
OPTIMAL CURVES OF GENUS 1, 2 AND 3byChristophe Ritzenthaler
Abstrat. � In this survey, we disuss the problem of the maximum number of points ofurves of genus 1, 2 and 3 over �nite �elds.Résumé (Courbes optimales de genre 1, 2 et 3). � Nous examinons la question dunombre maximum de points pour les ourbes de genre 1, 2 et 3 sur les orps �nis.1. IntrodutionThe foundations of the theory of equations over �nite �elds were laid, among others, bymathematiians like Fermat, Euler, Gauss and Jaobi (see [Di66℄). Subsequently, there waslittle ativity in the �eld at least until the end of the 19th entury and the study of the zetafuntion of a urve. Initiated by Dedekind, Weber, Artin and Shmidt, this work led to ananalogue of the Riemann hypothesis whih was proved by Hasse in the ase of ellipti urvesand then by Weil in general in 1948 (see [Wei48℄). The third, modern, period starts in 1980with the work of Goppa [Gop77, Gop88℄. His onstrution of error-orreting odes withgood parameters from urves over �nite �elds renewed the interest in this theory.With this appliation in mind, the theory has foused on the maximum number of points of a(projetive, geometrially irreduible, non singular) urve of genus g over a �nite �eld k = Fq,denoted Nq(g). Asymptoti results, i.e. values of Nq(g)/g when g goes to in�nity and q is�xed, drew attention �rst, but Serre, in his letures at Harvard [Ser85℄, gave equal treatmentto the `dual' ase, i.e. values of Nq(g) when g is �xed and q varies. It quikly appeared thatdetermining Nq(g) was a hard problem and as soon as g ≥ 3, only sparse values are known(see for instane the web page www.manypoints.org for the best estimates when q is small).In this survey, we are going to desribe the main ideas that have been developed to deal with2000 Mathematis Subjet Classi�ation. � Primary 11G20, 11G10 Seondary 14K25, 14H45.Key words and phrases. � Optimal urve, isogeny lass, indeomposable polarization, hermitian module,Serre's obstrution, plane quarti, Siegel modular form, Hasse-Weil-Serre bound.The author aknowledges partially supported by grant MTM2006-11391 from the Spanish MEC and by grantANR-09-BLAN-0020-01 from the Frenh ANR..



100 Optimal urves of genus 1, 2 and 3the ases 1 ≤ g ≤ 3. It is interesting to note that for eah value of g, we will be onfronted notonly to harder omputations but also to a ompletely new kind of issue. In order to emphasizethis progression, we will not onsider the atual value of Nq(g) but the following sub-problem.As we shall reall in Setion 2.1, Nq(g) ≤ 1 + q + g⌊2√q⌋ and we an wonder when Nq(g)reahes this bound. If it does, a urve with this number of points is alled optimal and weare going to ask for whih values of q suh urves exist.When g ≤ 3, the lassial game to prove or disprove the existene of optimal urves is1. to prove the existene (or not) of an abelian variety A/k with a `good' Weil polynomial(Setion 2). This is going to ontrol the number of points on a possible urve C/k suhthat JacC ≃ A.2. to put a good polarization a on A suh that (A, a)/k is geometrially (i.e. over k̄) theJaobian of a urve C̄ with its anonial polarization (Setion 3).3. to see if C̄ admits a model C/k suh that (JacC, j) ≃ (A, a) (where j is the anonialpolarization of C). We will see that if C̄ is non hyperellipti, there an be an obstrutionto this desent (see Setion 4) and for g = 3, we will propose solutions to address theomputation of the obstrution (see Setion 5).Most ideas we are going to present here are already ontained in [Ser85℄ but our proofs for
g = 1 and 2 are sometimes di�erent from the original ones and take advantage of subsequentsimpli�ations of the theory.Conventions and notation. In the following g ≥ 1 is an integer and q = pn with p aprime and n > 0 an integer. The letter k denotes the �nite �eld Fq and K any perfet �eld.When we speak about a genus g urve we mean that the urve is projetive, geometriallyirreduible and non-singular. If A and B are varieties over a �eld K, when we speak of amorphism from A to B we always mean a morphism de�ned over K. So, for instane End(A)is the ring of endomorphisms de�ned over K, A ∼ B means A isogenous to B over K, et. If
(A, a) and (B, b) are polarized abelian varieties, by an isomorphism between them, we alwaysmean `as polarized abelian varieties'.Aknowledgements. I would like to thank Christian Maire for suggesting me to writethis survey. This is part of my `habilitation' thesis [Rit09℄ whih was defended during theworkshop Theory of Numbers and Appliations whih was organized by Karim Belabas andChristian Maire in Luminy in Deember 2009. I am really grateful to Detlev Ho�mann forthe referenes of Remark 3.5 and to the Number Theory List ommunity and partiularly toSamir Siksek for helping me with Remark 3.10.2. Control of the isogeny lass2.1. Bounds. � Let C/k be a genus g urve. We reall that its Weil polynomial χC is theWeil polynomial of JacC/k, i.e. the harateristi polynomial of the ation of the k-FrobeniusPubliations mathématiques de Besançon - 2011



Christophe Ritzenthaler 101endomorphism on an ℓ-adi Tate module for any prime ℓ 6= p. It is well known that it an bewritten
χC =

g∏

i=1

(X2 + xiX + q) ∈ Z[X]with xi ∈ R and |xi| ≤ 2
√
q. Sine

#C(k) = q + 1 +

g∑

i=1

xi,it is lear that #C(k) ≤ 1 + q + ⌊2g√q⌋, whih is known as Hasse-Weil bound [Wei48℄ andso Nq(g) is less than this bound too. It is possible to improve this bound as the followinglemma shows.Lemma 2.1 (Hasse-Weil-Serre bound [Ser83b℄). � Let m = ⌊2√q⌋. Then
Nq(g) ≤ 1 + q + gm.Proof. � It is enough to use the arithmeti-geometri mean inequality:

1

g

g∑

i=1

(m+ 1− xi) ≥
(

g∏

i=1

(m+ 1− xi)

)1/g

≥ 1,the last inequality oming from the fat that the produt is a non-zero integer.This motivates us to give the following de�nition.De�nition 2.2. � We say that a genus g urve C/Fq is optimal if
#C(Fq) = q + 1 + gm.In that ase Nq(g) = q + 1 + gm.Note that the previous de�nition is not universally aepted. Some authors all maximal(or Fq-maximal) what we all optimal by referene to the historial ases with n even and

Nq(g) = q+1+ gm. We prefer to keep the word maximal for urves whih numbers of pointsis equal to Nq(g) and our terminology is oherent with the historial one as well.Remark 2.3. � If g ≥ (q − √
q)/2, the bound an be improved, thanks to the expliitmethods of Oesterlé (and is known as Oesterlé bound [Ser83b℄). It uses the fat that thenumber of plaes of eah degree on the urve is non negative. As we will mainly deal withsmall values of g ompared to q, the Hasse-Weil-Serre bound will be our referene.Publiations mathématiques de Besançon - 2011



102 Optimal urves of genus 1, 2 and 32.2. Existene of the isogeny lass. � Equality in the arithmeti-geometri mean in-equality is equivalent to the fat that all terms in the sum are equal and so xi = m for all
1 ≤ i ≤ g. Hene, if an optimal urve C exists, its Weil polynomial has the partiular simpleexpression

χC = (X2 +mX + q)g.Honda-Tate theory as explained in [Tat66℄, [Hon68℄, [Wat69℄, [MW71℄ or [Tat71℄ showsthat if p ∤ m (resp. n is even) then JacC is isogenous to Eg where E is an ordinary (resp.supersingular) ellipti urve with trae −m. However, if p|m and n is odd, this might not betrue (see the proof of Proposition 2.5 below) and there is for instane a simple abelian varietyof dimension 9 over F59 with suh Weil polynomial. If we restrit to g ≤ 3, it an be provedthat this never happens (see for instane the proof of Corollary 4.2 of [NR10℄).Lemma 2.4. � If C/Fq is an optimal urve of genus g ≤ 3 then JacC is isogenous to Egwhere E is an ellipti urve of trae −m.The �rst neessary ondition is then to see whether suh an ellipti urve exists or not.Proposition 2.5 (Deuring [Deu41℄). � There does not exist an ellipti urve with trae
−m if and only if n ≥ 3, n is odd and p|m.Proof. � Let F = X2 + mX + q. Sine m < 2

√
q if and only if q is not a square, F isirreduible over Q when n is odd and F = (X +

√
q)2 when n is even.If n is odd, by [Wat69, p.527℄, the minimal e for whih χ = F e is the Weil polynomial ofan abelian variety of dimension e over k is the least ommon denominator of vp(Fν(0))/nwhere Fν denotes the fators of F in Qp[t] and vp the p-adi valuation of Qp. Hene F is theWeil polynomial of an ellipti urve if and only if n|vp(Fν(0)) for all fators. This is of oursesatis�ed if n = 1. Looking at the Newton polygon of F , we see that if p ∤ m then vp(Fν(0)) = nor 0, so e = 1. With the same tehnique, if n > 1 odd and p|m, then vp(Fν(0)) < n and so

e > 1.If n is even, we apply the previous arguments to F = X +
√
q. Sine vp(

√
q)/n = 1/2, e = 2so F 2 = X2 +mX + q is the Weil polynomial of an ellipti urve.Atually, the only values of q = p for whih p|m are q = 2 or q = 3.Remark 2.6. � For any value of −m ≤ t ≤ m, one knows if an ellipti urve with trae

t exists (see [Wat69, Th.4.1℄). Also, the possible Weil polynomials of the isogeny lasses ofabelian surfaes (resp. threefolds) an be found in [MN02, Lem.2.1,Th.2.9℄ (resp. [Xin96,Hal10℄). 3. Existene of an indeomposable prinipal polarizationThe Jaobian of a genus g urve C/K is naturally equipped with a prinipal polarization jindued by the intersetion pairing on the urve C. Sine the theta divisor Symg−1C →֒ JacCassoiated to j is geometrially irreduible, (JacC, j) is geometrially indeomposable, i.e.Publiations mathématiques de Besançon - 2011



Christophe Ritzenthaler 103there does not exists an abelian subvariety B ⊂ JacC de�ned over K̄ suh that j indues on
B a prinipal polarization. Conversely, starting with A = Eg where E is an ellipti urve, itis lear that A always admits a prinipal polarization a0 given by the produt of the prinipalpolarizations on eah fator. As a0 is deomposable, (A, a0) is not (even geometrially) aJaobian. Hene `good' prinipal polarizations on A (or on abelian varieties in the isogenylass of A) have to be more subtle. Lukily, equivalenes of ategory have been developed totranslate the existene of an indeomposable polarization into the existene of purely algebraiobjets. As far as I know several points of view o-exist and it is not lear to see how to gofrom one to the other. I shall use Serre's one and mention others in remark.Remark 3.1. � Howe [How95℄,[How96℄ has developed a powerful mahinery to prove theexistene of a prinipally polarized abelian variety in the isogeny lass of an abelian variety
A/k. But only when A is simple, it is easy to see that the polarization is indeomposable (see[Ryb08℄ for the ase E×B where E is an ellipti urve and B a geometrially simple abeliansurfae).3.1. The equivalenes. � Let us start with E ordinary. Let E/k be an ordinary elliptiurve with trae t. If π denotes the Fq-Frobenius endomorphism of the urve E, then thering R := Z[X]/(X2 − tX + q) is isomorphi to Z[π] ⊂ End(E). Serre [Ser85, Se.50-53℄,[Lau02, Appendix℄ de�nes an equivalene of ategory T between the ategory of abelianvarieties whih are isogenous to a power of E and R-modules of �nite type without torsion.The funtor T maps an objet A to the R-module L = Hom(E,A). Obviously, the rank of Lis equal to the dimension of A. This funtor also behaves niely with respet to duality: if wedenote L̂ the ring of anti-linear homomorphism f : L → R (i.e. f(rx) = r̄f(x) for all r ∈ Rand x ∈ L) then T (Â) = L̂. Thus a morphism a : A → Â de�nes a morphism h : L → L̂ andhene an hermitian form H : L×L → R. Serre proves that a is a polarization if and only if His positive de�nite, that a is prinipal if (L,H) is unimodular (i.e. h(L) = L̂) and moreover(geometrially) indeomposable if and only if (L,H) is indeomposable, i.e. annot be writtenas a sum of orthogonal sub-modules. The ouple (L,H) is alled a hermitian module.Remark 3.2. � This equivalene is inspired by the lassial theory over C, whih is notsurprising sine ordinary abelian varieties an be lifted anonially and this is used in [Del69℄.When A = Eg and End(E) ≃ R, a more expliit point of view an be onsidered looking atthe hermitian matrix M := a−1

0 a ∈ End(A) = Mg(End(E)) ≃ Mg(R) (see [Rit10℄, [Lan06℄).For g = 2, Kani's onstrution [Kan97℄ also gives neessary and su�ient onditions for`gluing' two ellipti urves along their n-torsion for n > 1. Both points of view are related bythe Cholewsky deomposition of M .A lassi�ation of rank 2 and 3 hermitian modules was ahieved in [Hof91, Th.8.1,8.2℄ (seealso [Sh98℄ for further omputations) and translates into the following result.Publiations mathématiques de Besançon - 2011



104 Optimal urves of genus 1, 2 and 3Proposition 3.3. � Let E be an ordinary ellipti urve with trae t. There is no abeliansurfae (resp. threefold) with a geometrially indeomposable prinipal polarization in the lassof E2 (resp. E3) if and only if t2 − 4q ∈ {−3,−4,−7} (resp. t2 − 4q ∈ {−3,−4,−8,−11}).Remark 3.4. � For g = 2, the result an be traed bak to [HN65, p.14℄, where the authorsprove the existene of genus 2 urves whih Jaobian is isomorphi to E2 by onstrutingfree indeomposable hermitian modules (in [Hay68℄, the preise number of isomorphismlasses of suh urves is omputed). For g = 2 or 3, it ould also be dedued from themass formulae (i.e. number of weighted lasses by the order of their automorphism group) of[HK86, HK89℄ (although, aording to Ho�mann (lo. it. p.400) there is a minor mistakein these omputations).Remark 3.5. � For g > 3, there have been several partial answers on the existene ofindeomposable unimodular positive de�nite hermitian modules of rank g over the ring ofintegers of an imaginary quadrati �eld Q(
√
−d). It seems that in [Zhu97℄ and [WL01℄ aomplete answer is given: there always exists one, exept when d = 1 and g = 5 or d = 3and g = 4, 5, 7. One should be areful sine, aording to the Mathsinet review of [Zhu97℄by Ho�mann, the proofs ontain several mistakes. Also, I do not know if the ase of nonmaximal orders has been onsidered.Assume now that E is supersingular. More preisely, let E/Fp be an ellipti urve with trae

0, so that E is supersingular, all the geometri automorphisms of E are de�ned over Fp2 and
Tr(E/Fp2) = −2p = −m. One says that an abelian variety A (resp. a urve C) is superspeialif A (resp. JacC) is geometrially isomorphi to a produt of supersingular ellipti urves. Aresult of Deligne (see [Shi79, Th.3.5℄) shows that when g > 1, a superspeial abelian varietyof dimension g is geometrially isomorphi to Eg (whereas for g = 1 there are non-isomorphisupersingular ellipti urves as soon as p > 7). However, the desription of the isogeny lass ismade more ompliated than in the ordinary ase by the existene of `ontinuous' families ofisogenies. For instane, already when g = 2 (see [Oor75℄), a supersingular abelian surfae iseither geometrially isomorphi to E2 (and so superspeial) or of the form E2/αp where αp isthe unique loal-loal group sheme over Fp, the injetion of αp in E2 being parametrized by
P1(F̄p) \P1(Fp2). In the latter, it an be shown that A is not superspeial and the desriptionof the polarizations on this objet is more evolved. For this reason, we will onentrate onlyon existene results and limit ourselves to the superspeial ase.Remark 3.6. � Note that it is still possible to obtain a omplete desription for g = 2 inthe non-superspeial ase like in [IKO86℄ or [HNR09, Part.2℄ where the mass formula of[Ibu89℄ were used.As in Remark 3.2, we desribe the polarizations on A = Eg by matries M := a−1

0 a in
End(A) = Mg(End(E)). Now, End(E) is a quaternion algebra, so we need results on thenumber ng of positive de�nite quaternion hermitian forms. Then, to obtain the number of(geometrially) indeomposable polarizations on Eg, the idea is to subtrat to ng the numberPubliations mathématiques de Besançon - 2011



Christophe Ritzenthaler 105of polarizations oming from ombinations of lower dimensional abelian varieties. In this way,one getsProposition 3.7 ([Eke87, Prop.7.5℄). � There is no geometrially indeomposable prini-pal polarization on Eg if and only if g = 2 and p = 2 or 3, or g = 3 and p = 2.Remark 3.8. � More preisely, Ekedahl gives in [Eke87, Prop.7.2℄ the mass of indeompos-able prinipal polarizations on Eg. However, Brok [Bro93, Th3.10.℄ orrets a mistake inthe ase g = 3. He also ompletes and reovers several results obtained in [HI83, I℄, [KO87℄for g = 2 and in [Has83℄, [Oor91℄ for g = 3. For instane, in [Bro93, Th.3.14,Th.3.15℄,he gives the number of genus 2 and genus 3 superspeial urves for eah possible group ofautomorphisms.3.2. Appliation. � We an now answer the question of the existene of a good polariza-tion when g ≤ 3.Theorem 3.9. � Let E be an ellipti urve with trae −m. There is no abelian surfae(resp. threefold) with a geometrially indeomposable prinipal polarization in the isogenylass of E2 (resp. E3) if and only if q = 4 or 9 or m2 − 4q ∈ {−3,−4,−7} (resp. q = 4 or
16 or m2 − 4q ∈ {−3,−4,−8,−11}).Proof. � When p ∤ m, E is ordinary so we an use Proposition 3.3.When n is odd and p|m, E exists if and only if q = 2 or 3, whih leaves these two ases to betreated apart (for instane by extensive omputer researh of urves using Theorem 4 or byRemark 3.10).When n is even then p|m. We distinguish several ases.� When p > 3 and g = 2 (resp. p > 2 and g= 3), Proposition 3.7 shows that there isalways an indeomposable prinipal polarization on E2 (resp. E3). Note than when 4|n,the present E is the quadrati twist of the ellipti urve in Proposition 3.7.� When p = 2 and g = 2, expliit onstrutions as in [MN07℄ or a `gluing' argument as in[Ser85, Se.32℄, [Sha01, Prop.30℄ shows that one an get a urve C/F2n suh that JacCis isogenous to E2 as soon as n > 2.� When p = 2, g = 3 and n > 4, An expliit non hyperellipti urve C/F2n suh that

JacC ∼ E3 an be onstruted. (see [Rit09, Lem.2.3.8℄). Note that in [NR08℄, themore general question of the existene of a Jaobian in the isogeny lass of a supersingularabelian threefold in harateristi 2 is addressed.� Finally when p = 3 and g = 2, one an �nd an expliit onstrution in [Kuh88℄ (seealso [Sha01, Cor.37℄ where a mistake is orreted) as soon as n > 2. This work was alsogeneralized to all supersingular abelian surfaes in harateristi 3 in [How08℄.Remark 3.10. � The ases m2−4q ∈ {−3,−4} an also be exluded thanks to a proof dueto Beauville [Sha01, Th.16℄, [Ser85, Se.13℄ without any hypothesis on the p-rank of E (andPubliations mathématiques de Besançon - 2011



106 Optimal urves of genus 1, 2 and 3then q = 2, 3 are overed).As onjeturally, there is in�nitely many p in the forms p = x2 + 1 and p = x2 + x + 1 theequations m2 − 4pn ∈ {−3,−4} have in�nitely many solutions with n = 1. For n > 1 odd,one knows that the set of solutions is �nite. For instane, in [Ser83a℄, we �nd that there isonly one solution to the equation q = x2 + x+ 1 namely q = 73 and none to q = x2 + 1.Similarly, the ase of disriminant −7 orresponds to the equation q = x2+x+2 with uniquesolutions q ∈ {23, 25, 213} when n > 1 is odd.The ase of disriminant −8 orresponds to q = x2 +2, whih, when n > 1 is odd, has q = 33for unique solution. This is proved using the same arguments as the last ase below.Finally, the ase of disriminant −11 orresponds to q = x2 + x + 3. When n > 1 is odd,
q = 35 is the unique solution thanks to the following argument due to Samir Siksek. Theequation an be rewritten (2x+ 1)2 + 11 = 4pn and fators in K = Q(

√
−11) as

(
2x+ 1 +

√
−11

2

)(
2x+ 1−

√
−11

2

)
= pn.Sine n is odd and OK is a prinipal domain, there exists α = (a + b

√
−11)/2 ∈ OK suhthat αn = (2x+1+

√
−11)/2 and αβ = p with β = ᾱ. Now, note that αn − βn =

√
−11 andsine (αn − βn)/(α− β) = 1/b ∈ OK , we see that b = ±1. Hene, if we �x n, we an �nd the�nite set of integer solutions of this polynomial equation in a. However, to solve it for all nwe have to invoke the muh deeper theorem from [BHV01℄ whih tells us that if there is asolution then n < 4, n = 5 or n = 12. Indeed, with the terminology and notation of lo. it.,one sees that un = (αn − βn)/(α − β) = ±1 is a Luas number without primitive divisor, sothe Luas pair (α, β) is n-defetive. 4. Optimal urvesAs we have seen in Setion 3, the strategy we have applied so far works in any dimension. Ifwe now have to restrit ourselves to the dimensions less than or equal to 3 is beause, in theseases, the ondition `has an indeomposable prinipal polarization' is geometrially su�ientto be the Jaobian of a urve. This is not true when the dimension is bigger, as it is provedsimply by noting that the dimension of the moduli spae of urves of genus g, 3g − 3, is lessthan the dimension of the moduli spae of prinipally polarized abelian varieties of dimension

g, g(g + 1)/2. However,Proposition 4.1 ([OU73℄). � For g ≤ 3, any geometrially indeomposable prinipally po-larized abelian variety (A, a)/K is the Jaobian of a urve C̄ over K̄.So, given (A, a)/K as in Proposition 4.1, the question boils down to know whether one andesend the urve C̄ to a urve C over K suh that (JacC, j) ≃ (A, a). Surprisingly theanswer is `not always'.Theorem 4.2 (Arithmeti Torelli theorem). � There is a unique model C/K of C̄ suhthat:Publiations mathématiques de Besançon - 2011



Christophe Ritzenthaler 1071. If C̄ is hyperellipti, there is an isomorphism
(JacC, j)

∼−−−−→ (A, a).2. If C̄ is not hyperellipti, there is a unique quadrati harater ε of Gal(K̄/K), and anisomorphism
(JacC, j)

∼−−−−→ (A, a)εwhere (A, a)ε is the quadrati twist of A by ε.Remark 4.3. � It is triky to �nd the right origin of the previous result. In [Ser85, Se.69℄,Gouvéa indiates `Oort +. . . ' as a referene. One an indeed �nd in [Oor91, Lem.5.7℄ asimilar result (but this is 1991). Sekiguhi also worked on this question but after two errata,he gives in [Sek86℄ only the existene of the model C/K but does not speak about ε. Onean also �nd this result in [Maz86, p.236℄.The notation (A, a)ε = (Aε, aε) should be understood as follows. The variety Aǫ is uniquelyde�ned up to isomorphism by the following property: there exists a quadrati extension L/Kand an isomorphism φ : A → Aǫ de�ned over L suh that for all σ ∈ Gal(K̄/K) one has
φσ = ε(σ)φ. The polarization aε is the pull-bak of a by φ−1.This result is a onsequene of Weil's desent as explained in [Ser68, 4.20℄ and of Torellitheorem [Mat58, p.790-792℄. The shism whih appears between the hyperellipti and nonhyperellipti ase is due to the fat that

Aut(JacC, j) ≃
{
Aut(C) if C is hyperellipti,
Aut(C)× {±1} if C is non hyperellipti.De�nition 4.4. � The harater ε (or the disriminant of the extension L/K) is alledSerre's obstrution. By extension, in the hyperellipti ase, we say that ε is trivial.Let us emphasize why this obstrution is an issue in our strategy. So far we have been able toprove in ertain ases the existene of a geometrially indeomposable prinipally polarizedabelian variety (A, a)/k with Weil polynomial (X2 +mX + q)g. Thanks to Proposition 4.1,we know that it is geometrially the Jaobian of a urve C̄. If the obstrution is trivial, then

C̄ desends to a urve C/k suh that JacC ≃ A and so C is optimal. On the ontrary, if theobstrution is not trivial, then C̄ desends to a urve C/k suh that JacC is isomorphi tothe (unique) quadrati twist of A and so its Weil polynomial is (X2−mX+ q)g. In partiular
#C(k) = q+1−gm and C is not optimal (and atually C has the minimum number of pointsa genus g urve over k an have).4.1. The end of the genus 1 and 2 ases. � Sine a genus 1 urve over a �nite �eldalways has a rational point, it is an ellipti urve and Proposition 2.5 tells us when an optimalgenus 1 urve exists (for the value of Nq(1) see [Deu41℄ or [Ser83a℄).When g = 2, all genus 2 urves are hyperellipti so the obstrution is always trivial and theresult is similar to Theorem 3.9, namely Publiations mathématiques de Besançon - 2011



108 Optimal urves of genus 1, 2 and 3Theorem 4.5 (Serre). � There is no optimal urve of genus 2 over Fq if and only if q = 4or 9 or m2 − 4q ∈ {−3,−4,−7}.In [Ser83a℄, a losed formula for the value of Nq(2) is given. More reently, ompleting thework started by many authors, we obtained in [HNR09℄ the omplete piture for abeliansurfaes, i.e. we determined whih isogeny lasses ontain the Jaobian of a genus 2 urvesin terms of the oe�ients of the Weil polynomial.5. The genus 3 aseAs there exist non hyperellipti genus 3 urves (the non-singular plane quartis), Serre'sobstrution may not be trivial. One hope is that, for eah q, there would be an optimalhyperellipti urve but this possibility has to be disarded: for instane, there does not existany optimal hyperellipti genus 3 urves over F2n with n even sine supersingular hyperelliptiurves do not exists in harateristi 2 [Oor91℄. Other ounterexamples an be found in oddharateristi as well as it will be apparent in Proposition 5.6. Therefore, it is important tobe able to ompute Serre's obstrution. Currently, there is no perfet solution to this problembut we will summarize some of the ideas and partial answers whih have been obtained.5.1. Speial families. � The key-idea is to use some families of urves with non trivialautomorphisms, suh that their Jaobian is a produt of ellipti urves expliitly obtained asquotient by ertain automorphism subgroups. Then one tries to reverse the proess and see ifone an glue given ellipti urves together to get a urve in the family. The possible quadratiextension one has to make during the onstrution is Serre's obstrution. Let us illustratethis proedure with an example.Example 5.1. � The following family represents genus 3 non hyperellipti urves in har-ateristi 2 with automorphism group ontaining (Z/2Z)2

C : (a(x2 + y2) + cz2 + xy + ez(x+ y))2 = xyz(x+ y + z), ac(a+ c+ e) 6= 0.The involutions are (x : y : z) maps to (y : x : z), (x + z : y + z : z) or (y + z : x+ z : z). Toget the equation of the urve E1 = C/〈(x : y : z) 7→ (y : x : z)〉, one introdues the invariantfuntions X = x+ y, Y = xy and �nds
E1 : (aX

2 + c+ Y + eX)2 = Y (X + 1).Doing similarly with the other involutions and rewriting the equations of the ellipti urves(see [NR10℄ for details) one gets that JacC ∼ E1 × E2 × E3 where
E1 : y2 + xy = x3 + ex2 + a2(a+ c+ e)2,

E2 : y2 + xy = x3 + ex2 + c2(a+ c+ e)2,

E3 : y2 + xy = x3 + ex2 + c2a2.Publiations mathématiques de Besançon - 2011



Christophe Ritzenthaler 109Conversely, we now want to glue ordinary ellipti urves Ei with j-invariant ji 6= 0. They analways be written Ei : y
2 + xy = x3 + ex2 +1/ji where, if q > 2, TrFq/F2

(e) = 0 if and only if
Tr(Ei) ≡ 1 (mod 4). Let s4i = 1/ji, then

a =
s1s3
s2

,

c =
s2s3
s1

,

e =
s1s3
s2

+
s2s3
s1

+
s1s2
s3

.(1)Now, for instane, assume that m ≡ −1 (mod 8). This happens for n = 35, 37, 63, . . .. Wehoose E = E1 = E2 = E3 an ordinary ellipti urve with trae −m and j-invariant j (Eexists sine 2 ∤ m). Sine we an assume that q > 4, the urve E has an 8-torsion point andit is not di�ult to hek that this implies (atually is equivalent to) TrFq/F2
1/j = 0. Hene

TrFq/F2

(
s1s3
s2

+
s2s3
s1

+
s1s2
s3

)
= TrFq/F2

(1/j) = 0.On the other hand, sine Tr(E) ≡ 1 (mod 4), we have TrFq/F2
(e) = 0 as well, so there is noobstrution to (1). Atually, we get an expliit equation

C : (j−1/4(x2 + y2 + z2 + xz + yz) + xy)2 = xyz(x+ y + z)for the optimal urve.Exploiting other families of urves in harateristi 2, we get the following result.Theorem 5.2 ([NR08, NR10℄). � If n is even, there exists an optimal urve over F2n ifand only if n ≥ 6.If n is odd and m ≡ 1, 5, 7 (mod 8), there is an optimal urve over F2n .When n > 1 is odd and m is even, there is of ourse no optimal urve sine there is no elliptiurve with trae −m. So only the ase m ≡ 3 (mod 8) is missing to get a omplete answerwhen p = 2.More reently, Mestre [Mes10℄ has worked with a family of urves with automorphism group
S3 and showed that if p = 3 (resp. p = 7), 3 ∤ m (resp. 3|m) and −m is a non-zero squaremodulo 7 (resp. n ≥ 7), then there exists an optimal urve over F3n (resp. F7n).To onlude on this approah, let us point out that one ould use the family with auto-morphism group (Z/2Z)2 (alled Ciani quartis) also in harateristi greater than 2, sineSerre's obstrution has been worked out in [HLP00℄. Unfortunately, one does not see whenthis obstrution is trivial knowing only m (one needs the equations of the ellipti fators todeide).5.2. Serre's analyti strategy. � Inspired by results of Klein [Kle90, Eq.118,p.462℄ andIgusa [Igu67, Lem.10,11℄, in a 2003 letter to Jaap Top [LR08℄, Serre stated a strategy toompute the obstrution when the harateristi is di�erent from 2. Roughly speaking, hisidea was that a ertain Siegel modular form evaluated at a `moduli point' (A, a)/K is a squarePubliations mathématiques de Besançon - 2011



110 Optimal urves of genus 1, 2 and 3in K if and only if the obstrution is trivial. In a series of three papers, it was shown thatthis is aurate (�rst for Ciani quartis, then in general) and how to ompute the obstrutionin the ase of the power of a CM ellipti urve. Let us state the general result without anyomments on the proof whih would lead us to far from our initial purpose (see however[Rit09, Chap.4℄ for details).Theorem 5.3 ([LRZ10℄). � Let A = (A, a)/K be a prinipally polarized abelian threefoldde�ned over a �eld K with charK 6= 2. Assume that a is geometrially indeomposable. Thereexists a unique primitive geometri Siegel modular form of weight 18 de�ned over Z, denoted
χ18, suh thati) (A, a) is a hyperellipti Jaobian if and only if χ18(A, a) = 0.ii) (A, a) is a non hyperellipti Jaobian if and only if χ18(A, a) is a non-zero square.Moreover, if K ⊂ C, let� (ω1, ω2, ω3) be a basis of regular di�erentials on A;� γ1, . . . γ6 be a sympleti basis (for a) of H1(A,Z);� Ωa := [Ω1 Ω2] = [

∫
γj
ωi] be a period matrix with τa := Ω−1

2 Ω1 ∈ H3 a Riemann matrix.Then (A, a) is a Jaobian if and only if(2) χ18((A, a), ω1 ∧ ω2 ∧ ω3) :=
(2π)54

228
·
∏

[ε] θ[ε](τa)

det(Ω2)18is a square in K.Let us reall that the Thetanullwerte θ[ε](τ) are the 36 onstants suh that
[ε] =

[
ǫ1
ǫ2

]
∈ {0, 1}3 ⊕ {0, 1}3,with ǫ1

tǫ2 ≡ 0 (mod 2) and for τ ∈ H3

θ

[
ǫ1
ǫ2

]
(τ) =

∑

n∈Z3

exp(iπ(n+ ǫ1/2)τ
t(n+ ǫ1/2) + iπ(n + ǫ1/2)

tǫ2).Remark 5.4. � For a di�erent approah on this result, see [Mea08℄.The initial aim of Serre's letter was of ourse the existene of optimal urves of genus 3.However, one does not know how to ompute diretly the value of χ18 over �nite �elds.Therefore, as Serre suggested, when A is ordinary, we lift (A, a) anonially over a number�eld and there, we use formula (2). Doing the omputation with enough preision, we anreognize this value as an algebrai number. Finally we redue it to the initial �nite �eld tosee if it is a square.As the Jaobian of an optimal urve is isogenous to the power of an ellipti urve E, in[Rit10℄, we worked out this proedure expliit in the partiular ase A = E3. Let a0 be theprodut prinipal polarization on E3 and M = a−1
0 a ∈ M3(End(E)). When End(E) is anorder in an imaginary quadrati �eld, it is well known that M is the matrix of a prinipalPubliations mathématiques de Besançon - 2011



Christophe Ritzenthaler 111polarization on E3 if and only if M is a positive de�nite hermitian matrix with determinant
1 (see Remark 3.2 and [Mum08, p.209℄). Moreover, when E is de�ned over a number �eld,we show how to translate the data (E3, a0M) into a period matrix of the orresponding torusin order to ompute the analyti expression of χ18. Let us illustrate this proedure with thefollowing example.Example 5.5. � Does there exist an optimal urve C of genus 3 over k = F47 ? If so,by Lemma 2.4 we know that JacC is isogenous to E3 where E is an ellipti urve withtrae −⌊2

√
47⌋ = −13. The urve E is then an ordinary ellipti urve and End(E) on-tains Z[π] ≃ Z[(13+

√
132 − 4 · 47)/2] = Z[τ ] (where π is the k-Frobenius endomorphism and

τ = (1 +
√
−19)/2). Hene End(E) = Z[π] is the ring of integers OL of L = Q(

√
−19). Sine

OL is prinipal, E is unique up to isomorphism. Using the work of [Sh98℄, one an see that,up to automorphism, there is a unique positive de�nite hermitian matrix M ∈ M3(OL) ofdeterminant 1 whih is indeomposable. In the language of Setion 3.1, this means that thereexists a unique positive de�nite unimodular indeomposable rank 3 hermitian OL-module.The abelian threefold (E3, a0M) is then the unique prinipally polarized geometrially inde-omposable abelian threefold with Weil polynomial (X2 + 13X + 47)3, up to isomorphism.Lifting E anonially over Q as Ē : y2 = x3 − 152x − 722 we an onsider the prinipallyabelian threefold (Ē3, a0M) sine End(Ē) = OL as well. Let [w1 w2] be a period matrix of Ewith respet to the anonial regular di�erential dx/(2y). If we let
Ω0 =






w1 0 0

0 w1 0

0 0 w1






w2 0 0

0 w2 0

0 0 w2




 ,

C3/Ω0Z6 ≃ Ē3(C) with the produt polarization a0. We then need to �nd a sympleti basisof Ω0Z6 for the polarization a0M . It is not di�ult to prove that the �rst Chern lass of a0Mwith respet to the pull-bak ωi of the di�erentials dx/(2y) on eah urve is represented bythe matrix
H =

1

w1w2

tM.The alternated form T lassially assoiated to H on the lattie Ω0Z6 is T = Im(tΩ0HΩ0).One then �nds a matrix B ∈ GL6(Z) suh that
BT tB =

[
0 I3

−I3 0

]and Ω = Ω0
tB is a period matrix for the polarization a0M . Finally, one omputes an approx-imation of

χ = χ18((Ē
3, a0M), ω1 ∧ ω2 ∧ ω3)thanks to the analyti formula (2) and we reognize it as an element of L. We �nd in our ase

χ = (219 · 197)2. Publiations mathématiques de Besançon - 2011



112 Optimal urves of genus 1, 2 and 3The value χ is a non-zero square over F47 so by Theorem 5.3 (ii) Serre's obstrution is trivialand there is a non hyperellipti optimal urve of genus 3 over k.Similar omputations show that there is an optimal urve over Fq for q = 61, 137, 277 but notfor q = 311. Note that this result for q = 47 and q = 61 has already been obtained in [Top03℄using expliit models and the others have been on�rmed by [AAMZ09℄. In [Rit10℄, tablesof values of χ as the one from Example 5.5 are given for (Ē3, a0M) where Ē is an elliptiurve with lass number 1 and M is taken from [Sh98℄. From them, we an get for instane:Proposition 5.6. � Assume that q = pn is suh that 4q = m2 + d with d = 7 (resp. 19).Then there exists an (expliit) genus 3 optimal urve over Fq if and only if
m ≡ 1, 2 or 4 (mod 7) (resp. (m

19

)(−2

p

)
= 1).Moreover if this urve exists, it is non hyperellipti.Assume that q = pn is suh that 4q = m2 + 43. In partiular 43 is a square in Fp, let say

43 = r2 with r ∈ Fp. Then there exists a genus 3 optimal urve over Fq if and only if
(m
43

)(α

p

)
= 1where α is either −2 · 3 · 7,−487,−47 · 79 · 107 · 173 or −15156± 8214r. Moreover if this urveexists, it is non hyperellipti.Remark 5.7. � The term `expliit' in Proposition 5.6 omes from the fat that for ertain

(Ē3, a0M) of [Rit10℄ we were able to give the equation of a urve C̄ suh that Jac C̄ isisomorphi to (Ē3, a0M) using [Guà09℄. Hene for these ases, we have a `universal' familyof expliit equations for the optimal urve.The fat that the previous statement is embarrassedly umbersome reveals either the intrinsidi�ulty of the problem or a wrong attak angle. Moreover, the limits of this strategy alreadyappear in the example: the omputation of the anonial lift, of the matriesM and of a periodmatrix make it algorithmi in nature. Worse, the omputation of an approximation of χ istime-onsuming sine one has to reognize it as an algebrai number (atually for a goodhoie of the model Ē, χ is an algebrai integer). Therefore large values of the disriminantof End(E) seem out of reah.It might then be interesting to try to understand the prime deomposition of χ algebraially.Klein's formula linking χ18 to the square of the disriminant of plane quartis (see [Kle90,Eq.118,p.462℄ and [LRZ10, Th.2.23℄) makes us think about an analogue of the Néron-Ogg-Shafarevih formula for ellipti urve [Sil92, Appendix C,16℄. We shall then interpret p|χ interms of the nature of (A, a) := (Ē3, a0M) (mod p). For instane, using [Ih95, p.1059℄, p|χif and only if (A, a) is geometrially deomposable or a hyperellipti Jaobian. Unfortunately,we do not know how to detet algebraially this last possibility (see the disussion in [Rit09,Se.4.5.1℄).Publiations mathématiques de Besançon - 2011



Christophe Ritzenthaler 113Remark 5.8. � We have not spoken yet about the ase q square when p > 2. First, when
p ≡ 3 (mod 4), one knows [Ibu93, p.2℄ that there exists an optimal genus 3 urve. Thisurve is even hyperellipti [Oor91℄ but not expliit (see however [KTW09℄ for some expliitsub-ases). Also Fermat urve x4 + y4 + z4 = 0 is optimal if n ≡ 2 (mod 4). Then, when
p ≡ 1 (mod 4) and n ≡ 2 (mod 4), Ibukiyama (lo. it.) shows that there is an optimalurve. Ibukiyama's strategy uses a mass formula on quaternion hermitian forms to show thedesent of an indeomposable prinipal polarization on a model over Fp of E3 where E/Fp2 isan ellipti urve with trae −2p = −m. The abelian threefold and its quadrati twist beingisomorphi over Fp2 , he avoids the issue of omputing Serre's obstrution.5.3. The geometri approah. � Following a onstrution of Reillas [Re74℄, we wereable to give in [BR10℄ a geometri haraterization of Serre's obstrution. For the sake ofsimpliity, let us assume that char k 6= 2 and that (A, a)/k is geometrially the Jaobian of anon hyperellipti genus 3 urve. Sine k is a �nite �eld, there exists a symmetri theta divisor
Θ (for the polarization a) de�ned over k. Let Σ be the union of 2∗Θ and of the unique divisorin |2Θ| with multipliity greater than or equal to 4 at 0.Proposition 5.9. � Let α ∈ A(k̄) \ {0}. The urve X̃α = Θ ∩ (Θ + α) is smooth andonneted if and only if α ∈ A(k̄) \ Σ.Hene, the divisor Σ represents a bad lous that needs to be avoided in the sequel. Assumingthat α /∈ Σ, the involution (z 7→ α− z) of X̃α is �xed point free and so Xα = X̃α/(z 7→ α− z)is a smooth genus 4 urve.Proposition 5.10. � The urve Xα is non hyperellipti and its anonial model in P3 lieson a quadri Qα whih is smooth.To go further, we need to assume that α is rational. When k is big enough, suh an α alwaysexists. We then obtain the following result.Theorem 5.11. � Assume there exists α ∈ A(k) \Σ. Then (A, a) is a Jaobian if and onlyif δ = DiscQα is a square in k∗.Let us sketh the proof. A non hyperellipti genus 4 urve X lies anonially in P3 on theintersetion of a unique quadri Q and a ubi surfae E. If we assume that Q is smooth,then X has two g13 oming from the two rulings of Q by interseting them with E. Moreover,an easy omputation shows that DiscQ is a square if and only if these two g13 are de�nedover k. Now Reillas' onstrution, whih an be used when (A, a) is the Jaobian of a urve,shows that Xα has two (rather expliit) rational g13 . To onlude, it is then enough to showthat a quadrati twist of (A, a) (whih is no more a Jaobian) leads to two onjugate g13 .The advantage of this approah is that it stays over the �nite �eld k and is ompletelyalgebrai. Unfortunately, so far, we do not see how to ompute δ for A = E3 and a = a0MPubliations mathématiques de Besançon - 2011



114 Optimal urves of genus 1, 2 and 3in terms of an equation of E and the oe�ients of M . The main di�ulty seems to �nd anequation (or even points) on a theta divisor in order to ompute an equation of Qα.Referenes[AAMZ09℄ E. Alekseenko, S. Aleshnikov, N. Markin, and A. Zaytsev. Optimalurves of genus 3 over �nite �elds with disriminant -19, 2009. Available onhttp://www.itebase.org/abstrat?id=oai:arXiv.org:0902.1901.[BHV01℄ Yu. Bilu, G. Hanrot, and P. M. Voutier. Existene of primitive divisors of Luas and Lehmernumbers. J. Reine Angew. Math., 539:75�122, 2001. With an appendix by M. Mignotte.[BR10℄ Arnaud Beauville and Christophe Ritzenthaler. Jaobians among abelian threefolds: a geo-metri approah, 2010. to appear in Math. Annal.[Bro93℄ Bradley W. Brok. Superspeial urves of genera two and three. PhD thesis, Prineton uni-versity, Prineton, 1993.[Del69℄ Pierre Deligne. Variétés abéliennes ordinaires sur un orps �ni. Invent. Math., 8:238�243,1969.[Deu41℄ Max Deuring. Die Typen der Multiplikatorenringe elliptisher Funktionenkörper. Abh. Math.Sem. Hansishen Univ., 14:197�272, 1941.[Di66℄ Leonard Eugene Dikson. History of the theory of numbers. Vol. II: Diophantine analysis.Chelsea Publishing Co., New York, 1966.[Eke87℄ Torsten Ekedahl. On supersingular urves and abelian varieties.Math. Sand., 60(2):151�178,1987.[Gop77℄ Valerii Denisovih Goppa. Codes that are assoiated with divisors. Problemy Pereda£i Infor-maii, 13(1):33�39, 1977.[Gop88℄ Valerii Denisovih Goppa. Geometry and odes, volume 24 of Mathematis and its Appli-ations (Soviet Series). Kluwer Aademi Publishers Group, Dordreht, 1988. Translated from theRussian by N. G. Shartse.[Guà09℄ Jordi Guàrdia. On the torelli problem and jaobian nullwerte in genus three, 2009.http://arxiv.org/abs/0901.4376.[Hal10℄ Sa�a Haloui. The harateristi polynomials of abelian varieties of dimensions 3 over �nite�elds. J. Number Theory, 130:2745�2752, 2010.[Has83℄ Ki-ihiro Hashimoto. Class numbers of positive de�nite ternary quaternion Hermitian forms.Pro. Japan Aad. Ser. A Math. Si., 59(10):490�493, 1983.[Hay68℄ Tsuyoshi Hayashida. A lass number assoiated with the produt of an ellipti urve withitself. J. Math. So. Japan, 20:26�43, 1968.[HI83℄ Ki-ihiro Hashimoto and Tomoyoshi Ibukiyama. On lass numbers of positive de�nite binaryquaternion Hermitian forms. I,II,III. J. Fa. Si. Univ. Tokyo Set. IA Math., 27,28,30:549�601,695�699,393�401, 1980,1981,1983.[HK86℄ Ki-ihiro Hashimoto and Harutaka Koseki. Class numbers of positive de�nite binary andternary unimodular Hermitian forms. Pro. Japan Aad. Ser. A Math. Si., 62(8):323�326, 1986.[HK89℄ Ki-ihiro Hashimoto and Harutaka Koseki. Class numbers of positive de�nite binary andternary unimodular Hermitian forms. Tohoku Math. J. (2), 41(2):171�216, 1989.[HLP00℄ Everett W. Howe, Frank Leprévost, and Bjorn Poonen. Large torsion subgroups of splitJaobians of urves of genus two or three. Forum Math., 12(3):315�364, 2000.[HN65℄ Tsuyoshi Hayashida and Mieo Nishi. Existene of urves of genus two on a produt of twoellipti urves. J. Math. So. Japan, 17:1�16, 1965.Publiations mathématiques de Besançon - 2011



Christophe Ritzenthaler 115[HNR09℄ Everett W. Howe, Enri Nart, and Christophe Ritzenthaler. Jaobians in isogeny lasses ofabelian surfaes over �nite �elds. Annales de l'institut Fourier, 59:239�289, 2009.[Hof91℄ Detlev W. Ho�mann. On positive de�nite Hermitian forms. Manusripta Math., 71(4):399�429, 1991.[Hon68℄ Taira Honda. Isogeny lasses of abelian varieties over �nite �elds. J. Math. So. Japan, 20:83�95, 1968.[How95℄ Everett W. Howe. Prinipally polarized ordinary abelian varieties over �nite �elds. Trans.Amer. Math. So., 347(7):2361�2401, 1995.[How96℄ Everett W. Howe. Kernels of polarizations of abelian varieties over �nite �elds. J. AlgebraiGeom., 5(3):583�608, 1996.[How08℄ Everett W. Howe. Supersingular genus-2 urves over �elds of harateristi 3. In Computa-tional arithmeti geometry, volume 463 of Contemp. Math., pages 49�69. Amer. Math. So., Provi-dene, RI, 2008.[Ibu89℄ Tomoyoshi Ibukiyama. On automorphism groups of positive de�nite binary quaternion Her-mitian latties and new mass formula. In Automorphi forms and geometry of arithmeti varieties,volume 15 of Adv. Stud. Pure Math., pages 301�349. Aademi Press, Boston, MA, 1989.[Ibu93℄ Tomoyoshi Ibukiyama. On rational points of urves of genus 3 over �nite �elds. Tohoku Math.J. (2), 45(3):311�329, 1993.[Ih95℄ Takashi Ihikawa. Teihmüller modular forms of degree 3. Amer. J. Math., 117(4):1057�1061,1995.[Igu67℄ Jun-ihi Igusa. Modular forms and projetive invariants. Amer. J. Math., 89:817�855, 1967.[IKO86℄ Tomoyoshi Ibukiyama, Toshiyuki Katsura, and Frans Oort. Supersingular urves of genustwo and lass numbers. Compositio Math., 57(2):127�152, 1986.[Kan97℄ Ernst Kani. The number of urves of genus two with ellipti di�erentials. J. Reine Angew.Math., 485:93�121, 1997.[Kle90℄ Felix Klein. Zur Theorie der Abelshen Funktionen. Math. Annalen, 36:388�474, 1889-90.Gesammelte mathematishe Abhandlungen, XCVII, 388-474.[KO87℄ Toshiyuki Katsura and Frans Oort. Supersingular abelian varieties of dimension two or threeand lass numbers. In Algebrai geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pages253�281. North-Holland, Amsterdam, 1987.[KTW09℄ Tetsuo Kodama, Jaap Top, and Tadashi Washio. Maximal hyperellipti urves of genusthree. Finite Fields Appl., 15(3):392�403, 2009.[Kuh88℄ Robert M. Kuhn. Curves of genus 2 with split Jaobian. Trans. Amer. Math. So., 307(1):41�49, 1988.[Lan06℄ Herbert Lange. Prinipal polarizations on produts of ellipti urves. In The geometry ofRiemann surfaes and abelian varieties, volume 397 of Contemp. Math., pages 153�162. Amer. Math.So., Providene, RI, 2006.[Lau02℄ Kristin Lauter. The maximum or minimum number of rational points on genus three urvesover �nite �elds. Compositio Math., 134(1):87�111, 2002. With an appendix by Jean-Pierre Serre.[LR08℄ Gilles Lahaud and Christophe Ritzenthaler. On some questions of Serre on abelian threefolds.In Algebrai geometry and its appliations, volume 5 of Ser. Number Theory Appl., pages 88�115.World Si. Publ., Hakensak, NJ, 2008.[LRZ10℄ Gilles Lahaud, Christophe Ritzenthaler, and Alexey Zykin. Jaobians among abelian three-folds: a formula of Klein and a question of Serre. Math. Res. Lett., 17(2), 2010.[Mat58℄ Teruhisa Matsusaka. On a theorem of Torelli. Amer. J. Math., 80:784�800, 1958.[Maz86℄ Barry Mazur. Arithmeti on urves. Bull. Amer. Math. So. (N.S.), 14(2):207�259, 1986.Publiations mathématiques de Besançon - 2011
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