
A COMPUTATIONAL STUDY OF THE ASYMPTOTIC BEHAVIOUROF COEFFICIENT FIELDS OF MODULAR FORMSbyMarel Mohyla & Gabor Wiese
Abstrat. � The artile motivates, presents and desribes large omputer alulations on-erning the asymptoti behaviour of arithmeti properties of oe�ient �elds of modular forms.The observations suggest ertain patterns, whih deserve further study.Résumé. � Le but de et artile est de motiver, présenter et dérire de nombreux alulsmenés sur ordinateur onernant le omportement asymptotique de propriétés arithmétiquesdes orps des oe�ients de formes modulaires. Les observations suggèrent plusieurs questionsqui méritent d'être étudiées ultérieurement.1. IntrodutionA reent breakthrough in Arithmeti Geometry is the proof of the Sato-Tate onjeture byBarnet-Lamb, Clozel, Geraghty, Harris, Shepherd-Barron and Taylor ([BLGHT℄, [CHT℄,[HSHT℄, [T℄). It states that the normalised Heke eigenvalues ap(f)

2p(k−1)/2 on a holomorphinewform f of weight k ≥ 2 (and trivial Dirihlet harater(1)) are equidistributed with respetto a ertain measure (the so-alled Sato-Tate measure), when p runs through the set of primenumbers. The name horizontal Sato-Tate is sometimes used for this situation.The reversed situation, to be referred to as vertial horizontal Sato-Tate, was suessfullytreated by Serre in [S℄. He �xes a prime p and allows any sequene of positive integers
(Nn, kn) with even kn and p ∤ Nn suh that Nn+kn tends to in�nity and proves that ap(f)
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(1)We only make this assumption for the sake of simpliity of the exposition.



76 Asymptoti behaviour of oe�ient �elds of modular formsis equidistributed with respet to a ertain measure depending on p (whih is related to theSato-Tate measure), when f runs through all the newforms in any of the spaes of usp formsof level Γ0(Nn) and weight kn. A orollary is that for �xed positive even weight k, the set(1.1) {[Qf : Q] | f newform of level Γ0(Nn) and weight k}is unbounded for any sequene Nn tending to in�nity. Here, Qf denotes the number �eldobtained from Q by adjoining all Heke eigenvalues on f .In this artile we perform a �rst omputational study towards a (weak) arithmeti analogue ofvertial Sato-Tate, where the name arithmeti refers to taking a �nite plae of Q, as opposed tothe in�nite plae used in usual Sato-Tate (the assertion of usual Sato-Tate onerns the Hekeeigenvalues as real numbers). An arithmeti analog of horizontal Sato-Tate is Chebotarev'sdensity theorem. Consider, for example, a normalised uspidal Heke eigenform f with at-tahed Galois representation ρf : Gal(Q/Q) → GL2(Zℓ).(2) Fix some x ∈ Zℓ and let n ∈ N.Let G be the image of the omposite representation Gal(Q/Q)
ρf−→ GL2(Zℓ) ։ GL2(Z/ℓnZ)and let d(x) be the number of elements in G with trae equal to x modulo ℓn. Then the den-sity of the set {p | |ap − x|ℓ ≤ ℓ−n} is equal to d(x)

|G| by Chebotarev's density theorem; hene,the situation is ompletely lear. Whereas at the in�nite plae horizontal Sato-Tate seems tobe more di�ult than vertial Sato-Tate, the situation appears to be reversed for arithmetianalogs. We are not going to propose suh an analogue. But, we are going to study relatedquestions by means of omputer alulations. For instane, as a motivation let us onsiderthe set(1.2) {[Fℓ,f : Fℓ] | f ∈ Sk(Nn;Fℓ) normalised Heke eigenform}in analogy to Equation 1.1. Here, Sk(Nn;Fℓ) denotes the Fℓ-vetor spae of uspidal modularforms over Fℓ (see Setion 2 for de�nitions) and Fℓ,f is de�ned by adjoining to Fℓ all Hekeeigenvalues on f . It is easy to onstrut sequenes (Nn, kn) for whih the set in question isin�nite (see e.g. [DiWi℄ and [W℄), but it does not seem simple to obtain all natural numbersas degrees. Most importantly, it seems to be unknown whether this set is in�nite when (Nn)is the sequene of prime numbers, k = 2 and ℓ > 2.Conerning properties of modular forms in positive harateristi, there is other, muh moresubtle information than just the degrees of Fℓ,f to be studied, e.g. ongruenes between mod-ular forms. In order to take the full information into aount, in this artile we examine theproperties of the Fℓ-Heke algebras Tk(Nn) on Sk(Nn;Fℓ) asymptotially for �xed weight k(mostly 2) and running level Nn (mostly the set of prime numbers) by means of experimen-tation. More preisely, we investigate three quantities:(a) The deviation of Tk(Nn) from being semisimple. In Setion 3, we inlude a propositionrelating nonsemisimpliity to ongruenes, rami�ation and ertain indies. Our exper-iments suggest that for odd primes ℓ, the Heke algebra Tk(Nn) tends to be lose to
(2)Again, it is only for simpliity of the exposition that we are taking Zℓ instead of Qℓ.Publiations mathématiques de Besançon - 2011



Marel Mohyla and Gabor Wiese 77semisimple, whereas the situation seems to be ompletely di�erent for p = 2 (see Se-tion 4.1).(b) The average residue degree of Tk(Nn). That is the arithmeti mean of the degrees of
Fℓ,f for all f in Sk(Nn;Fℓ). Our omputations (see Setion 4.2) strongly suggest thatthis quantity is unbounded. More preisely, we seem to observe a ertain asymptotibehaviour, whih we formulate as a question.() The maximum residue degree of Tk(Nn). That is the maximum of the degrees of Fℓ,ffor all f in Sk(Nn;Fℓ). Our experiments suggest that this quantity is 'asymptotially'proportional to the dimension of Sk(Nn;Fℓ).In Setion 4 we desribe our omputations and derive ertain questions from our observations.However, we do not attempt to propose any heuristi explanations in this artile. This willhave to be the subjet of subsequent studies, building on re�ned and extended omputations.We see (b) and () as strong evidene for the in�nity of the set in Equation 1.2, when Nnruns through the primes. Generally speaking, there appears to be some regularity in theotherwise quite errati behaviour of the examined quantities, lending some support to thehope of �nding a formulation of an arithmeti analogue of vertial Sato-Tate.2. Bakground and notationWe start by introduing the neessary notation and explaining the bakground. For fatson modular forms, we refer to [DI℄. Let us �x an interger k and a ongruene subgroup

Γ ⊆ SL2(Z). Denote by Sk(Γ) the omplex vetor spae of holomorphi usp forms of weight kfor Γ. De�ne T := Tk(Γ) to be the Z-Heke algebra of weight k for Γ, i.e. the subring of
EndC(Sk(Γ)) spanned by all Heke operators Tn for n ∈ N. If Γ = Γ0(N) we simply write
Tk(N). We use similar notation in other ontexts, too. It is an important theorem that T isfree of �nite rank as a Z-module, hene has Krull dimension one as a ring, and that the map(2.3) HomZ(T,C) → Sk(Γ), φ 7→

∞∑

n=1

φ(Tn)q
nwith q = q(z) = e2πiz de�nes an isomorphism of C-vetor spaes, whih is ompatible withthe natural Heke ation. For any ring A, de�ne Sk(Γ;A) := HomZ(T, A) equipped with thenatural Heke ation (i.e. T-ation), so that we have Sk(Γ) ∼= Sk(Γ;C). We think of elementsin Sk(Γ;A) in terms of formal q-expansions, i.e. as formal power series in A[[q]], by an analogof Eq. 2.3. Note that normalised Heke eigenforms, i.e. those f =

∑∞
n=1 anq

n ∈ Sk(Γ;A)that satisfy a1 = 1 and Tnf = anf , preisely orrespond to ring homomorphisms φ : T → Awith φ(Tn) = an. When A is an integral domain, a normalised eigenfuntion gives rise toa prime ideal p of T, namely the kernel of φ. We may think of T/p as the smallest subringof A generated by the an for n ∈ N: the oe�ient ring of f in A. Note that Aut(A) ats on
Sk(Γ;A) by omposing φ : T → A with σ ∈ Aut(A). Obviously, this ation does not hangethe ideal p orresponding to an eigenform. Publiations mathématiques de Besançon - 2011



78 Asymptoti behaviour of oe�ient �elds of modular formsWe �x a prime number p. We put T̂ := T̂k(Γ) := Tk(Γ)⊗ZZp, T̂η := Tk(Γ)⊗ZQp = T̂⊗Zp Qpand T := Tk(Γ) := Tk(Γ)⊗ZFp = T̂⊗ZpFp. Note the isomorphisms Sk(Γ;Zp) ∼= HomZp(T̂,Zp),
Sk(Γ;Qp) ∼= HomZp(T̂,Qp) and Sk(Γ;Fp) ∼= HomZp(T̂,Fp) ∼= HomFp(T,Fp).The Gal(Qp/Qp)-onjugay lasses of normalised eigenforms in Sk(Γ;Qp) (by whih we meanthe lasses for the Gal(Qp/Qp)-ation desribed above) are in bijetion with the prime (andautomatially maximal) ideals of T̂η and also in bijetion with the minimal prime ideals of T̂,whose set is denoted by MinSpec(T̂). The seond bijetion is expliitly given by taking preim-ages for the injetion T̂ →֒ T̂η. Note that T̂ has Krull dimension one, meaning that any primeideal is either minimal (i.e. not ontaining any smaller prime ideal) or maximal. Moreover,the Gal(Fp/Fp)-onjugay lasses of normalised eigenforms in Sk(Γ;Fp) are in bijetion with
Spec(T) = MaxSpec(T). Furthermore, Spec(T) is in natural bijetion with MaxSpec(T̂) un-der taking preimages for the natural projetion T̂ ։ T. By a result in ommutative algebra,we have diret produt deompositions

T̂ =
∏

m∈MaxSpec(bT)

T̂m, T =
∏

m∈MaxSpec(bT)

Tm and T̂η =
∏

p∈Spec(bTη)

T̂η,p,where the fators are the loalisations at the prime ideals indiated by the subsripts.De�nition 2.1. � We say that two p1, p2 ∈ MinSpec(T̂) are ongruent if they lie in thesame maximal ideal m ∈ MaxSpec(T̂). For p ∈ MinSpec(T̂), we all T̂/p the loal oe�ientring and Lp := Frac(T̂/p) the loal oe�ient �eld. We say that p ∈ MinSpec(T̂) is rami�edif Lp is a rami�ed extension of Qp. We denote by ip the index of T̂/p in the ring of integersof Lp. The residue �eld T̂/m ∼= T/m will be denoted by Fm and will be alled the residualoe�ient �eld.We now establish the onnetion with the usual understanding of the terms in the de�nition.Let Z ⊂ Q ⊂ C be the algebrai integers and the algebrai numbers, respetively. As T is of�nite Z-rank, the set of normalised eigenforms in Sk(Γ) is the same as the set of normalisedeigenforms in Sk(Γ;Z). Fix homorphisms
Z
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From this perspetive, a holomorphi normalised Heke eigenform f =
∑∞

n=1 anq
n ∈ Sk(Γ)gives rise to an eigenform in Sk(Γ;Fp), alled the redution of f modulo p, whose formal q-expansion is π(f) := ∑∞

n=1 π(an)q
n ∈ Fp[[q]]. The redution orresponds to m ∈ MaxSpec(T̂)and to m ∈ Spec(T) (we use the same symbol due to the natural bijetion between thetwo sets). The form f also gives rise to an eigenform in Sk(Γ;Qp), whih orresponds to

pf ∈ MinSpec(T̂) and to pf ∈ Spec(T̂η) (the same symbol is used again due to the naturalbijetion explained above).Publiations mathématiques de Besançon - 2011



Marel Mohyla and Gabor Wiese 79Let g =
∑∞

n=1 bnq
n be another holomorphi normalised Heke eigenform. If π(f) = π(g), thenlearly pf ⊂ m and pg ⊂ m, i.e. pf and pg are ongruent. Conversely, let pf , pg ∈ MinSpec(T̂)suh that pf ⊂ m and pg ⊂ m for some m ∈ MaxSpec(T̂), so that pf and pg are ongruent.The ideals pf and pg orrespond to Gal(Qp/Qp)-onjugay lasses in Sk(Γ;Qp) and we anhoose f, g ∈ Sk(Γ;Zp) orresponding to pf and pg with π(f) = π(g). We illustrate thesituation by the diagram

T̂/pf
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��
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66 66llllllllllllllllll
� ?

OO

Note that f, g an already be found in Sk(Γ;Z) ⊂ Sk(Γ). This justi�es our usage of the termongruene.Moreover, the loal oe�ient ring T̂/p an be identi�ed with Zp,f := Zp[ι(an)|n ∈ N] andits fration �eld Lp with Qp,f := Qp(ι(an)|n ∈ N), whene ip is the index of Zp,f in itsnormalisation. Furthermore, the residual oe�ient �eld, i.e. Fm = T/m, an be interpretedas Fp[π(an)|n ∈ N]. The relation to the arithmeti of the oe�ient �eld Qf := Q(an|n ∈ N)and the oe�ient ring Zf := Z[an|n ∈ N] is apparent.In order to onlude this bakground setion, we point out that in the ase k = 2, theoe�ient ring Zf is the endomorphism ring of the abelian variety Af attahed to f . Fromthat point of view, the following analysis an also be interpreted as a study of the arithmetiof the endomorphism algebras of GL2-abelian varieties.3. Semisimpliity of Heke algebrasWe reall that a �nite dimensional ommutative K-algebra, where K is a �eld, is semisimpleif and only if it is isomorphi to a diret produt of �elds (whih are neessarily �nite �eldextensions of K).In this setion we �rst study the semisimpliity of the Heke algebra T̂η. In the ase whenit is semisimple, we relate the non-semisimpliity of the mod p Heke algebra T to threephonomena: ongruenes between Gal(Qp/Qp)-onjugay lasses of newforms, rami�ationat p of the oe�ient �elds of newforms and the p-index of the loal oe�ient ring in thering of integers of the loal oe�ient �eld.Let f =
∑∞

n=1 an(f)q
n ∈ Sk(Γ1(M))new be a normalised Heke eigenform and let m be anypositive integer. We de�ne the C-vetor spae Vf (m) to be the span of {f(qd) | d | m}, wherePubliations mathématiques de Besançon - 2011



80 Asymptoti behaviour of oe�ient �elds of modular forms
d runs through all positive divisors of m (inluding 1 and m). Newform theory states that

Sk(Γ1(N)) ∼=
⊕

m|N

⊕

f∈Sk(Γ1(N/m))new

Vf (m).This is an isomorphism of Heke modules. The Heke operators Tn for (n,m) = 1 restritedto Vf (m) are salar matries with an(f) as diagonal entries. We now desribe the Hekeoperator Tℓ on Vf (m) for a prime ℓ. Suppose that ℓr || m. Let ǫ be the Dirihlet haraterof f . Consider the (r + 1)× (r + 1)-matrix
A := Af (m, ℓ) :=




aℓ(f) 1 0 0 . . . 0

−δǫ(ℓ)ℓk−1 0 1 0 . . . 0

0 0 0 1 . . . 0... ...
0 . . . 0 0 0 1

0 . . . 0 0 0 0




,where δ = 0 if ℓ | (N/m) and δ = 1 otherwise. The Heke operator Tℓ is then given on Vf (m)(for a ertain natural basis) by a diagonal blok matrix having only bloks equal to A on thediagonal, where eah blok on the diagonal orresponds to a divisor of m/ℓr. Let T be theHeke algebra of Sk(Γ1(N)) (as in Setion 2). The algebra TQ := T⊗ZQ is semisimple if andonly if TC := T⊗ZC is semisimple (if and only if T̂η is semisimple). By the above disussion,
TC is semisimple if and only if all the matries Af (m, ℓ) that appear are diagonalisable.Proposition 3.1. � Assume the notation above, M = N/m and k ≥ 2. Moreover, if k ≥ 3assume Tate's onjeture (see [CE℄, Setion 1).(a) Assume ℓ ∤ M . Then Af (m, ℓ) is diagonalisable if and only if r ≤ 2.(b) Assume that ℓ | M and that either ℓ || M or that ǫ annot be de�ned mod M/ℓ. Then

Af (m, ℓ) is diagonalisable if and only if r ≤ 1.() Assume that ℓ2 | M and that ǫ an be de�ned modulo M/ℓ. Then Af (m, ℓ) is diagonalisableif and only if r = 0.Proof. � (a) Assume r ≥ 1 (otherwise the result is trivial) and all B the top left 2×2-blokof A = Af (m, ℓ). The harateristi polynomial of B is g(X) = X2 − aℓ(f)X + ǫ(ℓ)ℓk−1.We have g(0) 6= 0 and g(X) has disriminant aℓ(f)
2 − 4ǫ(ℓ)ℓk−1, whih is non-zero, sine

|aℓ(f)| = 2|ℓ|(k−1)/2 would ontradit [CE℄, Theorem 4.1. Consequently, A is diagonalisableif and only if apart from B there is at most one more row and olumn.In ases (b) and (), note that A is in Jordan form. The result is now immediate, sine aℓ(f)is non-zero for (b) and zero for () (see [DS℄, 1.8).We have the immediate orollary (whih is Theorem 4.2 in [CE℄).Corollary 3.2. � Let N be ubefree and k ≥ 2. If k ≥ 3 assume Tate's onjeture (see [CE℄,Setion 1). Then the Heke algebras Tk(Γ1(N)) ⊗ Q and T̂k(Γ1(N))η as well as Tk(N) ⊗ Qand T̂k(N)η are semisimple.Publiations mathématiques de Besançon - 2011



Marel Mohyla and Gabor Wiese 81The prinipal result of this setion is the following proposition on the struture of the residualHeke algebra. We assume the notation laid out in Setion 2, in partiular, we work with ageneral ongruene subgroup Γ.Proposition 3.3. � Assume that T̂η is semisimple (see, e.g., Corollary 3.2), i.e.
T̂η

∼=
∏

p∈MinSpec(bT)

Lp.Then the residual Heke algebra T is semisimple if and only if all of the following three on-ditions are satis�ed:(i) No two p1, p2 ∈ MinSpec(T̂) are ongruent.(ii) None of the p ∈ MinSpec(T̂) is rami�ed.(iii) For all p ∈ MinSpec(T̂), the index ip = 1.Proof. � We �rst prove that (i), (ii) and (iii) imply the semisimpliity of T.The fat that there is no ongruene means that in every m ∈ MaxSpec(T̂) there is a unique
p ∈ MinSpec(T̂m). As T̂m⊗Zp Qp

∼= Lp, it follows that T̂m is a subring of Lp. Due to (iii), T̂mis the ring of integers of Lp. Sine by (ii) Lp is unrami�ed, we get that Tm is the residue �eldof the integers of Lp. This shows that T is a produt of �nite �elds, i.e. semisimple.Now we prove the onverse diretion and assume that T is semisimple. Let m ∈ MaxSpec(T̂).Let p1, p2, . . . , pm ∈ MinSpec(T̂) be the distint minimal primes ontained in m. Then T̂m⊗Zp

Qp
∼= Lp1 × · · · ×Lpm . Due to the non-degeneration Tm

∼= T̂m⊗Zp Fp
∼= Fpn for some n. Sine

dimQp T̂m⊗Zp Qp = n, we have [Lpi : Qp] ≤ n for i = 1, . . . ,m.Let Oi be the ring of integers of Lpi for i = 1, . . . ,m. It ontains T̂m/pi with index ipi .Tensoring the exat sequene of Zp-modules
0 → T̂m/pi → Oi → Oi/(T̂m/pi) → 0with Fp over Zp we obtain the exat sequene of Fp-vetor spaes:

Fpn → Oi ⊗Zp Fp → (Oi/(T̂m/pi))⊗Zp Fp → 0.Sine the map on the left is a ring homomorphism, it is injetive. Now dimFp Oi ⊗Zp Fp ≤ nimplies that Oi is unrami�ed and that ipi = 1. Thus [Lpi : Qp] = n for i = 1, . . . ,m and,hene, m = 1, onluding the proof.4. Observations and QuestionsIn this setion, we explain and expose our omputer experiments and we ask some ques-tions suggested by our studies. All omputer alulations were performed using Magma (see[BCP℄). Publiations mathématiques de Besançon - 2011



82 Asymptoti behaviour of oe�ient �elds of modular forms4.1. Semisimpliity of the residual Heke algebra. � A loal �nite-dimensional om-mutative Fp-algebra A is semisimple if and only if it is simple, whih is equivalent to A being�eld. We take the dimension of the maximal ideal m of A as a measure for the deviation of Afrom being semisimple. In partiular, A is a �eld if and only if m has dimension 0.For given prime p, level N and weight k we study the sum of the residue degrees of all primeideals:
a
(p)
N,k =

∑

m∈Spec(Tk(N))

[Fm : Fp].Clearly, a(p)N,k is less than or equal to the Fp-dimension of Sk(N ;Fp). Hene, Tk(N) is semisim-ple if and only if a(p)N,k is equal to this dimension.We intend to study the asymptoti behaviour of the funtion a
(p)
N,k for a �xed prime p and �xedweight k as a funtion of the level N . For simpliity, we let N run through the prime numbersonly in order to avoid ontributions from lower levels via the degeneray maps. We shouldpoint out that there an be ontributions from lower weights: an eigenform in Sk(N ;Fp) alsolives in Sk+n(p−1)(N ;Fp) for all n ≥ 0 by multipliation by the Hasse invariant. Note that for

p > 2 and k = 2, as well as for p > 3 and k = 4 there is no suh ontribution.Our omputational �ndings are best illustrated by plotting graphs. In eah of the follow-ing plots, the prime p and the weight k are �xed and on the x-axis we plot d(N) :=

dimFp
Sk(N ;Fp) and on the y-axis the funtion a

(p)
N,k as a funtion of N , i.e. eah N givesrise to a dot at the appropriate plae. The straight line in the graphs was determined as thelinear funtion α · d(N) whih best �ts the data (aording to gnuplot and the least squaresmethod).In the weights that we onsidered we observed a behaviour for p = 2 whih seems to beompletely di�erent from the behaviour at all other primes. We made plots for all odd primesless than 100 and weight 2 and present a seletion here. The graphs that we leave out lookvery similar.Figure 1
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Marel Mohyla and Gabor Wiese 83Figure 3
 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  20  40  60  80  100  120  140  160

S
um

 o
f R

es
id

ue
 D

eg
re

es

Dimension                 k = 2, p = 7

x * 0.995265 Figure 4
 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

S
um

 o
f R

es
id

ue
 D

eg
re

es

Dimension                 k = 2, p = 19

x * 0.997344

Figure 5
 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  20  40  60  80  100  120  140  160

S
um

 o
f R

es
id

ue
 D

eg
re

es

Dimension                 k = 2, p = 31

x * 0.999248 Figure 6
 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60  70  80

S
um

 o
f R

es
id

ue
 D

eg
re

es

Dimension                 k = 2, p = 41

x * 0.998996

Figure 7
 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60  70  80

S
um

 o
f R

es
id

ue
 D

eg
re

es

Dimension                 k = 2, p = 53

x * 0.999397 Figure 8
 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60

S
um

 o
f R

es
id

ue
 D

eg
re

es

Dimension                 k = 2, p = 73

x * 0.999190

Publiations mathématiques de Besançon - 2011



84 Asymptoti behaviour of oe�ient �elds of modular formsFigure 9
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In Figures 1�10 the levels range over all primes up to a ertain bound (whih is not the samefor all p). We observe that non-semisimpliity seems to be a rather rare phenomenon whihbeomes rarer for growing p, as one might have guessed. In the next �gures, we analyse theases p = 3, 5 still for weight 2 more losely by letting the levels range through all primesbetween 3000 and 10009 subdivided into four onseutive intervals.Figure 11
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One an observe that the slope of the best �tting line through the origin seems to be inreasingwith growing dimension. Although we only omputed relatively litte data, we inlude twoexamples for weight 4. They do not suggest any signi�ant di�erene to the weight 2 ase.Figure 19
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We are led to ask the following question. Publiations mathématiques de Besançon - 2011



86 Asymptoti behaviour of oe�ient �elds of modular formsQuestion 4.1. � Fix an odd prime p and an even k ≥ 2. Let a(N) := a
(p)
k,N and d(N) :=

dimFp
Sk(N ;Fp). Does the following statement hold?For all ǫ > 0 there is Cǫ > 0 suh that for all primes N the inequality

a(N) > (1− ǫ)d(N)− Cǫholds.We ontrast the situation, whih seems very similar for every odd prime, with the one for
p = 2 and k = 2. We do not onsider any higher weights due to the ontributions fromweight 2, whih would `disturb' the situation. The following plots take prime numbers N intoaount that lie in six di�erent intervals up to 12000.Figure 21

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120  140  160

S
um

 o
f R

es
id

ue
 D

eg
re

es

Dimension                 k = 2, p = 2

x * 0.521382 Figure 22
 200

 220

 240

 260

 280

 420  430  440  450  460  470  480  490  500  510

S
um

 o
f R

es
id

ue
 D

eg
re

es

Dimension                 k = 2, p = 2

x * 0.510937

Figure 23
 240

 260

 280

 300

 320

 520  540  560  580  600

S
um

 o
f R

es
id

ue
 D

eg
re

es

Dimension                 k = 2, p = 2

x * 0.509345 Figure 24
 280

 300

 320

 340

 360

 380

 400

 620  640  660  680  700  720

S
um

 o
f R

es
id

ue
 D

eg
re

es

Dimension                 k = 2, p = 2

x * 0.506328

Publiations mathématiques de Besançon - 2011



Marel Mohyla and Gabor Wiese 87Figure 25
 320

 340

 360

 380

 400

 420

 440

 460

 480

 720  740  760  780  800  820

S
um

 o
f R

es
id

ue
 D

eg
re

es

Dimension                 k = 2, p = 2

x * 0.508675 Figure 26
 440

 460

 480

 500

 520

 540

 560

 930  940  950  960  970  980  990  1000

S
um

 o
f R

es
id

ue
 D

eg
re

es

Dimension                 k = 2, p = 2

x * 0.508181

In spite of the very irregular behaviour, it is remarkable that the slope of the best �tting linethrough the origin is always just a little bigger than 1
2 .At the moment we annot fully explain this behaviour. Contributions from weight one playsome role. However, probably more important are ongruenes of forms having Atkin-Lehnereigenvalue +1 with forms having eigenvalue −1. As Johan Bosman observes in a remarkin [B℄, it follows from the onnetedness of the spetrum of the Heke algebra ([M℄, 10.6) for

k = 2 and prime levels that there is always at least one suh ongruene for p = 2, wheneverthe +1- and the −1-eigenspae are nonempty.We are led to ask the following question.Question 4.2. � Fix an even weight k ≥ 2. Let a(N) := a
(2)
k,N and d(N) := dimF2

Sk(N ;F2).Are there 1 > α ≥ β > 0 and onstants C,D > 0 suh that the inequality
α · d(N) + C > a(N) > β · d(N)−Dholds?4.2. Average Residue Degree. � We now study the average residue degree, whih wede�ne for given level N , weight k and prime p as

b
(p)
N,k =

1

#Spec(Tk(N))

∑

m∈Spec(Tk(N))

[Fm : Fp] =
a
(p)
N,k

#Spec(Tk(N))
.We made omputations for weight 2 and all primes p less than 100, where N runs throughthe same ranges as previously. We again plot the dimension d(N) on the x-axis and thefuntion b

(p)
N,k on the y-axis and the straight line is again the best �tting funtion α · d(N),although we believe that this is not the right funtion to take (see below). We again presenta seletion of prime numbers as before, however, inluding p = 2 from the beginning. Thegraphs that we leave out have very similar shapes.
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Here are again two examples for weight 4.Figure 37
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Very roughly speaking the data suggest that the average residue degree grows with the di-mension, as is ertainly to be expeted. We also onduted a loser analysis for the primes 2,
3 and 5. For p = 2 we used all primes in di�erent intervals up to 12000 and obtained theseplots: Publiations mathématiques de Besançon - 2011
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Here are the plots for p = 3, 5 and the primes between 3000 and 10009 subdivided into fourintervals.
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We observe that the slope of the best �tting line goes slightly down with the dimension.This strongly suggests that taking a straight line does not seem to be quite orret. We alsomade logarithmi plots, whih we do not reprodue here; they seemed to suggest to us thata behaviour of the form b
(p)
N,k ∼ const · d(N)α is not quite orret either (the best hoie of αseems to be lose to 1 in aordane with the previous disussion).These omputations suggest the following question.Question 4.3. � Fix a prime p and an even weight k ≥ 2. Let b(N) := b

(p)
k,N and d(N) :=

dimFp
Sk(N ;Fp). Do there exist onstants C1, C2 and 0 < α ≤ β < 1 suh that the inequality

C1 + α
d(N)

log(d(N))
≤ b(N) ≤ C2 + β · d(N)holds?We remark that if a(p)N,k behaves like d(N), as suggested by Question 4.1, then Question 4.3 isequivalent to asking that#Spec(Tk(N)) does not grow faster than a onstant times log(d(N)).The phenomenon that for odd primes p most of the dots in the diagrams seem to lie on orvery lose to ertain distinguished lines through the origin is natural in view of Question 4.1:the slope of the line on or lose to whih a dot lies is just 1

#Spec(Tk(N))
.4.3. Maximum Residue Degree. � Now we turn our attention to the maximum residuedegree, whih we de�ne for given level N , weight k and prime p as

c
(p)
N,k = max{[Fm : Fp] | m ∈ Spec(Tk(N))}.We made omputations for weight 2 and all primes p less than 100, where N runs throughthe same ranges as previously. We again plot the dimension d(N) on the x-axis and thefuntion c

(p)
N,k on the y-axis and the straight line is again the best �tting funtion α · d(N).This time we believe that this might be the right funtion to take. Here is again a seletionof the plots that we obtained.
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Here are again two examples for weight 4.Figure 62
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The data ertainly suggest that the maximum residue degree grows with the dimension. It isremarkable to see that the slopes of the best �tting lines all seem to be very lose to eah other� with the single exeption of the ase p = 2, whih might be aused by the same phenomenonas earlier. Also in this ase we onduted a loser analysis for the primes 2, 3 and 5. For
p = 2 we used all primes in di�erent intervals up to 12000 and obtained these plots:Publiations mathématiques de Besançon - 2011
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Here are the plots for p = 3, 5 and the primes between 3000 and 10009 subdivided into fourintervals.
Publiations mathématiques de Besançon - 2011



96 Asymptoti behaviour of oe�ient �elds of modular formsFigure 69
 40

 60

 80

 100

 120

 140

 160

 180

 200

 240  260  280  300  320  340  360  380

M
ax

im
um

 R
es

id
ue

 D
eg

re
e

Dimension                 k = 2, p = 3

x * 0.378322 Figure 70
 100

 150

 200

 250

 300

 380  400  420  440  460  480  500  520  540

M
ax

im
um

 R
es

id
ue

 D
eg

re
e

Dimension                 k = 2, p = 3

x * 0.374745

Figure 71
 100

 150

 200

 250

 300

 350

 540  560  580  600  620  640  660  680

M
ax

im
um

 R
es

id
ue

 D
eg

re
e

Dimension                 k = 2, p = 3

x * 0.366550 Figure 72
 150

 200

 250

 300

 350

 400

 680  700  720  740  760  780  800  820  840

M
ax

im
um

 R
es

id
ue

 D
eg

re
e

Dimension                 k = 2, p = 3

x * 0.374045

Figure 73
 60

 80

 100

 120

 140

 160

 180

 200

 220

 240  260  280  300  320  340  360  380

M
ax

im
um

 R
es

id
ue

 D
eg

re
e

Dimension                 k = 2, p = 5

x * 0.372593 Figure 74
 100

 150

 200

 250

 300

 380  400  420  440  460  480  500  520  540

M
ax

im
um

 R
es

id
ue

 D
eg

re
e

Dimension                 k = 2, p = 5

x * 0.367490

Publiations mathématiques de Besançon - 2011



Marel Mohyla and Gabor Wiese 97Figure 75
 100

 150

 200

 250

 300

 350

 520  540  560  580  600  620  640  660  680

M
ax

im
um

 R
es

id
ue

 D
eg

re
e

Dimension                 k = 2, p = 5

x * 0.370869 Figure 76
 150

 200

 250

 300

 350

 400

 680  700  720  740  760  780  800  820  840

M
ax

im
um

 R
es

id
ue

 D
eg

re
e

Dimension                 k = 2, p = 5

x * 0.366508

We observe that, although the best �tting lines were omputed using di�erent intervals, theirslopes are very lose to eah other. These omputations suggest the following question.Question 4.4. � Fix a prime p and an even weight k ≥ 2. Let c(N) := c
(p)
k,N and d(N) :=

dimFp
Sk(N ;Fp). Do there exist onstants C1, C2 and 0 < α ≤ β < 1 suh that the inequality
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