/4) = 2tf + 16 [(l + (4- ) ) t*0(8*/4) - 2t*0(8*/8)} + 1 4 ^ ( ^ / 4 ) 

= 2 + 32t*0(8*/8) + 2(15 + 8 (4-) ) 4(8*/4) (mod 64). 



On the other hand for d > 0, 2fd we have 

to(S/8) = \ ( f ) h(-4d) + \h(-8d) (2.15) 

(see Thm. 7.1 [1]). Therefore by t\ = 0, together with (2.12), (2.2) and (2.10) in our case 
for d ^ — 4 we get 

t2(S/4) = (4 - l ) k2(d*)/3(d*) - h(d) + 8h(2d) (mod 64). (2.16) 

Now we can apply (2.9). From (2.11), (2.14) and (2.16) we deduce that 

f 3 = *3 = [3 ( l - 4 ( f ) ) + f (4 - ( f ) ) ] 

+ (3 - 82)8h(d) - 248h(2d) (mod 64S). 

Hence and from Cor. l(i) to Thm. 1 [2], (v) of the lemma for 41| d follows. 
Now let d = ±8d*. Since for 2fa we have 

we find that 

h(S/4) = h ( n + E { 2 8 h ) (2<$* — a) 
0 = 0 

a=0 0 <a<6' 
2-f a 

= 2<1(<S*,a = 3 (mod4)) + 28*[to(8* ,a = 1 (mod4) ) -
— to(8*,a = 3 (mod4))]. (2.17a) 

Therefore for d < 0 we have 

h{8/4) = 2 [3t*0(8*,a = 3 (mod8)) - 7t*0(8*,a = 7 (mod8))] + 

+ 28* [^(<5*,a = 1 (mod8))-<S(£*,a = 5 (mod 8 ) ) -

- ( z i ) to(6*,a = 3 (mod8)) + t*0(8*,a = 7 (mod8))] 

= 2 ( ~ î ) = 3 (mod 8)) + 2 ( r r ) (8* - 7)t*0(8*, a = 7 (mod 8))+ 

+ 28*t*0(8,a = 1 (mod8))-28*t*0(8*,a = 5 (mod8)) (mod 16). 

Consequently by Lemma 1 if d = ±8d*, d < 0 then we observe that 

tl(8/4) ^ 4 (^T) t*0(8*/8) - 2 (4r ) ( l + ( i ) + ( £ ) ) t*0{S*/4)+ 

+ 2(2-(Ç))t*0{8*/2) (mod 16). 

Now, let d = 8d*, d* < 0. Then since for d < 0, 2\d 

t0(8/8) = è (5 - ( f ) ) h(d)a(d) - \h(8d) (2.18) 
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(see Thm. 7.1 [1], again), by (2.1) and (2.6) in our case we see that 

h(S/4) = 6 ( l - (4- ) ) h(d*)a(d*) + h(d) (mod 16). (2.19) 

Similarly, if d = - 8 < f , d* > 0, d ^ - 8 then by (2.10) and (2.15) we obtain 

h(8/4) = -2h(-4d*) + h(d) (mod 16). (2.20) 

Now the lemma will be proved as soon as we can find t2(8j4) modulo 64. But 
applying (2.17) for any d we get 

M « / 4 ) = « . ( « • ) + 1 ( W B ) W - « ) 2 - T K F ) + ( T ) « 2 + 
a=0 a=0 

0<a<«' , 0<a<«' , 
2fa 2\a 

= 2t2(S*,a = l (mod 4)) + 48*2[to(8* ,a = 1 (mod 4)) - t0(S*, a = 3 (mod4))]-

-48*[h(8*,a = 1 (mod4)) — * 1 (6*, a = 3 (mod4))] 

= 2{2t\{8*,a = l (mod8))-fj5(£*,a = l (mod8)) - 10^(<5+,a = 5 (mod8))+ 

+ 25<J(^,a = 5 (mod8))]+48*2[t*0(8*,a = l (mod8) ) -

-t*0(8*,a = 5 (mod8)) + (rrf) ( z r ) = 3 (mod8) ) -

- ( é ) = 7 (mod8))]— 

-48*[t\(8*,a = 1 ( m o d 8 ) ) - < î ( ^ , a = 5 (mod8))+ 

+ ( À ) ( i ) * Î ( « V = 3 (mod 8)) - ( é ï ) tUS*, a = 7 (mod 8))] 

= 2 ( l - 2 £ * + 2<T2)^(£*,a = l (mod8)) — 
- 2(25 - 10£* + 28*2)t*0{8*,a = 5 (mod 8))+ 

+ 48* (S[) ( r r ) H î ( 0 = 3 (mod4)) + I4t\{8*,a = 7 (mod 8))]+ 

+ 4^2 ^ ^ [t*0(8*,a = 3 (mod4)) - 2t*0(8*,a = 7 (mod 8))] 

= 2 + 3 — 4 ( z y ) ) to(à*Ja = 1 (mod 8))— 

- 2 (28* + 1 1 + 4 ) t*0(8*,a = 5 (mod 8 ) ) -

- + 1) (4r ) « = 7 (mod8))+ 

+ ( À ) [ I (L + FÈ)) it(S\2\a) - fë) tU8*A\a)} + 

+ 4£*2 ( l - ( z r ) ) t*0(8*,41 a) (mod 64), (2.20a) 

because 

t\ (8*, a = 8* - 3(mod4)) = ± ( l + t\(8*, 21 a) - tt(8*, 41 a), 

and for d* < 0 
t*0 (8*, a = 3(mod4)) = -tl(8* ,4\a). 



Consequently for d < 0 by Lemma 1 we deduce 

*2(6/4) = -46* [(l + ( * ) tUtr/2) - 4 ( 4 r ) i î ( « 7 4 ) ] + 20 ( 4 r ) t*0(6*/8)+ 

+ 2 ( 2 6 + - 5 ( ^ ) + 2 ) t * 0 ( 6 * / 2 ) + 

+ 2 [26* - 5 (*§-)+ 6 - 12 ( i - ) ] t*0(S*/4) (mod 64), 

because t * 0 ( 8 * / 2 ) = 0, if d* > 0, and by (2.6) we have *5($74) = 0, if d* < 0, = - 1 . 
We now turn to the cases. Let d = 8d*, d* < 0. Then from (2.1), (2.6), (2.7) and 

(2.18) we obtain 

f 2 (6 /4) = 1 6 ^ ( 6 7 4 ) - 2 0 ^ ( 6 7 8 ) + 2 (26* + 13) t*0(8*/4)+ 

+ 2 ( 2 6 * - 5 ( ^ ) + 2 ) ^ ( 6 * / 2 ) 

= Jfe2(-4<F) + 5 h ( d ) + 2 (13 - 5 (Ç)) h { d * ) a ( d * ) (mod 64), (2.21) 

because ^(6*/4) = 0, if d* < 0 and (jÇ) = - 1 , again. 
Likewise, if d = - 8 d * , d* > 0, d ± - 8 then by t*0(8*/2) = 0, (2.10), (2.12), (2.13) 

and (2.15) we find that 

t 2 ( 8 / 4 ) = -86* ( Ç ) t \ ( 8 * / 2 ) + 16^(6*/4) + 20^(6*/8)+ 

+ 2 (26* - 5 ( £ ) - 6) ^(6*/4) 

= 3 ( l - 2 ( f ) ) k 2 { d * ) f 3 ( d * ) + 5 h ( d ) - 2 ( 5 - 4 ( £ - ) ) h ( - 4 d * ) 

(mod 64). (2.22) 

Now to finish the proof of the lemma it sufïkes to use (2.19), (2.21), if d = 8d*, 
d* <0 OT (2.20), (2.22), if d = - 8 d * , d* > 0 together with (2.9). Let us note in the case 
8 | c? we have 

t'3 = h = -36*2(6/4) + §62*i(6/4) (mod 646). 

This gives immediately the congruences modulo 646 of (v) of the lemma for 8 | d. The 
congruences modulo 64 follow easily from them and Cor. l(i) to Thm. 1, 2 [2]. • 

LEMMA 3. L e t X b e b e a s u b s e t o f t h e s e t o f t h e o d d n a t u r a l n u m b e r s . F o r g i v e n x > 0 
a n d a n y d w e h a v e : 

t k ( x , a < E X ) = 2 ( x , a e X ) - a e X ) ( m o d 6 4 ) , 

w h e r e k = a (mod 2), a G {0,1}. 

PROOF. It is easily seen that for natural 2\a and even k 

a* = f a 2 - § + 1 (mod 64). 

Therefore for even k and any discriminant d the lemma follows. Furthermore, the above 
congruence implies 

a k = ~ a 3 - a + a (mod 64), 

if k is odd. Hence the lemma for odd k follows easily. • 



COROLLARY. For any d we have: 

t , = f 1 * 2 " (mod64), if2\ k, 
h ~ l - (mod64), if2\k. 

LEMMA 4. Let d be the discriminant of an imaginary quadratic field. Then we have: 
(i) If i > 2 then 

_ f A1(d,i)h(d)a(d) + ik2(-4d) (mod64), if 2\d, 
t2i = { -id2h(d)i{d) (mod64), if 2\d, 

where 

Ai(d,i) := - 3 • 2 2 - 1 ( l - ( f ) ) + 2i (2 ( I ) - 1 - ( f ) d) - 2 ( f ) + 1. 

(ii) I f i > 1 then 

_ J A2(d,i)h{d)a(d) - 22i~2k2(-4d) (mod64), if 2 \ d 
t2i+1 = | ^ ^ if 

where 

A2(d, 0 22<"1d ( l ~ ( f ) ) + 2< ( ( I ) - 2 + ( I ) d) + (|) d, if 2 \ d , 

A2(d, i) 
A2(d,i) 

i[1(d)(60-d) + 8] + df{d), if4IK 

i(8 sgn d* - d ) + d, if 81 d, d = ±8d* 

PROOF. Let i > 3. We start with the following obvious congruence: 

U = 2 ' ' ( | ) ^ ( 5 / 2 , 2 + 0) + ^ (mod 64), (2.23) 

where i = a (mod 2), a £ {0,1} . Hence and from Corollary to Lemma 3 for i > 2 we 
obtain 

t2i = 22i(l) t0(6/2,2fa) + t'2i 

= 22® ( f ) [t0(*/2) - ( f ) fo(«/4)] + it'2 - ( i - 1% (mod 64). 

Now, if 2\d then (i) of the lemma follows immediately from the above congruence, (2.1), 
(2.6) and Lemma 2(i), (iv). If 2 | d then it is an easy conséquence of Lemma 2(i), (iii). 

Similarly from (2.23) and Corollary to Lemma 3 for i > 1 we get 

t2i+1= 2 2 , + 1 ( | ) < i ( 5 / 2 , 2 t a ) + 4 + 1 

= 2 2 , + 1 ( f ) [h(8/2) - 2 ( f ) t^S/A)] + it', - (i - 1 )t\ (mod64). 

Now, if 2\ d then (ii) of the lemma is an obvious conséquence of Lemma 2 (i), (v), 
(2.4) and (2.7). If 2 \ d then it follows immediately from Lemma 2(i), (v). The lemma is 
proved. H 



Lemma 5. Let d, 2 I d, d —4, —8 and k > 5 be the discriminant of an imaginary 
quadratic ûeld and an odd natural number respectively. Then we have: 

' \ (k + 3 + 4 (4 - ) ) $8k2(d*)!3(d*) - A38h(d)+ 

+2(*)( lfc - 7)8h(2d) (mod 64£), if d= - 4 d * , d* > 0, 

tk = 
-$8k2(-4d*) + A38h(d)+ 

+ 2 (7 - 15 ( £ ) ) g ) 8 h ( d * ) a ( d * ) (mod 646), if d = 8d*, d* < 0, 

- 3 ( l - 2 $8k2{d*)P(d*) - A38h(d)+ 

+10g)<5/i(—4d*) (mod 64<5), if d = - 8 d \ d* > 0, 

where A3 := A3(d,k), and A3 = u > g ) + k, where u = - 3 ( 6 + 3), resp. 12 + 4 , 
if 41| d, resp. 8| d. 

PROOF. We begin by proving the lemma in the case 4 || d, d ^ —4. Applying (2.8) for 
2 f k, k > 5 we get 

tk = -k8tk_x{8l4) + \82§th_2{8l4) - 1 6 g ) f t 0 ( « / 4 ) -

- 2(f)82h(8/4) - 32\k(l)8t0(8/4) (mod64<!>). 

Thus by Lemma 3 for 2fk, k > 5 we deduce that 

tk = -kS l^t2(8/4) - k-^to(8/4)} + ± 6 2 g ) [ Y < 3 ( « / 4 ) - ^h(8/4)} -

- 1 6 g ) f t o ( « / 4 ) -2(^82h(8/4) - 3 2 A * g ) * o ( « / 4 ) 

= - 3 ) 6 ) ^ 3 ( ^ / 4 ) - 6 ) f t 2 ( « / 4 ) - [ g ) ( * - 5) + 8 0 ) ] h(8/4)+ 

+ [ M ^ l _ i 6 g ) _ 32A*(*)] 8t0(8/4) (mod646). (2.24) 

On the other hand in this case by = 0 and Lemma l(i) we have 

t3(8/4)^t*3(8*,a = l (mod4)) — tl(8*,a = 3 (mod4)) 
= 3tl(8*,a = l (mod4)) — 2^(8*, a = 1 (mod4))+ 

+ 5t*1(8*,a = 3 (mod4)) — 10tl(8*,a = 3 (mod4)) 
= 3t\'-2t*0'+ 2tl(8*,a = 3 (mod4)) - 8f0(8*,a = 3 (mod4)) 
= 3t\' + 6<o((5*,a = 3 (mod8)) — 2tl(8*,a = —1 ( m o d 8 ) ) -

-8t*0(8*,a = 3 (mod4)) = 3tï-2t*0(8*,a = 3 (mod 4 ) ) -

- 8t*0(8*, a = - 1 (mod 8)) = 31\' + 2t*0(8*/4)~ 

~ 4 ( l + ( t ) ) ^ 7 4 ) + St^/S) = 3tï-

- 2 ( l + 2 ( Ç j ) t*0(8*/4) + 8f0(8*/8) (mod 16), 



and by (2.12) (together with t\ = 0 and (2.2)), (2.10) and (2.15) for d / - 4 we obtain 

tz(8/4) = | ( 4 ( £ ) - l ) k2(d*)(3(d*) - h(d) + 2h(2d) (mod 16). 

Consequently by (2.24) together with (2.11), (2.14) and (2.16), the lemma for 41| d follows, 
because 21 h(d), h(2d), 4 | k2(d*), and 4 | h(d), if = 1. 

Now, consider the case 8| d. From (2.8) in this case we have 

tk = -Mf*_ i (£ /4 ) + \S2(§h_2{èl4) (mod646), 

and in conséquence by Lemma 3 for 2{fc, k > 5 we deduce that 

tk = —kS \^t2(6/4) - ^t0(S/4)} + 1 6 2 g ) -

= -Q)St2(S/4) + | 6 2 g ) f ! ( 6 / 4 ) + M^3l^o(6/4) (mod646). (2.25) 

On the other hand in view of (2.17), putting d = ±8d* we get 

f o ( 5 / 4 ) = w ) + i : ( w = i ) = i : [ ( f ) + ( é î ) ( i ) 
a=0 a=0 

= 2*0(6*,a = l (mod4)) = 2^(6*, <z = 1 (mod8)) - 2^(6*,a = 5 (mod8)), 

and in conséquence by Lemma 1 we see that 
t0(8/4) = 4 4(6*/8) + 2 (l - 2 (Ç) t*0(6*/4) - 2 ( * ) t*0(6*/2), (2.25a) 

because ^(6*/2), resp. ^(6*/4) = 0, if d* > 0, resp. d* < 0, ( Ç ) = - 1 (see (2.6)). 
Thus by (2.1), (2.6) and (2.18) in the case d* < 0, and by (2.10) and (2.15) in the 

case d* > 0, d ^ — 8 we obtain 
t0(6/4) = h(d). 

Thus the lemma for 8 je? follows from (2.25) together with the above formula and (2.19), 
(2.21) in the case d* < 0, and (2.20), (2.22) in the case d* > 0, because 41 h(d), h(-4d*), 
it ft) = i . • 

3. Used formulas. 

It is known that for k > 0, a Dirichlet character x with the conductor / and / 1 F 
the following formula holds: 

Bk,x = F'-1 Z x{a)Bk(a/F) (3.1) 
a=0 

(see Proposition 4.1 [3]). Here Bk(x) dénotés the fcth Bernoulli polynomial. It is known 
that for fc > 0 

«=o 



where Bi are ordinary Bernoulli numbers. Hence and from (3.1) for F = 2 / and 1) = 
(—l)fc we obtain 

2/ 
Bk,x = ( 2 / ) * - 1 £ X(a)Bk(a/2f) 

a=0 

= m*'1 [ E x(a)Bk(a/2f) + f X ( / - 2 a)Bk (H^) 
a=0 a=0 

= ( 2 / ) * - 1 ( l + X ( - 1 ) ( - I ) f c ) £ x(*)Bk{a/2f) 
a=0 

= E ( • ) 2 5 , _ i ( 2 / ) f c — 
»'=o 

Therefore for k > 2 we conclude that 

= E ( î ) 2 5 J b _ , ( 2 / ) i - 1 - ' - + jtk. (3.2) 
i = 0 

4. Proof of Theorem 1. 

We start with the formula (3.2). For k > 3, 2\k and \ = (~)> ^ < 0 it states that 

k, 3 

Bk,(i) = E {2l
k+i)2Bk-2i-i(2S)k-2i-2t2i+1 - Hk_i + (4.1) 

'V ' ' i=0 

Thus in view of the von Staudt-Clausen theorem for p = 2 and Lemma 4 we see that the 
numbers Bk ^ are 2-integral unless d = —4. Then we have 2 and ord2 Bk ^ = —1. 

Let us apply the formula (4.1) to the case 2 \d and k > 7. Then we have 

k, 3 

8Bk (i) = E - k8tk_x + tk (mod 64). (4.2) 

Hence in virtue of Lemma 4 (in the case 2 f d) for k > 9 we get 
k, 3 

8Bk{i) = fc(<f)«(<0 E (2.Î-1) 2Bk-2i-\ 2k-2i~28k-2i-lA2{d, i) -
i—^-2—2 1 2 4 

fc, 3 

-k2(-U)2k~* E ( 2 i l ) 2 ^ - 2 , - 1 

- kS [A! (d, ^ i ) h{d)a{d) + *=±k2{-4d)\ + A2 (d, ^ i ) h(d)a(d) (mod 64). 



From this, in view of 41 ̂ C—4c?) and fc > 9 it follows 

= AA(d,k)h(d)a(d) + dg) fc 2 ( -4d) (mod 64), 

where 

At(d, k) := 32 g ) + 8 g ) ( ! ) d + | (!) g ) d 3 + kdA\ (,i, V ) + A2 (d, . 

The task is now to find A4 modulo 64. Indeed we have 

A4(d, k) ^ 3 2 g ) + 8 g ) ( ! ) d + 22 (0 (k
2)d3+ 

+ (2 ( | ) " 1 - ( | ) rf) - ^ ( 2 ( f ) - l ) + 

+ fc ( ( j ) - 2 + ( j ) d) - ( j ) + 2 S 32(J) + 8 ® (§)d+ 

+ 2 g ) ( i ) (d + 2 + 8 (§ ) ) + 2 g ) (-d + 8-7 (<)) + 

+ k (d + ( f ) - 2 - ( | ) d) + 2 - ( ! ) EE 3 2 © -f 8 g ) ( f ) d+ 

+ 2 g ) ( ( ! ) d - d + 16 - 5 ( ! ) ) + k (d + ( ! ) - 2 - ( ! ) d) + 

+ 2 - ( ! ) (mod 64). 

We need consider two cases. If ( ! ) = 1 then we see that 

A4(d, k) = 3 2 g ) + 8 g ) + 2 2 g ) - fc + 1 

= (k - 1) [2(k - 3)(fc - 5) + 3(1 - 2fc)(fc - 3) + llfc - 1] 
= ( k - 1) p - 3)(4fc + 1) + llfc - 1] 
= 4(fc — l)2(fc + 1) = 0 (mod 64). 

Let ( ! ) = — 1. Then we have 

= 3 2 g ) + 2 4 g ) + 2 g ) ( 2 1 — 2d) + k(2d — 3) + 3 (mod64). 

Therefore in the case k = 1 (mod 4) we conclude that 

Ai (d , k) = 2 4 g ) - 1 0 g ) - 9(k - 1) + 2d 

= (fc - 1) [(fc - 3)(1 - 2k) - 5k - 9] + 2d = 2(k2 - 1) + 2d (mod 64), 

and in the case k = 3 (mod 4) we get 

At(d, k) = 32 g ) + 24 g ) + llfc(fc - 3) - 3(k - 3) + 16 + 2d 
= (fc - 3)[2(fc - l)(fc - 5) + (k - 1)(4k - 9) + llfc - 3] + 16 + 2d 
= ( k - 3)[-(fc - 1)(2k + 3) + llfc - 3] + 16 + 2d 
= 2(fc - 3)(5fc - 1) + 16 + 2d = 2(fc2 - 1) + 2d (mod64). 



On account of the above for fc > 9 the following congruence 

SBk ^ = (k2 - // + d) ( l - ( f ) ) h(d)a{d) + ti'd(^k2(-4d) (mod64) (4.3) 

holds with n' = d' = 1, and consequently after an easy computation the theorem for 
k > 9 follows. 

If fc = 3 then from (3.1) we have 

8BZ(d) = 2d2tx + 3dt2 + t3. 

Therefore by Lemma 4, (2.3) and (2.5) we deduce that 

8BZ ^ = [-d3 + A2(d, 1)] h(d)a(d) - k2(-id) (mod64). 

Consequently the congruence (4.3) with / / = 3 + 2d and fl' satisfying 3d'à' = —1 holds, 
and in conséquence the theorem for fc = 3 follows. 

If fc = 5 then from (3.1) we have 

8B5 ^ = — + + bdt4 + t<j. 

Thus by Lemma 4, (2.3) and in view of 41 fc2(—Ad) 

8B5^ = A5(d)h(d)a(d) + 10dfc2(-4<2) (mod 64), 

where 
As(d) := -24d + 28(d - l)A2(d, 1) + 5dAx(d, 2) + A2(d, 2). 

After a computation this congruence implies (4.3) with //' = 17 and d' = 1, and so the 
theorem for fc = 5 follows. 

Finally, if fc = 7 then from (4.2) we find that 

8B7^ = 32*i + 24*3 + U d \ + 7dt6 + t7 (mod 64). 

Therefore by Lemma 4, (2.3) and in virtue of 4 | k2(—4d) we observe that 

8B7^ = A6{d)h(d)a(d) + 5dk2(-4d) (mod 64), 

where 
A6(d) := 32 + 24A2(d, 1) + Ud2A2(d,2) + 7<MI(<*,3) + A2(d, 3). 

This yields (4.3) with fi,' = ti' = 1, and consequently the theorem for fc = 7. The theorem 
is proved. • 



5. Proofs of Theorems 2 and 3. 

We start with the formula (4.1). In the case 21 d and k > 3 it implies the congruence 

SBk ^ = 6 g ) « V 2 - kêt^+tk (mod 64). 

But Lemma 4 for k > 5 and (2.3) for k = 3 give 

6 4 * | 6 @ ) « V 2 . 

Consequently we get the congruence 

SBk^dj = —k6tk-i + tk (mod 648). (5.1) 

On the other hand by Lemma 4 we have 

= i f 4 | K 
K2J w [ 0 (mod 646), if 81 c?, 

and consequently, from (5.1) and Lemma 5 for k > 5, or Lemma 2 for k = 3 the 
theorems follow at once because of the divisibilities 4 | k2(d*), 2 | h(d), h(2d), and 
81 k2(d*), 41 h(d), h(2d), if = 1 in the case d = -4d*. U 

6. Corollaries to Theorem 1. 

In the corollaries below let us adopt the notation of Theorem 1. The following 
congruences follow immediately from the above theorem and Cor. 1, 2 to Thm. 2 [2]. 

COROLLARY 1. If (j^) = 1 and k> 3 then we have: 

bk(d) = —t=lk2(-4d) (mod64), 

and 

bk(d) = 8(3 + = 2(k - l)h(8d) = {k- l)k2(-8d) (mod 16(3 + (^- ) ) ) , 

where K :— 1, if 8 = p = 7 (mod 16) is a prime number and k ^ 1 (mod 8), and K := 0, 
otherwise. 

Moreover if 8 = p = —1 (mod 8) is a prime number then we have 

bk(d) = 2(k - l)(p + 1 + h(8d)) (mod 64). • 

COROLLARY 2. If = 1 and k> 3 then we have: 

(i) ord2 Bk ^ > 4. 

(ii) ord2 Bk (d) = 4 16 || k2(-4d) (or 4 || h(8d)) and k = 3 (mod4). 



(iii) ord2 ^ = 5 (16 || k2(-4d) and fc = - 3 (mod 8)) or (32 || fc2(-4d) and 
k = 3 (mod4)). 

(iv) ord2 Bk ^ > 6 k = 1 (mod 8) or (32 | k2(-4d) and k = - 3 (mod 8)) or 
641 k2(—id). 

(v) If S = p = — 1 (mod 8) is a prime number then we have: 

ord2 Bk ^ = 4 p = 7 (mod 16) and k = 3 (mod 4), 

ord2 Bk ^ = 5 •<=>• (p = 7 (mod 16) and k = — 3 (mod 8)) or 

(p = - 1 (mod 16) and 81| h(8d) and k = 3 (mod 4)), 

ord2 Bk ^ > 6, otherwise. • 

COROLLARY 3. If (!) = - 1 and k > 3 then we have: 

bk(d) = —2A(6fc - 5 ) h ( d ) a ( d ) - 2(k - l)h{8d) (mod 16(3 + (x*))) , 

where A := Ak(d), and A3 = 21/3 — //3, A5 = /X5, and Xk = 1, otherwise. 
Moreover if 6 = p = 3 (mod 8) is a prime number then 

bk(d) = -26kh(d)a(d) - 2(k - 1 )h(8d) (mod 64), 

where 6k '•= 0k(d), and 

0k = (6k-5)\k + (p-3)(k-l). U 

The above corollary and Theorem 1 imply the following: 
COROLLARY 4. If (!) = - 1 and k > 3 then we have: 

(i) ord2Bk ^ > 1. 

(ii) ovd2Bk^ = l 2 \ h(d) (or 4 || k2(—4d), or 2 || h(8d), or 4 || k2(—8d)) 
S = p = 3 (mod 8) is a prime number. 

(iii) ord2 =2 21| h(d) (or 8\\k2(-4d)). 

(iv) o r d 2 B k ^ = 3 4 || h(d) and [k = 1 (mod 4) or (k = 3 (mod 4) and 

4\h(8d))}. 
(v) o r d 2 B k ^ = 4 {8 || h(d) and [k = 1 (mod 8) or (k = - 3 (mod 8) and 

4 | h(8dj) or (k = 3 (mod4) and 8 | /i(8c?))]} or (16 | h(d) and k = 3 (mod4) and 
4\\h(8d)). 

(vi) o r d 2 B k ^ = 5 [8 || h(d) and 16 || k2(-4d) and k = 3 (mod4) and 

lh(d)a(d) ï ^ (£) k2(-4d) (mod4)] or {16 || h(d)) and [(fc = 1 (mod8) and 
16 | k2(—4d)) or (fc = - 3 (mod8) and 32 | fc2(-4d)) or (fc = 3 (mod4) and 
64 | k2(-4d))]} or {32 | h(d) and [(fc = - 3 (mod 8) and 16 || k2(-4d)) or (fc = 3 
(mod4) and 32\\k2(-4d))]}. 



(vii) ord2
 Bk,(±) ^ 6 t8 II h(d) and 1 6 II and k = 3 (mod 4) and 

lh(d)a{d) = ^ (|) k2(-4d) (mod 4)] or {16 || h(d) and [(& = - 3 (mod8) and 
16 || k2(-4d)) or (k = 3 (mod4) and 32 || k2{-4d))}} or {32 | h(d) and [(k = 1 
(mod8) and 16 | k2(-4d)) or (k = - 3 (mod8) and 32 | k2(-4d)) or (k = 3 
(mod4) and64|À;2(-4d))]}. U 

If k = 1 (mod2a), a < 5 then the congruence of the theorem implies the congru-
ence (1.2) and so this is a generalization of this congruence. If k = 1 (mod2a) then 
Theorem 1 leads to 

bk(d) = -kn ( l - ( f ) ) h(d)a(d) (mod2 a + / " 1 ) , 

where / := ord2 k2(-4d)(i.e. f > 2, or / > 4, if ( f ) = 1, cf. (1.2)). 

In the case = 1 by the congruences of Cor. 1, for any k we get a fairly straight-
forward generalization of the formula (1.4) for a < 5 (see Cor. 2(iv)). Also in this case 
we get formulas of the type of (1.5) (see Cor. 2(ii), (iii), (v)). In the case = —1, 
Cor. 4 gives an extension of the formula (1.5) for a < 5. 

In the second part of the paper we shall present analogous congruences and formulas 
to (1.3) and (1.6), (1.7). 

7. Corollaries to Theorems 2, 3 and 4. 

Applying Cor. 1,2 to Thm. 1, 2 [2] to Theorems 2,3 and 4 in the notation of these 
theorems we obtain the following: 

COROLLARY 1. If 4\\d and k> 3 then we have: 

(i) ord2 Bk ^ = —1, if d = —4, and ord2 Bk ^ > 1, if d < —4. 

(ii) ord2 Bk ^ = v, 1 < v < 3 ^ 2" || h(d). 

(iii) o r d 2 = 4 {16 || h(d) and [k = 1 (mod 4) or (k = 3 (mod4) and 
32 | k2(d*))]} or (321 h(d) and k = 3 (mod 4) and lQ\\k2(d*)). 

(iv) ord2 Bk ^ = 5 [16 || h(d) and 161| k2(d*) and k = 3 (mod 4) and k2(d*) + 

h(d) = 16 ( l - ( § ) ) (mod64)] or {32 || h(d) and [6 = 1 (mod8) or (k = 5 
(mod 8) and 32 | k2(d*)) or (k = 3 (mod4) and 64 | k2(d*))]} or (64 | h(d) and 
k = 3 (mod 4) and 32||*^(tT)), 

ord2 Bk ^dj > 6, otherwise. 

COROLLARY 2. If 81 d and k> 3 then we have: 

(i) ord2 Bk ( f ) > 0. 

(ii) ord2 = v,0<i/<3 2" || h(d) (i.e. ord2 Bk ^ = 0 d = -8). 



(iii) lîd* < 0 and (Ç) = 1 then: 

ord2 Bk ^ - 4 {16 || h(d) and [k = 1 (mod 4) or (fc = 3 (mod 4) and 

4|/*(<f)]} or (321 h(d) and k = 3 (mod4) and 21| h(d*)), 

ord2 = 5 (16||fc(d) and k = 3 (mod4) and 21| h(d*) and k2(-4d*)+ 

8h(d*)a(d*) = - ( f ) h(d) (mod64)) or {32 \\h(d) 
and [k = 1 (mod 8) or (k = - 3 (mod 8) and 41 h(d*)) 
or {k = 3 (mod 4) and 641 k2(-4d*) + 8h{d*)a(d*))}} 
or {641 h(d) and [(k = - 3 (mod8) and 21| h(d*)) or 
(k = 3 (mod4) and 32 || k2(—4d*) + 8h(d*)a(d*))]}, 

ord2 Bk ^ > 6, otherwise. 

Ifd*< 0 and = -1 then: 

ord2 Bk ^ = 4 {161| h(d) and [k = 1 (mod 4) or (k = 3 (mod4) and 

k2(-4d*) = 12h(d*)a(d*) (mod 32))]} or (32 | h(d) and 
k = 3 (mod 4) and 161| fc2(—4<f ) + 20h(d*)a(d*)), 

ord2 Bk ^ = 5 (161| h(d) and k = 3 (mod 4) and 

k2(-4d*) + 20h(d*)a(d*) = - ( f ) h{d) (mod64)) or 
{321| h(d) and [A: = 1 (mod 8) or (k = - 3 (mod 8) and 
k2(—4d*) = 12h(d*)a(d*) (mod32)) or (fc = 3 (mod4) 
and k2{-4d*) = -20h{d*)a(d*) (mod64))]} or {64 \h{d) 
and p = - 3 (mod 8) and 16 || k2(-4d*) + 20h(d*)a(d*)) 
or (fc = 3 (mod4) and 32\\k2(-4d*) + 20h(d*)a(d*))}}, 

ord2 Bk ^ > 6, otherwise. 

(iv) Ifd* > 0 then 

ord2 Bk ^ = 4 {16 || h(d) and [fc = 1 (mod 4) or (k = 3 (mod 4) and 

k2(d*)(3(d*) = 2h(—4d*) (mod32))]} or (321 h{d) and 
k = 3 (mod4) and 161| fc2(<f)/?(<f) - 2h(-4d*)), 

ord2 Bk ^ = 5 ^ [161| h(d) and fc = 3 (mod 4) and ( l - 2 fc2(<f )/?(<f ) 

+ 2h{-4d*) = (|) h(d) (mod 64)] 

or {321| h(d) and [fc = 1 (mod 8) or (fc = - 3 (mod 8) 

and (l - 2 fc2(<f )/?(<f ) = -2h(-4d*) (mod32)) 

or (fc = 3 (mod4) and ( l - 2 k2{d*)p(d*) = 

-2h(-4d*) (mod64))]} or {64\h(d) and 



p = - 3 (mod 8) and 161| k2(d*)/3(d*) - 2h(-4d*)) 
or (k = 3 (mod 4) and 

321| (l - 2 ( I - ) ) k2K)/?(<f ) + 2*(-4<T)]}, 

ord2 Bk çdj > 6, otherwise. 

Corollaries to Theorems 2, 3 and 4 are extensions of the formulas (1.4) and (1.5) for 
2| d and a < 5. 

REMARK. ïî d = —A t hen by L e m m a 4 and the congruence (5.1) we get 

2bk(d) = 18 + ^ (mod 32), 

i.e. 
Ek_! = 1 4 - ^ (mod 32), 

where Ei dénotés the zth Euler number. This congruence complétés Theorem 4. 

8. Proofs of Corollaries to Theorems. 

Corollaries to Theorem 1 follow immediately from this theorem and Cor. 1, 2 to 
Thm. 2 [2]. It remains to prove Corollaries to Theorems 2, 3 and 4. Indeed, Corollaries 1, 
2(i), (ii) (2(ii) for v < 2) are easy conséquences of Theorem 4. To prove Corollary l(iii), 
(iv) let us notice that by Cor. 2(i), (ii) to Thm. 1 [2], 16 | h(d) implies 4 | h(2d) and 
16 | k2(d*). Therefore we have 

tfi k2{d*)/3(d*) + d3h(2d) = 

' 2(k - l)h(2d) (mod64), if k = 1 (mod4), 

-k2(d*) - 2(k + l)h(2d) (6-1) 
(mod 64), if fc = 3 (mod 4). 

This yields (iii) at once. To prove (iv) let us make the following observation. If a, b, c G Z 
then 

a + c, b= 16 (mod 32) 1 a + c= b (mod 64) 1 
a + b + c = 32 (mod64)j ^ b = 16 (mod32) J ' 

Combining this with (6.1) gives (iv) because by Cor. 2(iii) to Thm. 1 [2], 16 || h(d) 
and 161| k2(d*) imply 41| h(2d), and if 161h(d) then %\h(2d) if and only if 321k2(d*). 

We now turn to Corollary 2(ii) (for v = 3), (iii), (iv). Let d* < 0. If = 1 
then by Cor. 2(i) to Thm. 2 [2] we find that 16 | k2(-Ad*) and 2 | h{d% if {—) = - 1 
then by Cor. 2(iii) to the mentioned theorem the divisibility 8 | h ( d ) implies 2\h(d*) and 
8 | k2(—Ad*). Moreover we have 

dik2(-Ad*) + êzh(d*)a(d*) = 

k-1 ^[k2(-Ad*) +8h(d*)a(d*)} 

(mod 64), i f ( ^ ) = l , 

Jt-i 
2 [k2(-4d*) + 20h(d*)a(d*)} 

(mod 64), i f ( ^ - ) = - l . 



Hence and from Cor. l(i) to Thm. 2[2],(ii) for v = 3 follows immediately. Indeed, 81 h(d) 
yields 16 | ïïik2(—4d*) + $3h(d*)a(d*) in both the cases. To prove (iii) it suffices to use 
Cor. 2(i) ((i), resp. (iii), if = 1, resp. - 1 ) to Thm. 2 [2]. In fact, if (£-) = 1 and 
16 || h(d) then by the mentioned corollary we have 32 | k2(—4d*). Now Corollary 2(iii) 
follows from (6.3) and (6.2). 

Now let d* > 0. Then by Cor. 2(i) to Thm. 1 [2], 8 | h{d) implies 4 | h(-4d*) and 
81 k2(d*). Moreover we have 

^k2{d*)l3{d*) + fi3h(-4d*) = - Y [3 (l - 2 (4r)) k2(d*)/3(d*) - lQh(-4d*)] . (6.3) 

Thus by Cor. l(i) to Thm. 1 [2] we get (ii) for v = 3. Then the left hand side of (6.3) is 
congruent to - 4 ( l + 3 ( f - ) ) h(-4d*) = 0 (mod 16). 

To prove (iv) it is sufficient to use (6.3), and also (6.2), if 16 || h(d) and k = 3 (mod 4). 
This complétés the proof. • 
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Abstract. The paper is a continuation of my earlier paper on this subject. We prove 
analogous congruences as in that paper, but for positive discriminants d. Also for each 
0 < v < 5 ail positive d and even k satisfying ord2 Bk ^ = v + ord2 k are found. 

The proofs are similar in spirit to proofs of [3], and based on ideas of [1] and [2], 
again. 

In the third part of the paper we shall study related problems, but from a p-adic 
measure point of view. 

Key words: Bernoulli numbers, Kummer congruences, class numbers. 



1. Notation. 

We follow the notation of [3]. Let d stand for the discriminant of a quadratic field. 
Dénoté by ( f ) , resp. BkjX the Kronecker symbol, resp. the fcth generalized Bernoulli 
number belonging to the Dirichlet character x- Set S := |cf|. Write h(d) := —B1 if 
d < - 4 and h(-3) = h(-4) := 1. Put k2(d) := B2 ^y if d > 8 and jfe2(5) = Jfc2(8) := 4. 
Let x > 0 and X C N U {0}. To simplify the notation we continue to write (as in 
[3]) tk(x), tk(x,a G X), resp. tk(x), tk(x,a G X) for sums of the fcth powers of natural 
numbers taken from 0 to x, involving quadratic characters , resp. ) , where d* is 
the discriminant of a quadratic field satisfying d = —4d* or ±8d*. Write tk := tk(6) and 
t'k:= tk(6,2 fa) . 

Let us recall that BQ ^ = 0, and for k > 1 

Bk{i) = 0 (1.1) 

if and only if + (—1)*- Write a(-3) := 0(5) := p{8) := f , and a(d), /3(d), 
p(d) := 1, otherwise. Put rj(5) := 0(5), 7/(8) := p(8), and ï)(d) := 1, otherwise. Set 

bk(d) := 

2. Theorems. 

Our purpose is for each 0 < v < 5 to find ail positive d and even k such that 
ord2 Bk + ord2 k. We prove some new congruences between generalized Bernoulli 
numbers of the Kummer congruences type modulo 64 but with deleted assumptions on k. 
For a deeper discussion of it we refer the reader to [3]. 

In this part we prove the following generalizations of the congruence (1.3) of [3]: 

THEOREM 1. Let d, 2 t d and k > 4 be the discriminant of a real quadratic field and 
an even natural number respectively. With the above notation, the numbers bk(d) are 
2-integral and the following congruence holds: 

bk(d) = (2k ( f ) + k + 2) fxh(-Ad) + § (-Jfe - 2 ( f ) + l ) 0k2(d)p(d) ( m o d 6 4 ) , 

where fi := fik{d), d := dk(d), and 

P4 = -d + 10 + 4 ( f ) , n6 = 8 + 5 ( g ) , 

i?4 = 2d + 8 ( f ) + 7 , = - 4 ( g ) - 1 1 , 

and fik, $k = 1, otherwise. 



The case 21 d is more complicated. We prove the following: 

THEOREM 2. Let d = —4d*, where d* is the discriminant of an imaginary quadratic 
field, and let k > 4 be an even natural number. Then the numbers bk(d) are 2-integral 
and we have: 

bk(d) = (d) + ê2h(d*)a(d*) + ê3h(-2d) (mod64), 

where êi := t?,•(</, k) 6 Z (i = 1,2,3) are of the form d = pk -f q, and 

dl = k - l , i?3 = —4(k — 2), 

( ! _ ( $ . ) ) ( » _ 2 ) + 8 ( 1 + ( $ • ) ) ( ! - ( j â ) ) . 

THEOREM 3. Let d = ±8d*, d > 0, where d* is the discriminant of a quadratic field 
(i.e. d ^ 8), and let k > 4 be an even natural number. Set A := 1, if k = 4, and A := 0, 
otherwise. Then the numbers bk(d) are 2-integral and we have: 

( ^k2(d) + ê2h(-d) + ê3h(-4d*) (mod 64), if d* > 0 , 
bk(d) = < 

l H\\k2(d) + nih(-d) + nzh(d*)ot(d*) (mod 64), if d* < 0, 

where di := t?,-(d, k), //,• := m(d, k) € Z (i = 1,2,3) are of the form i?, fi = pk + q, and 

= k — 1, ê2 = 13( fc-2) + 1 6 A , ê3 = -4 (jÇ) {k - 2), 

m = k- 1, H2 = ( 4 (Çj + l ) (k - 2) + 1 6 A , n3 = 8(k — 2). 

Combining Thm. 2 and 3 with Cor. 1 to Thm. 1, 2 [2] we can get many new congru-
ences for generalized Bernoulli numbers modulo 64 (or 32). 

Lemma 6 and the congruence (5.1) give a weaker version of Thm. 2 and 3: 

THEOREM 4. Let d > 0, 21 d be the discriminant of a quadratic field, and let k > 4 be 
an even natural number. Then the numbers bk(d) are 2-integral and 

bk(d) = \k2(d)p(d) (mod26-°rd2<i). 

3. L e m m a s . 

We shall need Lemma 1 [3]. Likewise in [3], the proofs of the theorems fall naturally 
into a sequence of lemmas. First we shall prove a lemma of the kind of the above 
mentioned lemma: 

LEMMA 1. Let d, 2 \d be the discriminant of a quadratic field. Then we have: 
(i) If d > 0 then 

h(6,a = 6 (mod 8)) = ( f ) [-8*1(6/8) + 6*0(6/8)], 

*!(6, a = 6 + 2 (mod8)) = 4 [^(6/2) - ( 2 ( f ) + l ) h(6/4) + 2 ( f ) ^(6/8)] -

- S l - 0 + © ) W 4 ) + ® M W ) , 



n(S, a = 8 + 4 (mod 8)) = - 4 [*i(6/4) - 2 ( ! ) *i(6/4)] + 

+ 8 [t0(8/4) - ( f ) t0(*/8)] , 

^(6, a = 8 + 6 (mod 8)) = 8 ( ! ) [*i(6/4) - h(8/8)] - (!) <5 [t0(8/4) - t0(6/8)]. 

(ii) If d< 0 tien 

h(8,a = 8 (mod 8)) = ( ! ) [8*i(6/8) - 6*0(6/8)], 

t1{6,a = 6 + 2 (mod8)) = 8 ( ! ) [*i(6/4) - *i(6/8)] - ( ! ) 8[t0(8/4) - t0(8/8)), 

*i(6,a = 8 + 4 (mod8)) = 4 [*i(6/4) - 2 ( ! ) *i(6/8)] + 

+ 8 [~t0(8/4) + ( ! ) *0(«/8)] , 

h(8, a = 8 + 6 (mod 8 ) ) = 4 [h(8/2) - ( 2 ( ! ) + l ) *i(6/4) + 2 ( ! ) *i(6/8)] -

- 6 [t0(8/2) - (l + (!)) t0(8/4) + ( ! ) * 0 ( t y 8 ) ] • 

PROOF. First, let us notice that by (2.1a,b) [3] we have 

h ( 8 / 2 , a = 8 (mod4)) = — (zy) £ ( é i ) ( S ~ a ) + S t o( 6 / 2 ^ a = S (mod4)) 
0 < a < « / 2 , 

a=6 (mod 4) 

= - ( é ) E ( ï ) « + 6to(S/2,a = 8 (mod4)) 
6/2<a<6, 

4| a 

= - (dr) fatà41 « ) - *i(*/2,41 " ) ] + ^0(6/2, a = 8 (mod 4)) 

= " 4 ( é ) m / 4 ) - *i(6/8)] + 8 W H ) ~ HS/8% 

and similarly 

*i(6/2,a = 6 + 2 (mod4)) = - ( ^ - ) £ ( I ) a + a = 8 + 2 (mod4)) 
6/2<a<6, 

a=2 (mod 4) 

= " (ëï) ^ 1 (S,2\a)-t1(S,4\a)-t1(S/2,2\a)+ 

+ *i(6/2,4|a)] + 6*0(6/2,a = 6 + 2 (mod4)) 

= "2 ( i ) [ ( ! ) *i(*/2) - (2 + ( ! ) ) h (6/4) + 2*i(6/8)| + 

+ 6 U î ) MS/2) - ( l + ( ! ) ) *o(6/4) + *0(6/8)] . 

Applying the above and Lemma 1 [3] gives the lemma because 

<1(6, a = 8 (mod 8)) = — (-^y) t\(6,81 a) + 6 * o ( 6 , a = 6 (mod 8)) 

= -8 ( 4 ) ( f ) *i(*/8) + 6t0(S,a = 8 (mod 8)), 



tx(8,a = 8 + 2 (mod8)) = = - 2 (mod8)) + 8t0(8,a = 8 + 2 (mod8)) 

= -2 ( i ) ( î ) h(8/2,a = 3 (mod4))+ 
+ 8t0(8,a = 8 + 2 (mod8)), 

*i(6,<ZEE6 + 4 (mod8)) = — ti(8,a = 4 (mod8)) + 8t0(8, a = 8 + 4 (mod8)) 

= - ( é ï ) 41 a) - tx(8,81 a)] + 8t0(8, a = 8 + 4 (mod 8)) 

= - 4 ( ^ r ) [ * i W 4 ) - 2 ( | ) * 1 ( t f / 8 ) ] + 

+ 8t0(8,a = 8 + 4 (mod8)), 

^(8,0 = 8 + 6 (mod8)) = - ( ^ ) * i ( < S , a = 2 (mod 8)) + 8t0(8, a = 8 + 6 (mod 8)) 

= ~2 ( é ) ii) h(S/2,a = 1 (mod4))+ 
+ 8t0(8,a = 6 + 6 (mod8)). 

I 

LEMMA 2 . Let d be the discriminant of a real quadratic field. Then we have: 

(i) <o = 0. 

(ii) = ( 4 - ® ) W / W 

f 2d(l)k2(d)/3(d), i f 2 f d , 
(111) to = < v 
V ' 1 dk2(d)p(d), if 21 d. 

(iv) = \d2k2(d)p(d), if 2\d. 

(v) <3 = \C(d)k2(d)(3(d) + 2dh(-4d) (mod 64), if 2 fd , 

where 

C(d) :=2d-4+ ( I ) . 

P R O O F . Since to = 0, and for d > 0 

t0(d/2) = 0, 

(i) of the lemma follows easily. 
For any d and i we have 

t't = u- 2' ( i ) u(8/2). (3.1) 

Therefore (ii) follows from t\ = 0 and (2.12) [3] immediately. 
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On the other hand for d > 0 we have 

t2 = dk2(d)rj(d). (3.2) 

Therefore to prove (iii) of the lemma it suffices to note that 

t2 = 2t2(8/2)-2dt1(6/2) 

and to use (2.12) [3] and (3.1). Then we have 

t2(d/2) = -\d(2-(ï))k2(d)r)(d), 

and 
1 + 2 ( f ) - (I) dk2(d)r,(d). 

Now we prove (iv) and (v) of the lemma. If d > 0 then by (1.1) we deduce that 

Consequently for d > 0 from the formula (3.1) of [3] (with F = d) we get 

t3 = \d2k2{d)r](d). (3.3) 

This gives (iv). We now turn to (v). For any d we have 

t3(S/ 2) = h (6/2,2 fa) = ti{8/2) - 2 ( f ) ti{8/4) (mod 8). 

Hence and from (2.12,13) [3] for d > 0, 2\d we obtain 

t3(d/2) = - f (2 - 3 ( 0 ) k2(d)/3(d) - \d (Çj h(-4d) (mod 8). 

Thus (v) follows from (3.1) and (3.3). This complétés the proof of the lemma. • 

Similarly as in [3], combining the above lemma with Corollary to Lemma 3 of [3] 
yields: 

LEMMA 3. Let d be the discriminant of a real quadratic field. Then we have: 
(i) î f i > 2 then 

_ (2 [id - 22'"-3] k2{d)/3(d) (mod 64), if 2 \d, 
ht = j idk2(d)p(d) (mod 64), if 21 d. 

(ii) if i > 1 then 

__ j jA\(d,i)k2(d)/3(d) + 2 (i - 22i~2)dh(-4d) (mod 64), if 2 f d, 
hl+1 = j lid2k2(d)p(d) (mod 64), if 21 d, 

where 
Ai(d, i) := 3 • 22' (3 - 2 ( I ) ) - 4i(d + 2) + 2 (4 - l ) . 



PROOF. AS in t h e proof of L e m m a 4 of [3], let us no te t h a t if 2 | d t hen t{ — t\, and if 
2 \ d and i > 3 t hen 

U = 2* ( | ) t„ (d/2,2\a) + t'i (mod64), (3.4) 

where i = a (mod2), a 6 {0,1}. 
Since <o(d/2) = t'o = 0> applying Cor. to Lem. 3 [3] to (3.4) for i > 2 we get 

t2i = 22' (0 t0(d/2^a) + 4 = —22' ( f ) 2 t0(d/4) + it'2 (mod64). (3.5) 

Hence and from Lemma 1 (iii), (i) of the lemma for 2 | d follows immediately. In order 
to prove (i) in complété, it remains to consider the case 2 \ d . Then in view of (2.10) [3], 
(3.5) and Lemma 1 (iii) imply 

t2i = -22i~lh(-4d) + 2id (|) k2(d)P(d) (mod 64). 

Consequently (i) of the lemma for 2 f d follows by Cor. 1 (i) to Thm. 1 [3] that implies 
the congruence 

k2(d)fi(d) = 2h(-4d) (mod 16). (3.6) 

We now turn to (ii) of the lemma. From (3.4) and Cor. to Lem. 3 [4] for i > 1 we get 

t2i+1 = 2 2 i + 1 h(d/2,2fa) + 4 + 1 

= 2 2 , + 1 ( f ) [h(d/2) - 2 h(d/4)] + it'z - (i - 1 )t\ (mod64). (3.7) 

Hence and from Lemma 1 (ii), (iv), (ii) of the lemma for 2 | d follows easily. If 2 \ d then 
by Lemma 1 (ii), (v) and (2.12,13) of [3], and (3.6), (3.7), an easy computation shows 
that (ii) of the lemma follows. Thus the lemma is proved. • 

We next prove the following: 

LEMMA 4. Let X be a subset of the set of the odd natural numbers. Put X(r) := {a G 
X | a = r (mod 8)}. Then for any x > 0, d and even k we have: 

tk(x,a eX) = \t2{x,a G X) + (l - t0(x,a G X(±l))+ 

+ 9 (3*~2 - | ) <(,(*, « e X(±3) ) (mod 2ord2 *+6). 

PROOF. Fi rs t , let us not ice t h a t for any n a t u r a l k t h e congruence a = r ( m o d 8 ) implies 

k 
ak = (a - r + r)k = £ g) [a - r)V*-,' = rh + k(a - r)^-1* 

i = 0 

+ g)(a - r)2rk~2 + (a - r)k (mod 2ord2 k + 6 ) , 

because for i > 3 
(a — rV 23' 

ord2 ^ — t t 2 - > ord2 -z- > 2i > 6. 
i\ i\ 

Consequently in the case even k, k > 4 the congruence a = r (mod 8) with odd r leads 
to 

ak = rk + k(a - r)r + | ( a - r)2 (mod 2ord2 *+6), 



because for k > 3 we have 

ord 2 (a — r)k > 3 k > ord 2 k + 6. 

Thus for even k > 4 and odd r we get the congruence 

ak = rk_kr2+ka2 (m o d 2°rdafc+6 ) } 

if a = r (mod 8). Hence the lemma follows immediately. Indeed we have 

tk(x, a G X) = E aeXT) = |<2(®, a € X)+ 
r = ± l , ± 3 

+ E r 2 ( r W - | ) M M 6 l r ) (mod2 o r d 2 f c + 6 ) . 
r = ± l , ± 3 

• 
COROLLARY. For any d and even k we have: 

t'k = \t'2 + ( l - t0(8,a = ± 1 (mod 8))+ 

+ 9 (3*~2 - f ) t0(6,a = ± 3 ( m o d 8 ) ) (mod 2 o r d 2 k + 6 ) . 

U 

LEMMA 5. Let d and k > 4 be the discriminants of a real quadratic field and an even 
natural number respectively. Put Xk, resp. irk 1, if k <8, resp. k = 4 and \k, irk := 0, 
otherwise. Then we have: 

(i) If2\dthen 

tk = | ( 1 - 3* - Xk2k + 4k)h(-4d) + kd k2{d)/3(d) (mod2 o r d 2*+ 6 ) . 

(ii) If d = —4d*, where d* is the discriminant of an imaginary quadratic field then 

tk = f(3k + 5)kdk2{d) + A2(d, k)kdh(d*)a(d*) - 4{k - 2)kdh(-2d) 

(mod 2 old*k+6d), 

where 

A2(d, k) := (2d* + 15 - ( 4 - ) ) k + 2 (d* - 3 + 2 ( £ ) ) ( l + + 

+ 2 ( 1 1 + 5 ( 4 - ) ) . 

(iii) Ifd= ±8d*, where d* is the discriminant of a quadratic field (i.e. d / 8) then 

' ^kdk2(d) + [13(Jfe - 2) + 16** ]kdh( -d) 

—4 ( £ ) (k - 2)kdh(-4d*) (mod 2ord2 k+6d), if d* > 0, 
tk = 

^kdk2(d) + [(4 (£-) + l ) (k - 2) + lÔTTfc] kdh(~d) + 

. +8 (k - 2)kdh(d*)a(6*) (mod 2ord2 k+6d), if d* < 0. 



PROOF. We have 
tk = 2k (!) tk(d/2) + t'k, 

and 
2* = 0 (mod2o r d 2*+ 6 ,2o r d 2*+5 , resp. 2ord2*+2), 

if fc > 10, fc = 8 or 6, resp. k = 4. 
Hence and from (2.10) [3] we get 

tk = t'k - 2k~1\kh{-4d) (mod2ord2fc+6), 

because by to(d/2) = 0 we have 

tk(d/2) = t0(d/2,2\a) = - (!) t0{d/4) (mod 2), 

or (mod 16), if k = 4. 

On the other hand applying Lemma 1 (i) [4] gives 

t0(d,a = ±1 (mod8)) = -t0(d,a = ±3 (mod8)) = t0(d/4). 

Now to prove (i) of Lemma 5 it suffices to use Corollary to Lemma 4, (2.10) [3] and 
Lemma 2 (iii). 

Our next concern will be the case 2 | d. Then by (2.7a) [3] for d > 0 and even k we 
obtain 

tk = tk(d/4) - £ (*) W 2 ) ' ( - 1 ) * - V , W ) + E ( * K ( - 1 ) * - V , W 4 ) -
i=o «=o 

-E(ki)(d/2ytk_t(d/4) 
i=0 

= tk(d/4)-2 £ (î)(rf/2) it t_i(rf/4) + E( î )« i , ' ( - l ) t - , '« t - i (r f /4) . 
0<i<ib, t=0 
i even 

Therefore we have 

tk=tk(d/4)-2 £ (k)(d/2)itk_i(d/é)-27rk(d/2)kt0(d/4)+ 
0<«'<n, 

j even 

+ E (î)d,'t(-l),'<fc_,-(d/4) + nrffc<o(rf/4) (mod2ord2À:+6J), (3.8) 
•=o 

where ri := min(A;,2(6 — ord2 d)), r2 := 2(4 — ord2 d), îrjt := 1, if fc = 4 and 8 | d, and 
Àjt := 0, otherwise. Indeed, if 4 || d, resp. 8 | d then each of the following numbers: 
ord2 [2 (c?/2)*] for even i > 10, resp. i > 8 and ord2 [(?)<?] for i > 5, resp. i > 3 
equals at least ord2 fc+ord2 d+6. So do the numbers ord2[2(<//2)*] for fc > 10, resp. fc > 6 
and ord2(c?fc) for fc > 4 because 

2*+1, resp. 22k = 0 (mod2ord2 

for fc > 10, resp. fc > 6, and 

22k+1, 23k = 0 (mod2ord2*+9) 

for fc > 6. 



We need consider the cases. First, let d = —Ad*, where d* is the discriminant of an 
imaginary quadratic field. Then by (3.8) we have 

tk = tk(d/4) - 2 £ (*) 0rf /2) lVi(d/4)+ 
0<i<min(i ,8) , 

i even 
4 

+ E Ç0*(-l)%-iW) (mod2 o r d 2 k + 6d) . 
i=0 

Therefore putting g ) := 0 for i > k and ts(x) := 0 for s < 0 we get 

tk = -kdt^d/4) + ld2$tk_2(d/4) - §dhk_3(d/4)+ 

+ - " iMsK^-s^) (m°d2ord2k+6d). 

Hence, by Lemma 3 [3] (applied to the sums tk-i(d/4), tk_2(d/4) and tk_^(d/4)) we find 
that 

tk = -kd l^h{d/4) - ^h(d/4)] + 

+ ¥2($) [¥^2(^/4) - ^ W / 4 ) } - ($ytl(d/4)+ 

+ ï f i K - ^ W / 4 ) } - ^Q)d%(d/4)-

- ±$d«t0(d/4) 

= -kd^t3(d/4) + G'k(d)t2(d/4) + \kd^ - h(d/4)-

-Gl(d)t0(d/4) (mod 2 o l d * k + 6 d) , 

G'M : = + 
4 k—4 

2 ' 
where 

and 
G Ï W - ^ © Y + ï ( î ) < ^ ¥ + + î M ' R 

Consequently we get 

tk = -kd^t3(d/4) + G'l'(d)kdt2(d/4) + (—15| + 14) kdh(d/4)+ 

+ GI
k(d)kdto(d/4) (mod2 o l d* k + 6d) , (3.9) 

where 

e ! W := - f [ - ( i â ) (12 + + 8 ( £ ) ) } + 12 0 - ) ( & ) - 4 ( i ) + 13 

and 

G T M : - ^ [ - (l + 4 ( j i ) ) | + ( - 1 + 5 fâ)) " 7 (1 - ( â ) ) <i*2 

Indeed we have 
(k - 3)(k - 5)(k - 7) = k - 5 (mod 4), 



and 
fc(fc - 2)(k - 4)(k - 6) = 0 (mod27), 

and consequently we find that 

G'l(d) = — [(Jb — 4) + 13d*2(k - 2)(fc - 3){k - 6 ) -

- 4(k - 2)(fc -4) + 2(fc - 2){k - 4)(fc - 6)] dd* g ) 

/fc\ f + 5fc + 12 + 28d*2 (mod 2ord2 k+ed), if k = 0 (mod 4), 
V2; \_k2 + k ( m o d 2ord2 if fc = 2 (mod 4). 

Therefore we obtain 
G'l(d) = -kdG^(d) (mod 2ord2 k+6d). 

Moreover we see that 

G'k(d) = -dd*(k - 2) (*) [1 + 13d*2{k - 3)(fc - 4)] 

• (_13 _ 8 (£-)) ( f - l ) (mod2ord2*+6), if fc = 2 (mod4), 

( l l + 8 ( f ) ) ( | - l ) + 8 ( 3 - ( ^ ) ) 

(mod 2ord2 *+6), if fc = 0 (mod4). 

= —kdd* x i 

and consequently 

G'k(d) = kdGl'(d) (mod 2ord2fc+6rf). 

On the other hand we have 

ti(d/4) = t*i(6*,a = 1 (mod4)) — £*(<$*,a = 3 (mod4)), (3.10) 

and so by (2.1), (2.6) [3] (cf. (2.11) [3]) we deduce that 

t0(d/4) = -t*0(6*,a = 2 (mod4)) + *S(6*,4|a) 

= 2t*0(6*/4) - ( f ) tl{872) 

= (2 -(%))h{d*)a{d*), (3.11) 

and by (2.1), (2.4), (2.6), (2.7) of [3] (cf. (2.11a) [3]) we find that 

t1(d/4) = t*1(8*,a = 2 (mod4))-t*1(d*,4\a)-6*t*()(6*,a = 2 (mod4))+ 
+ **tS(«*,4|«) = 2 ( Ç ) *î(*72) -8<î (** /4)+ 

- ( T ) S*t*0(6*/2) + 26%(6*/4) 

= -\k2(d) + ( ( f ) - 2) d*h{d*)a(d*). (3.12) 

Moreover by (2.10) and (2.14a) [3] we get 

t2(d/4) = 2 - t*0' + 16t*0(8*,a = 5,7 (mod 8 ) ) -
— 14*Q(6*, a = 3,7 (mod8)) (mod 64). (3.13) 



On the other hand in view of Lemma l(ii) [3] we have 

16*£(6*,a = 5,7 (mod8)) — 14*g(6*,a = 3,7 (mod8)) 

= 8 ( l + (4-))tS(tf*/2)-18*S(«*/4), (3.14) 

and so (3.13) together with (2.1), (2.6) [3] and Lemma 2 (i), (ii) [3] imply the congruence 

t2{d/4) = (2 (4-) d* + ( £ ) - 2) h(d*)a(d*) (mod64). (3.15) 

We are left with the task of determining of t3(d/4) modulo 64. Since a = r (mod 8) 
yields the congruence 

a3 = 3ar2 - 2r3 (mod64), (3.16) 

it may be concluded by (3.10) that 

t3(d/4) = 3 £ r2tî(6*,a = r ( m o d 8 ) ) - 2 £ r3t*0(8*,a = r(mod8))-
r = l or 5 r = l or 5 

- 3 £ r2tl(S*,a = r (mod8)) + 2 £ r3t*0(8* ,a = r {mod 8)) 
r = 3 or 7 r=3 or 7 

= 3*î(6*,a = 1 (mod 8)) + ll*î(6*,a = 5 (mod 8 ) ) -
— 2*0(6*,o = 1 (mod8)) + 6*0(6*,a = 5 (mod8)) — 
- 27*^(6*, a = 3 (mod 8)) - 19*î(6*,a = 7 (mod 8 ) ) -
- 10*^(6*,a = 3 (mod8)) - 18t*0(8*,a = 7 (mod8)) 

= 3 t ï - 21*0' - 16*o(6*, a = 5,7 (mod 8)) — 
— 22t\(8*,a = 3 (mod4)) — 32*o(6*, a = 3 (mod 8)) (mod64). 

(3.17) 

But in virtue of Lemma 1 (ii) [3] we have 

t*0(8*,a = 5,7 (mod8)) = -2f$(6*/4) + \ ( l + ( f ) ) t*0(8*/2) 

(cf. (3.14)), and 

*£(6*, a = 3 (mod8)) = *£(6*/4) - | ( l + (*•)) *J(6*/4). 

Moreover we have 

**(6+, a = 3 (mod4)) = *î(6*,4|a) - 6%(8\ 4|a) = 4*î(6*/4) - 6***(6*/4). 

Therefore (3.17) implies 

t3(<*/4) s 3*î' - 2*o' + 2 (l l6* + 8 - 8) *o(6/4)— 

- 8 (l + t*0(8*/2) - 24*j(6+/4) - 32t*0(8*/8) (mod 64). 

Now it is sufficient to apply Lemma 1 (i), (ii) [3] and the formulas (2.6), (2.1), (2.7), 
(2.18) of [3]. Then we get 

t3(d/4) = - f k2(d) + [ - (2 + d* + 16 (Ç) - 14] h(d*)a(d*)+ 

+ 8h(—2d) (mod 64). 



Applying the above congruence together with (3.11), (3.12) and (3.15) to (3.9) gives 

tk = |(3fc + 5)kdk2(d) + A(d, k)kdh(d*)a(d*)-

- 4(jfc - 2)kdh{-2d) (mod 2ord2 k+6d), 

where 

A(d, k) := [ - (2 + ( f ) ) d* + 16 ( f ) - 14] + 

+ (2 ( F ) d* + (T) - 2) Gl'(d) + ( - 1 5 $ + 14) ( ( F ) - 2) d*+ 
+ &ï{d) (2 - ( I - ) ) . 

Now the proof of Lemma 5 in the case 4 || d will be completed as soon as we can prove 
that 

A(d, k) = A2(d, k) (mod 64). (3.18) 

Indeed putting G'j! = m"' § + n'" and = m I V | + nIV, we have 

A(d,k) = A'(d,k)^ + A"(d,k), 

where 

A'(d, k) = [(2 + ( f ) ) d* - 16 (4-) + 14] + (2 ( * ) d* + (* ) - 2) m"'+ 

+ 15 ( 2 - ( 4 - ) ) ^ + m - ( 2 - ( f ) ) 

and 

fc) = [ - (2 + ( f ) ) d* + 16 ( i ) - 14] + (2 (4-) d* + ( f ) - 2) n"'+ 

+ 14 - 2 ) <T + n 

Thus in virtue of 

A , ( D K ) S + 3 + ( M O D 6 4 ) ' I F ( T ) = I . 

1 4 ( < f + 8) (mod 64), if ( £ ) = - 1 , 

^ A „ ^ f 2(rf* - 1) ( l + + 32 (mod64), if ( * ) = 1, 

\ 2 ( ^ - 5 ) ( l + ( j^r) ) + 12 (mod64), if ( f ) = - 1 , 

(3.18) follows. 
Similar arguments apply to the case 81 d. Then by (3.8) we have 

IV 

tk = tk(d/4) - 2 £ C) (Wtfc_ i ( r f /4 ) - 2xk(d/2)kt0(d/4)+ 
l<i<min(fc,6), 

i even 

+ E ( - K ( - 1 ) V , W 4 ) + Tkdkto(d/4:) (mod2ord2fc+6rf). 
j=o 



Therefore we get 

tk = -kdt^d/A) + l(tyd2th_2(d/4) - k{k - 2)d2t0(d/4)~ 

- 87rkd2t0(d/4) (mod 2ord2 k+6d), 

because 

ord2 (Ô) d5 > ord2 k + 9, 

and 

tk_A(d/4) = t0(d/4) (mod4). 

Hence and by Lemma 3 [3] (applied for the sums tk_\ and tk-2) w e obtain 
tk EE -kd 4) - ^hid/i)} + §(*)<*2 \^t2(d/4) - k-^t0(d/4)] + 

+ k(k - 2)d2(l - nk)t0(d/4) (mod 2ord2 k+6d). 

Thus we have 

tk = -kd^hid/A) + Jg)(* - 2)d2t2(d/4)+ 
+ kd^h{d/A) + %kdH'kt0(d/4) (mod2 o r d 2 k + 6 d) , (3.19) 

where 
H'k = -(k - 1 )(k - 4) + 8{k - 2)(1 - nk). 

On the other hand putting d = ±8<T, from(2.25a) [3], by (2.10), (2.15) [3] in the case 
d* > 0 and by (2.18), (2.6), (2.1) [3] in the case d* < 0 it follows that 

t0(d/A) = h(-d). (3.20) 

Moreover by (2.17a) [3] for d > 0 we have 

t1(d/4) = 2^)[-t*1(8*,a = 3 (mod8)) + *î(6*,a = - l (mod8))] + 

+ 26*[*J$(6*,a = 1 (mod 8)) -t%(8*, a = - 3 (mod 8))+ 

+ (^î)*S(6*,a = 3 (mod8))-(4î)*S(<$*,a = - l (mod8))]. 

Therefore Lemma 1 and Lemma 1 [3] imply 

*I(D/4) = 2 [ - 4 ( * ) *Î(6*/2) + 4 (4 + ( * ) ) *Î(6*/4)-

- 16*1(678) - 6* (2 + ( £ ) ) *S(6*/4) + 26**$(6*/8)] + 

+ 2 ^ [ - 2 ( l + ( 4 - ) ) « S ( ^ / 4 ) + 4<S(«78)] 

= "8 ( T ) <î(«72) + 8 (4 + (4-)) *Î(6*/4) - 32*Î(6*/8)-

- 26* (3 + 4) *J(6*/4) + 126**O(6*/8), 



h(d/4) = - 2 [ - 4 ( F ) t\(S74) + 16^(6*/8) + ** ( F ) *O(**/4) - + 

+ 26* [ - ( f ) t*0(6*/2) + 2 (L + ( f ) ) tl{874) - 4^(6*/8)] 

= 8 ( f ) tU8*/4) - 32^(^ /8 ) - 26* ( f ) t*0(8*/2)+ 

+ 28* (2+(^))t*0(8*/4)-48%(8*/8), 

if d* < 0. 

Thus since for d > 0, 2\d 

*i(ty8) = ±k2(*d) ~ à (34 ~ ® ) h(d)P(d) + ^d h(-4d) + *(_8d)] , 

and for d < 0, 2 \ d 

W / 8 ) = ±k2(-8d) + À ® M - 4 d ) - y [(l - (D) h(d)a(d) -

(see Thm. 1,2 [2]), in our case for d ^ 8 we conclude that 

h {d/4) = 28*h( -d) - |k2(d) (3.21) 
because of (2.10), (2.12), (2.13), (2.15) of [3] in the case d* > 0, and of (2.1), (2.6), (2.7), 
(2.18) of [3] in the case d* < 0. 

Now we shall prove the lemma as soon as we find t2(d/4), t3(d/4) modulo 64. But 
using Lemma 1 and (2.20a)[3] we get 

t2(d/4) ee 46* [(l + ( | î ) ) (* ) *î(6*/2) - 4 ( 4 j ) *î(6*/4)j + 

+ 2 (26* + 2 - 5 ^ ( * 7 2 ) + 

-f 2 (26* - 13 ( £ ) - 3 - 11 t*0(6*/4)+ 

+ 4 ((^)~4)t*0{8*/8) (mod64), 

because ^(6*/2) = 0, if d* > 0. 
We now turn to the cases, again. Let d = 8d*, d* > 0, d ^ 8. Then by (2.12), (2.13), 

(2.10) and (2.15) of [3] we obtain 

t2(d/4) = 8 (2 - (*-)) 4(8*/2) - 16*î(6*/4)+ 

+ 2 (26* - 13 (Ç) - 14) t*0(8*/4) - 12^(6*/8) 

= (5 - 2 ( Ç ) ) k2{d*)/3(d*) - 3h(-d) + 2h(-4d*) (mod64), 
(3.22) 

because 21 h(-4d*) and 41 k2(d*). 
Likewise, if d = -8d*, d* < 0 then by (2.7), (2.1), (2.6) and (2.18) of [3] we deduce 

that 

t2(d/4) = -16*î(6*/4) + 2 (26* + 2 - 5 t*0(8*/2)+ 

+ 2(26* - ll)<o(6*/4) - 20*q(6*/8) 
= -k2{-4d*) + 5 h ( - d ) + 2 (l + 3 h(d*) ot(d*) (mod 64) 

(3.23) 

because ^(6*/4) = 0, if (Çj = - 1 , d* < 0. 
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The same method goes for t$(d/4). Then by (3.16) we have 

<3(^/4) = Y, a = r (mod 8)) 
r = ± l , ± 3 

= 3 J2 (<V4'a = r ( m o d 8 ) ) ~ 2 D r\(d/4, a = r (mod8)) 
r = ± l , ± 3 r = ± l , ± 3 

= 3 [ f i ( J / 4 , a = ± l (mod 8)) + 9t\(d/4, a = ±3 (mod8)) ] -

-2[-t0(d/4,a = - 1 (mod8)) — 27to(d/4,a = —3 (mod8))+ 

+ t0(d/4,a = l (mod8)) + 27to(d/4,a = 3 (mod8))] 

= 3t\(d/4) + 2t0(d/4,a = - 1 (mod8)) - 2t0(d/4,a = 1 (mod 8 ) ) -
- 18t0(d/4,a = - 3 (mod 8)) + 18<0(d/4,a = 3 (mod 8)) 

= 3h(d/4) - 2t0(d/4) + L(d) (mod64), (3.24) 

where 

L(d) := 4t0(d/4,a = - 1 (mod8)) - 16t0(d/4,a = - 3 (mod 8))+ 

+ 20t0(d/4,a = 3 (mod8)). 

But by the formula 

t0(d/4,a = r (mod 8)) = t0(8*, a = r (mod8)) - ( - 1 ) ^ 0 ( 6 * , a = 26* - r (mod8)) 

(cf. (2.17) [3]) we see that 

L(d) = 4[t0(8*,a = - 1 (mod8)) - t0(8*,a = 28* + 1 (mod 8)) ] -
- 16[<o(**, a = - 3 (mod8)) + a = 26* + 3 (mod 8))] + 
+ 20[to(6*,a = 3 (mod8)) — to(ô*,a = 28* — 3 (mod8))], 

and consequently for d > 0 we have 

' -16^(6* ,a = - l (mod 8)) — 16^(8*, a = 3 (mod 8))+ 
L(d) = +32t*0(8*,a = - 3 (mod 8)), if d* > 0, 

. I6t*0(8*,a =-3 (mod8)) - 16^(6*, a = 1 (mod 8)), if d* < 0. 

Therefore by Lemma 1 [3] we obtain 

L(d) = 16 ( £ ) tl(8*/2) - 16 (4R) ( T ) *O(«*/4) + 32t*Q(8*/&) (mod 64), 

and consequently by (2.10), (2.15) of [3], if d* > 0, and by (2.1), (2.6), (2.18) of [3], if 
d* < 0 we conclude that 

L{d) = 8 ( I j ) h(-d) (mod 64). 

Thus (3.24) together with (3.20) and (3.21) implies the congruences 

h(d/4) = -\k2(d) + 6(d* + l)h(-d) (mod64), (3.25) 



U(d/4) = -fk2(d) + 2(d* + 7 ) h ( - d ) (mod 64), (3.26) 

if d* < 0. 
Now to finish the proof of the lemma it remains to substitute (3.20), (3.21), (3.22) 

or (3.23), and (3.25) or (3.26) into (3.19). 
If d* > 0 then we have 

tk = 3(Jfe - 1 )(k - 2)k2(d*)f3{d*)kd + H'l(d)h{-d)kd+ 

+ ^k2(d)kd + 2(k - l)(Jb - 2)d*h(-4d*)kd (mod 2ord2 k+6d), 

where 

H'M := -3(d* + l)(k - 2) - 3(k - l ) ( k - 2)d* + (k - 4)d* + d*H'k 

= 9(k - 2) + 16nk (mod 32), 

because 4\k2(d*) and 2\h(—4d*). 
Now to get the congruence of the lemma for d* > 0 it is sufficient to use Cor. 1 (ii) 

to Thm. 1 [2] i.e. the congruence 

k2(d*)/3(d*) = Qh(-4d*) - 4 (2 - ( f - ) ) h(-d) (mod 32). 

Indeed by the divisibilities 2\h(—4d*), h(—d) and 4| h(—d), if = 1, we find that 

3(fc _ i)(jfc _ 2)k2(d*)p(d*) + H"(d)h(-d) + 2(k - l)(k - 2)d*h{-4d*) 
= 2(jfe - 1 )(k - 2){d* + l)h(—4d*) + [4(lb - 2) + 9(k - 2) + 16tt k)h(-d) 
= _ 4 (jfe _ 2)h(—4d*) + [13(fc - 2) + 1 6 ^ ] h ( - d ) (mod64). 

We now turn to the case d* < 0. Then we have 

tk = (k- 1 )(k - 2) (2 (Ç) - l ) k2{-4d*)kd + H'£'(d)h(-d)kd+ 

+ Y k 2 ( d ) k d - 2(k - 1 )(k - 2 ) ( 5 - ( Ç ) ) h(d*)a(d*)kd (mod 2ord2 k+6d), 

where 

H%'(d) := - ( k - 2)(d* + 7) - 5(k - 1 )(k - 2)d* - (k - 4)d* - d*H'k 

= k — 2 + 1 6 ^ (mod 32), 

because 21 h(—4d*), h(—d), and 4 j k2(—4d*). Now to obtain the congruence of the lemma 
for d* < 0 it suffices to apply Cor. 1 (ii) to Thm. 2 [2] i.e. the congruence 

k2(-4d*) = 6 (4-) [7 - l ) h(d*)a(d*) -f 2h{-d)\ (mod 32). 

In fact by the divisibility 21 h(—d) we conclude that 

(k - 1 )(k - 2) (2 - l ) k2(-4d*) + H'l'(d)h(-d)~ 

_ 2(k - 1 )(Jb - 2) (5 - h{d*)a(d*) = [(4 + l ) (k - 2) + 167T*] h(-d)+ 

+ 8(Jfc - 2)h(d*)a(d*) (mod 64). 

The proof of the lemma is complété. • 
Now we shall prove a weaker version of (ii), (iii) of the previous lemma. 



LEMMA 6. Let d > 0, 21 d be the discriminant of a quadratic field, and let k > A be an 
even natural number. Then we have: 

tk = \kdk2{d)P(d) (mod2ord2*+6). 

PROOF. By Lemma 4 for any d we get 

tk = \t2 + ( l - t0(8,a = ±1 (mod8)) + 9 (3*"2 - •§) t0(S,a = ± 3 (mod8)) 

= §*2 + (l - | ) <o + (3* -Ak- l)t0(S,a = ± 3 (mod 8)) (mod2ord2*+6). 
(3.27) 

On the other hand we have 

t0(6, a = ± 3 (mod 8)) = t0(S/4, a = ± 3 (mod 8)) + £ {jJT^) + 
0<a<« /4 , 

a=S/2±3 (mod 8) 

+ { i j t i ï ) + ( À ) 
0<a<6/4 , 0<o<« /4 , 

o = - f i / 2 ± 3 (mod 8) o=«±3 (mod 8) 

= S\ + 5*2 + 1S3 + 5 4 , 

where Si dénotés the zth sum (summand) of the left hand side of the above equality. 
Thus in view of 

s s f *o(<f/4), if 41| d, 
1 4 1 2t0(d/A,a = ± 3 (mod 8)), if8|<f, 

and 
s s = f <o(rf/4), if 41| d, 

2 3 \ 2t0{d/A, a = ±1 (mod 8)), i f8 |d , 

we obtain 
t0(S,a = ± 3 (mod8)) = 2t0(d/A). 

Consequently (3.27) implies 

tk = + 2(3* - Ak - l)t0(d/A) = |*2 (mod2ord2*+6), 

because 

3* _ 4k - 1 = -2k + 4 g ) + 8 g ) + 1 6 g ) 

= —2k + 2k(k - 1) - 4Jfc(Jfe - l)(Jfe - 2) - 2Jfe(Jfc - l)(k - 2){k - 3) 
= —2k + 2k(k - 1) + Ak(k - 2) - 2k2(k - 2)+ 

+ 2k2(k - 2) - 6k(k - 2) = 0 (mod 2ord2 *+5). 

Hence and from Lemma 2, the lemma follows. • 



4. Proof of Theorem 1. 

We start with the formula (3.2) [3]. For k > 2, 21 k and x = ( - ) , d > 0 it states that 

- -1 2 1 

Bk,(*) = E {^Bk_2i{2d)k-2i-H2i - k t k + i t k . (4.1) 
i = 0 

Thus by the von Staudt-Clausen theorem for p = 2 and Lemma 3 we see that for any 
d > 0 the numbers Bk ^ are 2-integral and by Lemma 4 so are the numbers bk(d) 
because for 2 f c? we have 

ord2(l - 3* - Xk2k) > ord2 fc, 

and for 21 d we have 
ord2 tk > ord2 k + ord2 d. 

Let us use the formula (4.1) to the case 2 \d and k > 8. Then we get 

dBk,(i)= E {2i)^Bk-2i^k 2i~1 dk~2it2i — kdtk_i + tk (mod2ord2*+6), 

because in view of 81 t2i for i >2 and 4112, and 

2S 

ord2 — > 4 
s 

for s = k — 2i > 6, we have 

ord2 [(2*)2*~2,'_1<2.-], resp. ord2 [(2)2*~3] > ord2 k+ 6 

for i < \ — 3, resp. k > 8. 
Hence for k > 8 we obtain the congruence 

dB s 
— 15 u d%_4 +2(£)d2tk_2 - kdtk_x + tk (mod2ord2 k + 6 ) . 

Therefore by Lemma 3 for tk_±, tk_2, tk_\ and Lemma 4 (i) for tk we deduce that 

dBk(i) = - g g y [i^d(i)-2k-7} k2(d)m+ 

+ i{ï)d2[^d(0-2k-s]k2(d)m-

- kd [\Ax («i, k2(d)/3(d) + 2 - 2k~4) dh{-4d)] + 

+ | ( 1 - 3* - \k2k + 4k)h{-4d) + kd (|) k2{d)P(d) (mod 2ord2 *+6). 

Consequently by 2 | h(—id) and 41 k2(d) we find that 

dBk ^ = [(Jfc - 2)(k - 4 - 2k~e) + 3(k - 1 )(k - 2) ( f ) + \{k - 2)(d + 2 ) -

- è ( 2 (l)-l)]kdk2(d)/3(d)+ 

+ \-(k-2)d + l-3k-\k2k+4k 
2/E3 kdh{-4d) (mod2ord2*+6). 



Hence by t h e divisibi l i ty 4\h(—4d), if = 1 we o b t a i n t h e congruence 

bk(d) = Hk(d)k2(d)f3(d) - i (2 ( | ) - l ) k2(d)f3(d)+ 

+ [ - fc + 20 + 9 dh(-Ad) (mod 64), (4.2) 

w h e r e 
Hk(d):= [ 2 ( l + ( f ) ) + <* + 8Afej 

b e c a u s e for even fc 
o r d 2 ( l - 3 * ) = o rd 2 f c + 2, 

a n d for fc = 8 

fc—2 
2 ' 

ord 2 — = 5. 
fc 

Consequent ly , s ince for fc > 8 

k 
^ = E ( i ) 2 ' - 1 

»=1 1<»<8, 

= _fc _ | ( f c _ l)(fc _ 2) - l(k - 1 )(fc - 2)(fc - 3)-

- 4(fc - 2)(fc - 4) - (fc - 2)(fc - 4)(fc - 6) 

= - f c + 5(fc - l ) 2 ( fc - 2) - (fc - 2)(fc - 4)(fc - 6) 

= 2 ( 2 f c - 1 - 4 ( ^ 1 ) ) ( m o d 3 2 ) 

a n d 

Bk(d) = (l + ( ï ) ) ( k - 2 ) + f - d + 8\k = 5 ( ï - l ) + 

+ I ( ( à ) - 0 ( 2 ( f ) ~ 3 + d) + 8A* ( m o d 16)> 

T h e o r e m 1 for fc > 8 follows f r o m (4.2), t h e divisibil i t ies 4 | k2(d), 2 | h(—4d) a n d t h e 
congruence (3.6). Indeed , by t h e m e n t i o n e d congruence we have 

8\kk2(d)p(d) = 16Xkdh(-4d) (mod 128), 

2(fc - 2 )k 2 (d )P{d ) = 4(fc - 2)dh(-4d) (mod 64), 

\k(d- l)k2{d)/3(d) = k(d - l)dh(-4d) (mod 64), 

(1 - d)k2(d)/3(d) = 2(1 - d)h(-4d) (mod 64). 

T h e r e f o r e we get 

bk(d) = i [ ( 5 f c - 2 ( j ) - 9 ) + ( ( ^ ) - l ) (2 ( f ) - 3 + d)] k2(d)/3(d)+ 

+ (3fc + 2 - 8 dh(-4d) 

= | [(fc - 2 - l ) + (fc - 2) (2 ( | ) - 3 + d)} k2(d)/3(d)+ 

+ (- fc + 2)dh(-4d) 

= \ [-fc - 6 ( f ) + 3 + 2k (|)] k2(d)j3(d) + (2 - k)h(-4d) (mod 64), 



and consequently Theorem 1 follows from (3.6), i.e. from the congruence 

fc ( ( f ) + l ) k2(d)/3{d) = 2k ( ( f ) + l ) h(-4d) (mod64). 

Consequently we deduce that 

b4(d) = [d2 + d + 5 ( f ) - f ] k2(d)/3(d) - ^-h(-4d) (mod64). 

Hence Theorem 1 (i) for fc = 4 follows immediately. 
If fc = 6 then from (4.1) we get 

dB6 ^ = -84* t2 + I0d2t4 - 6dt5 + t6. 

Therefore by (3.2), Lemma 3 (used for tj, £5) and Lemma 5 (i) (used for te) we find that 

dB6 ^ = 6d [5 ( ! ) - \Ax(d,2)] k2(d)/3(d) + +24d2h(-4d) (mod2rd). 

Hence Theorem 1 (i) for fc = 6 follows easily, and the proof of the theorem is complété. 
• 

5. Proofs of Theorems 2 and 3. 

The proof starts with the formula (4.1). In the case 2 | d and fc > 4 (in view of 
2ord2 d+2 1 i t gives the congruence 

dBk ^ = -kdtk_i + tk (mod2ord2*+6d), (5.1) 

k because for i < — 1 

(2d)k~2i 

1 + ord2
 K

 2 > 1 + 2(fc - 2 i) > 5. 

But by Lemma 3 (ii) we have 

_ J 4(fc - 2 )k 2 (d) (mod 64), if 41| d, 
~ t k ~ l = \ 0 (mod 64), if 81 c?, 

and consequently by Lemma 5 (ii), (iii) the theorems follow at once. • 



6. Corollaries to Theorems. 

COROLLARY 1. Let d and k > i be the discriminant of a real quadratic field and an 
even natural number respectively. Then we have: 

(i) ord2 Bk ^ > ord 2 k + l, if d ^ 8, and ord 2 Bk ^ = ord 2 k, if d = 8. 

(ii) ord 2 Bk^ = ord 2 k + u, 1 < f < 3 2U+11| k2(d). 

T h e next corollary is an immedia te conséquence of t he previous one and Theorem 1. 

COROLLARY 2. Let d, 2\d and fc > 4 be the discriminant of a real quadratic field and 
an even natural number respectively. Then we have: 

(i) ord 2 Bk ^ = ord 2 k + 4 32 || k2(d) and [fc = 2 (mod 4) or (k = 0 (mod 4) 

and 1 6 | V ( - 4 d ) ) ] . 

(ii) ord 2 Bk ^ = ord 2 k + 5 [321| k2(d) and k = 0 (mod 4) and 8 || h(-4d) and 

\h(—id) ^ ±k2(d)f3(d) (mod4)] or {64 || k2{d) and [k = 2 (mod8) or (k = - 2 
(mod 8) and 161 h(—id)) or 321 h(-id)]} or {128||fc2(c0 and p = 0 (mod 4) and 
16 || h(-4d)) or (k = -2 (mod 8) and 81| h(-id))}}, 

ord 2 Bk ^ > o rd 2 k + 6, otherwise. • 

COROLLARY 3. Let d = —id*, where d* is the discriminant of an imaginary quadratic 
field, and let k > 4 be an even natural number. Then we have: 

(i) ord 2 Bk ^ = ord 2 k + i ^ { (Ç) = 1 and 32 || k2(d)} or { = - 1 and 

321| k2(d) and [81 h(d*) or (i\\h(d*) and k = 2 (mod4))]}. 

(ii) If (4-) = 1 then: 

ord 2 Bk ^ = ord 2 fc + 5 {64 || k2(d) and [fc = 2 ( m o d 4 ) or (k = 0 (mod 4) 

and 2\h(d*))}} or (128 \k 2 (d) and fc = 0 (mod4) and2ih(d*)), 

ord 2 Bk ^dj > ord 2 k + 6, otherwise. 

If ( y ) = -1 then: 

ord 2 Bk ^ = ord 2 k + 5 [321| k2(d) and i || h(d*) and k = 0 (mod 4) and 

±k2(d) = - J ( j i j ) h(d*)a(d*) (mod4)] or 

{641| k2(d) and [fc = 2 (mod 8) or 

(k = -2 (mod 8) and 8 | h(d*)) or 
(fc = 0 ( m o d 4 ) and 16|A(d*))]} or 

{1281 k2(d) and p = - 2 (mod 8) and 41| h(d*)) 
or (fc = 0 (mod4) and 8\\h(d*))]}. 

ord 2 Bk ^ > ord 2 fc + 6, otherwise. 



COROLLARY 4. Let d = —8d*, where d* is the discriminant of an imaginary quadratic 
ûeld, and let k > 4 be an even natural number. Then we have: 

(i) If (4-) = 1 then: 

ord2 Bk ^dj = ord2 k + 4 

ord2 Bk ^ = ord2 k + 5 

{321| k2(d) and [2| h(d*) or 

(2-|-h(d*) and k = 2 (mod4) ) ]} or 

(641k2(d) and2\h{d*) andk = 0 (mod4)), 

321| k2(d) and 21 h(d*) and k = 0 (mod 4) and 

641| k2(d) + 4h(-d) + 32 j-) h(d*)a(d*) 

or {641| k2(d) and [k = 2 (mod 8) 

or (k = -2 (mod8) and2\h(d*)) 
or (k = 0 (mod 4) and 
321 h(-d) + 8/i(<f )a(<f ))]} or {1281 k2{d) 

and [(k = -2 (mod8) and 2\h{d*)) or 

(jfe = 0 (mod4) and 16\\h(-d) + 8h(d*)a(d*))]}, 

ord 2 Bk ^ > ord2 k + 6, otherwise. 

(ii) If ( y ) = - 1 then: 

ord 2 Bk ^ = ord2 k + 4 

ord2 Bk ^ = ord2 k + 5 

{321| k2(d) and [161 h(-d) or (8 || h{-d) and 

k = 2 (mod4) ) ]} or [641 Ar2(^> and 8\\h(-d) 

and k = 0 (mod 4)], 

321| k2(d) and 81| h(—d) and k = 0 ( m o d 4 ) and 

hHd) = ( è ) h(-d) (mod4) ] 

or {641| k2(d) and [k = 2 (mod 8) 

or (k = - 2 (mod 8) and 161 h{-d)) 

or Z2\h(—d)]} or {128 |k2(d) 

and[(k = 0 ( m o d 4 ) and 161| dh(-d)) 

or (k = —2 (mod8) and8\\h(-d))}}, 

ord 2 — o r<^2 ^ + 6, otherwise. 

COROLLARY 5. Let d = 8d*, where d* is the discriminant of a real quadratic field, and 
let k > 4 be an even natural number. Then we have: 

(i) ord2 Bk ^ = ord2 k-\-4 {321| k2(d) and [161 h(-d) or (81| h(-d) and k = 2 
(mod4) ')]} or (64 and 81| h{-d) and k = 0 ( m o d 4 ) ) . 

(ii) o rd 2 Bk ^ = o rd 2 k + 5 [32 || k2(d) and 8 || h(-d) and k = 0 (mod 4) 

and ±k2(d) = - i ) h(-d) (mod4)] or {64 || k2{d) and [k = 2 (mod 8) or 



(fc = - 2 (mod 8) and 16 | h(-d)) or 32 | h(-d)]} or {128 | k2(d) and p = - 2 
(mod8) and8\\h(-d)) or (k = 0 (mod4) and 161| fc(-d))]}, 
ord2 Bk ^ > ord2 k + 6, otherwise. 

7. Proofs of Corollaries. 

Corollary l(i) for 2 \ d is an obvious conséquence of Theorem 1 and the divisibilities 
21 h(—4d), 41 k2(d), and for 21 d of Theorem 4. In order to prove (ii) of this corollary for 
2\ d we use the congruence (3.6). In fact, in view of this congruence Theorem 1 implies 

bk(d) = [(fc + f + l ) fi + | (-fc - 2 + l ) ê] k2(d)/3(d) (mod 16), 

and consequently 
bk(d) = (3 - 2 ( f ) ) k2(d)P(d) (mod 16). 

Hence Corollary l(ii) for 2 \ d follows immediately because fi, resp. i? = 1 (mod4, resp. 8). 
Corollary l(ii) for 2 | d up to the case v = 3 and 8 | d is an obvious conséquence of 

Theorem 4. If 8 | d then we consider two cases. First, let d* > 0. Let us note that if 
8| h(—d), then we have 161$2/i(—d), i?3/i(—4c?*), and consequently Corollary 1 (ii) in the 
case v = 3, d* > 0 follows from Cor. 2(iii) to Thm. 1 [2] that states that 161| k2(d) if and 
only if 8 || h(-d) and 8 | h(-4d*), or 16 | h(-d) and 4 || h{-4d*). Now, let d* < 0. Then 
16 | fi3. If ( ~ ) = 1 then by Cor. 2(i) to Thm. 2 [2], 16 || k2(d) if and only if 8 || h(-d), 

and consequently Corollary 1 (ii) for d* < 0, = 1 follows easily. If = — 1 then 
16 | fj,2h(—d), (j,3h(d*)a(d*) because in view of Cor. 2(ii) to Thm. 2 [2], 16 || k2(d) if and 
only if 16 | h(—d) and 2 || h(d*), or 8 || h(—d) and 4 | h(d*). This complétés the proof of 
Corollary 1. 

Now we prove Corollary 3. Let d = —4d*, where d* < 0. We consider two cases, 
again. If = 1 then 4 | h(-2d), and 32 11?2, and so 32 | d2h(d*)a(d*) + ti3h(-2d). 
Therefore Corollary 3(i) for = 1 follows. Also, in the case = 1 the divisibility 
32 | k2(d) implies 8 | h(-2d) (see Cor. 2(i) to Thm. 2 [2]). Consequently we get (ii) of 
Corollary 3 in this case easily. We turn to the case = —1- Then by Cor. 2(iii) to 
Thm. 2 [2], 32 | k2(d) if and only if 4 || h(d*) and 4 || h(-2d), or 8 | h(d*) and 8 | h\-2d). 
Thus in both the cases we have ti2h(d*)a(d*) + ê3h(-2d) = 2(k-2)h(d*)a(d*) (mod 32). 
This complétés the proof of Corollary 3(i). Likewise, by the used above arguments we 
get (ii) of the corollary and its proof is complété. 

Now we consider the case 8 \d. If d* < 0 and = 1 then by Cor. 2(i) to Thm. 2 [2], 
32 | k2(d) if and only if 16 | h(—d). Consequently we have fi2h(—d) + fj,3h(d*)a(d*) = 
0, resp. 16 (mod 32) if and only if 2 | h(d*), or 2 f k(d*) and fc = 2 (mod 4), resp. 
2 { h(d*) and 2 \ h(d*). This gives the first part and the beginning of the second one 
of Corollary 4(i). Similar considérations apply to the remaining one of the corollary. 
To prove (ii) of it let us note that in virtue of Cor. 2(iii) to Thm. 2 [2], 32 | k2(d) if 
and only if 16 | h(-d) and 4 | h(d*), or 8 || h(-d) and 2 || h(d*). Thus 2 | h(d*) and 
mh(-d) + fi3h{d*)a(d*) = (fc - 2 ) h { - d ) = 0, resp. 16 (mod 32) if and only if 16 | h(-d), 
or 8||/i(—d) and fc = 2 (mod 4), resp. 8|| h(—d) and fc = 0 (mod 4). This gives the proof 



of the first part of Corollary 4(ii) and the beginning of the second one of it. The remaining 
one may be handled in the similar way. It remains to prove Corollary 5. Then by Cor. 2 
to Thm. 1 [2], 32 | k2(d) if and only if 8 || h(-d) and 4 || h(-4d*), or 16 f h(-d) and 
8fh(-4d*). Therefore d2h(-d) + dzh(-4d*) = (k - 2 ) h ( - d ) = 0, resp. 16 (mod 32) if 
and only if 161 h(—d), or 81| h(d*) and k = 2 (mod 4), resp. 81| h(-d) and k = 0 (mod4). 
This establishes (i) and the beginning of (ii) of Corollary 5. The similar reasoning applies 
to the remaining part of the corollary, and Corollaries to Theorems are proved. I 
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