
COMPUTING COEFFICIENTS OF MODULAR FORMSbyPeter Bruin
Abstrat. � We prove that oe�ients of q-expansions of modular forms an be omputedin polynomial time under ertain assumptions, the most important of whih is the Riemannhypothesis for ζ-funtions of number �elds. We give appliations to omputing Heke operators,ounting points on modular urves over �nite �elds, and omputing the number of representa-tions of an integer as a sum of a given number of squares.Résumé (Sur le alul des oe�ients des formes modulaires). � On démontre queles oe�ients des q-développements des formes modulaires peuvent être alulés en tempspolynomial sous ertaines onditions, dont la plus importante est l'hypothèse de Riemann pourles fontions ζ des orps de nombres. On donne des appliations aux problèmes suivants : alulerdes opérateurs de Heke ; ompter le nombre de points d'une ourbe modulaire sur un orps �ni ;aluler le nombre de représentations d'un entier omme somme d'un nombre donné de arrés.1. IntrodutionLet n and k be positive integers, and let Mk(Γ1(n)) be the omplex vetor spae of modularforms of weight k for the group Γ1(n). A modular form f ∈ Mk(Γ1(n)) is determined by n, kand its q-expansion oe�ients am(f) for 0 ≤ m ≤ k · d(Γ1(n)), where d(Γ1(n)) is a funtiongrowing roughly quadratially in n.A natural question to ask is whether, given am(f) for 0 ≤ m ≤ k ·d(Γ1(n)), one an e�ientlyompute am(f) for large m. In the ase n = 1, Couveignes, Edixhoven et al. [2℄ desribeda deterministi algorithm that aomplishes this in time polynomial in logm for �xed k.Under the generalised Riemann hypothesis, their algorithm runs in time polynomial in kand logm. Earlier algorithms, based on modular symbols, require time polynomial in m. The2000 Mathematis Subjet Classi�ation. � 11E25, 11F11, 11F30, 11F80, 11Y16.Key words and phrases. � Algorithms, Heke algebras, modular forms, sums of squares.The results of this artile are based on those of my thesis [1℄. I am muh indebted to my advisors BasEdixhoven and Robin de Jong for their support. I would also like to thank the organisers of the onfereneThéorie des nombres et appliations for the opportunity to speak about this subjet, whih has led to thisartile.The researh for this artile was supported by the Netherlands Organisation for Sienti� Researh.



20 Computing oe�ients of modular formsmethod of [2℄ is, very brie�y, to ompute two-dimensional Galois representations assoiatedto eigenforms of level 1 over �nite �elds.In this artile, results from the author's thesis [1℄ on omputing Galois representations assoi-ated to eigenforms of higher levels are used to generalise the result of Couveignes, Edixhovenet al., be it that we an urrently only give a probabilisti algorithm. The preise resultfrom [1℄ that we need is Theorem 3.1 below. We will use this to prove our main result, whihreads as follows.Theorem 1.1. � Let n0 be a positive integer. There exists a probabilisti algorithm that,given� a positive integer k,� a squarefree positive integer n1 oprime to n0,� a number �eld K,� a modular form f of weight k for Γ1(n) over K, where n = n0n1, and� a positive integer m in fatored form,omputes am(f), and whose expeted running time is bounded by a polynomial in the lengthof the input under the Riemann hypothesis for ζ-funtions of number �elds.Let us make preise how the number �eld K and the form f should be given to the algorithmand how it returns am(f). We represent K by its multipliation table with respet to some
Q-basis (b1, . . . , br) of K. By this we mean the rational numbers ci,j,k with 1 ≤ i, j, k ≤ rsuh that

bibj =
r∑

k=1

ci,j,kbk.We represent elements of K as Q-linear ombinations of (b1, . . . , br). We represent f by itsoe�ients a0(f), . . . , ak·d(Γ1(n))(f); these, as well as the output am(f), are elements of K.We should also make preise what the word `probabilisti' in Theorem 1.1 means. The orretinterpretation is that the result is guaranteed to be orret, but that the running time dependson random hoies made during exeution. Probabilisti algorithms with this property areommonly alled Las Vegas algorithms. These are to be ontrasted with Monte Carlo algo-rithms, where the randomness in�uenes the orretness of the output instead of the runningtime. It is worth emphasising that the expeted running time is de�ned by averaging onlyover the random hoies made during exeution, not over the possible inputs. For any input
x, the atual running time of the algorithm given this input an be modelled as a randomvariable Tx. The laim that the expeted running time is polynomial in the length of theinput means that there exists a polynomial P suh that for any input x, the expetation of Txis at most P (length of x). We refer to Lenstra and Pomerane [10, § 12℄ for an enlighteningdisussion of probabilisti algorithms.Remark 1.2. � The length of the input depends not only on k, n0, n1, logm and K, butalso on the omplexity of the given oe�ients of the modular form f . For example, if f is aprimitive form f0 multiplied by an integer A, then for �xed f0 and A tending to ∞, the lengthPubliations mathématiques de Besançon - 2011



Peter Bruin 21of the input inreases approximately by a multiple of logA, and the running time inreasesapproximately by a polynomial in logA.Remark 1.3. � Without the generalised Riemann hypothesis, we are only able to provethat the running time of our algorithm is polynomial in exp(n1), exp(k) and the length of theinput. In other words, we are still able to prove unonditionally that if not only n0, but also
n1 and k are �xed, then the expeted running time is polynomial in the length of the input.Remark 1.4. � Omitting the ondition that m be given in fatored form would be equiv-alent to laiming that integers that are produts of two prime numbers an be fatored inpolynomial time. Namely, suppose that the theorem holds without this ondition. Applyingthe hypothetial stronger version of the theorem with� k a �xed even integer greater than 2,� n0 = n1 = 1,� K = Q,� f = Ek, the lassial Eisenstein series Ek of weight k for Γ1(1) = SL2(Z), and� m = pq, where p and q are two distint prime numbers,we onlude that there exists a probabilisti algorithm that omputes am(Ek) in time poly-nomial in logm. From the formula

am(Ek) =
∑

d|m
dk−1

= 1 + pk−1 + qk−1 +mk−1,it follows that {pk−1, qk−1} an be omputed quikly as the set of roots of the polynomial
x2− (am(Ek)−mk−1−1)x+mk−1 ∈ Z[x]. Hene we would be able to ompute {p, q} from min time polynomial in logm, whih is a laim we ertainly do not wish to make.Remark 1.5. � The reason why our algorithm is probabilisti is that this is the urrentstate of a�airs for the algorithm to whih Theorem 3.1 refers. This algorithm an perhapsbe turned into a deterministi one by replaing the arithmeti over �nite �elds that is usedin [1℄ by approximate arithmeti over the omplex numbers. The latter approah is taken byCouveignes, Edixhoven et al. [2, Chapter 12℄ for modular forms of level 1. There are urrentlystill some di�ulties with this approah for modular forms of higher level. We refer to [1,Introdution℄ for a disussion of these.Remark 1.6. � It would be more satisfatory if we ould prove the theorem with the levelranging over all positive integers n. We urrently annot do this for the following reason.The modular urve X1(n) has a regular and semi-stable model over the ring of integers ZLof a suitable number �eld L, but in general we do not know a good bound on the number ofirreduible omponents of the geometri �bres of suh a model at primes of ZL that divide n.If we ould prove the theorem in this more general form, then the restrition to modular formsfor ongruene subgroups of the form Γ1(n) ould also be removed. The reason for this is thatPubliations mathématiques de Besançon - 2011



22 Computing oe�ients of modular formsthe spae of modular forms of weight k for the prinipal ongruene subgroup Γ(n) ⊆ SL2(Z)an be embedded into Mk(Γ1(n
2)) by a map that on q-expansions is given by q 7→ qn.We now turn to some appliations of Theorem 1.1. We will prove that there exist probabilis-ti algorithms that solve the following problems in expeted polynomial time in the input,assuming the Riemann hypothesis for ζ-funtions of number �elds:� Given a positive integer k, a squarefree positive integer n and a positive integer m infatored form, ompute the matrix of the Heke operator Tm in T(Mk(Γ1(n))) withrespet to a �xed Z-basis of T(Mk(Γ1(n))).� Given a squarefree positive integer n and a prime number p ∤ n, ompute the zetafuntion of the modular urve X1(n) over Fp.� Given an even positive integer k and a positive integer m in fatored form, ompute thenumber of ways in whih m an be written as a sum of k squares of integers.Atually, we do not prove our results in exatly the same order as presented above. We�rst prove Theorem 1.1 in the speial ase where f is an Eisenstein series or a primitiveusp form. This su�es to solve (a slightly more general version of) the above problem ofomputing Heke operators. We then prove Theorem 1.1 in general. Finally, we show how tosolve the problems of omputing zeta funtions of modular urves and �nding the number ofrepresentations of an integer as a sum of squares.To onlude this introdution, we remark that in order to keep this artile at a reasonablelength, we have omitted, or only brie�y touhed upon, muh material that an be found in[1℄ and [2℄. This means that the ontents of this artile are largely disjoint from those of [1℄and [2℄. 2. BakgroundWe begin by olleting the neessary preliminaries and introduing our notation. For de�ni-tions and more bakground, we refer to the many texts on modular forms, suh as Diamondand Im [5℄ or Diamond and Shurman [6℄.2.1. Modular forms. � Let n and k be positive integers. Let Mk(Γ1(n)) denote the

C-vetor spae of modular forms of weight k for the group
Γ1(n) =

{(
a

c

b

d

)
∈ SL2(Z)

∣∣∣∣
a ≡ d ≡ 1 (mod n),

c ≡ 0 (mod n)

}
.For every f ∈ Mk(Γ1(n)) and every m ≥ 0, we write am(f) for the oe�ient of qm in the

q-expansion of f , so the q-expansion of f is the power series ∑∞
m=0 am(f)qm in K[[q]]. Forevery divisor d of n and every divisor e of n/d, there exists an injetive C-linear map

bd,ne : Mk(Γ1(d))  Mk(Γ1(n))that, on q-expansions, has the e�et of sending q to qe.Publiations mathématiques de Besançon - 2011



Peter Bruin 23We de�ne(1) d(Γ1(n)) =
1

12
[SL2(Z) : {±1}Γ1(n)].This d(Γ1(n)) grows roughly quadratially in n. A basi fat that we will need often is thefollowing.Lemma 2.1. � Any f ∈ Mk(Γ1(n)) is determined by n, k and the oe�ients am(f) for

0 ≤ m ≤ k · d(Γ1(n)).Proof. � If n ≥ 5, then d(Γ1(n)) is the degree of the line bundle ω of modular forms ofweight 1 on the modular urve X1(n). In that ase, we an view modular forms as globalsetions of ω⊗k. If f, g ∈ Mk(Γ1(n)) are suh that am(f) = am(g) for 0 ≤ m ≤ k · d(Γ1(n)),then f−g has a zero of order at least k ·d(Γ1(n))+1 at the usp ∞ of X1(n), and we onludethat f = g. One an prove the lemma in general by reduing to the ase n ≥ 5. We refer toSturm [14℄ for a full proof.2.2. Heke algebras. � Let T(Mk(Γ1(n))) be the Heke algebra on Mk(Γ1(n)). This isa ommutative ring, free of �nite rank as a Z-module and generated as a Z-algebra by theHeke operators Tm for m ∈ {1, 2, . . .} and the diamond operators 〈d〉 for d ∈ (Z/nZ)×. Itats on the C-vetor spae Mk(Γ1(n)) of modular forms.Let us give some useful formulae. We have(2) Tm1m2 = Tm1Tm2 if gcd(m1,m2) = 1and(3) Tpi+2 = TpTpi+1 − pk−1〈p〉Tpi (p prime and i ≥ 0),where 〈p〉 is to be interpreted as 0 if p divides n. For all f ∈ Mk(Γ1(n)), we have(4) am(Tp(f)) = apm(f) + pk−1am/p(〈p〉f) (p prime and m ≥ 1),where the seond term is 0 if p divides n or if p does not divide m, and(5) a1(Tmf) = am(f) (m ≥ 1).There exists a anonial bilinear map
T(Mk(Γ1(n)))×Mk(Γ1(n)) −→ C

(t, f) 7−→ a1(tf),induing an isomorphism(6) Mk(Γ1(n))
∼−→ HomZ-modules(T(Mk(Γ1(n))),C)of C⊗Z T(Mk(Γ1(n)))-modules.An eigenform of weight k for Γ1(n) is an element of Mk(Γ1(n)) spanning a one-dimensionaleigenspae for the ation of T(Mk(Γ1(n))). Let f be suh a form. Then a1(f) 6= 0, and wemay sale f suh that a1(f) = 1. Now (5) implies that

Tmf = am(f)f for all m ≥ 1.Publiations mathématiques de Besançon - 2011



24 Computing oe�ients of modular formsFurthermore, there exists a unique group homomorphism
ǫ : (Z/nZ)× → C×,alled the harater of f , suh that

〈d〉f = ǫ(d)f for all d ∈ (Z/nZ)×.Under the isomorphism (6), the eigenforms f ∈ Mk(Γ1(n)) with a1(f) = 1 orrespond to thering homomorphisms T(Mk(Γ1(n))) → C.The C-vetor spae Mk(Γ1(n)) an be written as a diret sum
Mk(Γ1(n)) = Ek(Γ1(n))⊕ Sk(Γ1(n)).Here Sk(Γ1(n)) denotes the subspae of usp forms and Ek(Γ1(n)) denotes the subspaeof Eisenstein series. The ation of T(Mk(Γ1(n))) respets these subspaes, and we get aorresponding deomposition

T(Mk(Γ1(n))) = T(Ek(Γ1(n)))×T(Sk(Γ1(n)))of Z-algebras.2.3. Eisenstein series. � Let d1 and d2 be positive integers suh that d1d2 divides n, andonsider primitive haraters
ǫ1 : (Z/d1Z)

× → C×, ǫ2 : (Z/d2Z)
× → C×.(A harater ǫ : (Z/dZ)× → C×, with d a positive integer, is alled primitive if there is nostrit divisor e | d suh that ǫ fators through the quotient (Z/dZ)× → (Z/eZ)×.) We de�nethe formal power series(7) Eǫ1,ǫ2

k (q) = −δd1,1
Bǫ2

k

2k
+

∞∑

m=1

(∑

d|m
ǫ1(m/d)ǫ2(d)d

k−1

)
qm ∈ C[[q]].Here Bǫ2

k is a generalised Bernoulli number and δd1,1 is 1 or 0 depending on whether d1 = 1or d1 > 1.If k 6= 2, or if k = 2 and at least one of ǫ1 and ǫ2 is non-trivial, then Eǫ1,ǫ2
k (q) is the q-expansion of an eigenform in Ek(Γ1(d1d2)) with harater ǫ1ǫ2. For any divisor e of n/(d1d2),the map bd1d2,ne : Mk(Γ1(d1d2)) → Mk(Γ1(n)) sends this form to an element of Mk(Γ1(n)) with

q-expansion Eǫ1,ǫ2
k (qe). As for the ase where k = 2 and both ǫ1 and ǫ2 are trivial, for everydivisor e | n with e > 1 there is an element of E2(Γ1(n)) with q-expansion E2(q) − eE2(q

e),where E2(q) is the power series(8) E2(q) = − 1

24
+

∞∑

m=1

(∑

d|m
d

)
qm.For k 6= 2, the �nite set(9) Fk(Γ1(n)) =

⊔

d1d2|n

⊔

e|(n/d1d2)

{
Eǫ1,ǫ2

k (qe) | ǫi : (Z/diZ)× → C× primitive}Publiations mathématiques de Besançon - 2011



Peter Bruin 25is a C-basis of Ek(Γ1(n)). For k = 2, we take all Eǫ1ǫ2
k (qe) for ǫ1, ǫ2 not both trivial, togetherwith the E2(q)− eE2(q

e) for all e | n with e > 1.2.4. Cusp forms. � We write Snewk (Γ1(n)) for the orthogonal omplement, with respetto the Petersson inner produt, of the subspae of Sk(Γ1(n)) spanned by the images ofall the bd,ne with d stritly dividing n. The spae Snewk (Γ1(n)) is preserved by the ationof T(Sk(Γ1(n))). The unique quotient of T(Sk(Γ1(n))) that ats faithfully on Snewk (Γ1(n)) isdenoted by T(Snewk (Γ1(n))).An eigenform f ∈ Snewk (Γ1(n)) with a1(f) = 1 is alled a primitive usp form. The �nite set(10) Bk(Γ1(n)) =
⊔

d|n

⊔

e|(n/d)
bd,ne

{primitive usp forms in Snewk (Γ1(n))
}is a C-basis for Sk(Γ1(n)).2.5. Modular forms over other rings. � We de�ne

Mint
k (Γ1(n)) = {forms in Mk(Γ1(n)) with q-expansion in Z[[q]]}.This is a T(Mk(Γ1(n)))-module that is free of �nite rank as a Z-module. For any ommutative

Z[1/n]-algebra R, we de�ne the R-module of modular forms of weight k for Γ1(n) withoe�ients in R as
Mk(Γ1(n), R) = R⊗Z Mint

k (Γ1(n)).Apart from the omplex numbers, the important examples for us are number �elds and �nite�elds of harateristi not dividing n. If R is any �eld of harateristi not dividing n, wede�ne eigenforms over R in the same way as in the ase R = C.If R is a sub-Z[1/n]-algebra of C, we identify Mk(Γ1(n), R) with the submodule of Mk(Γ1(n))onsisting of forms with q-expansion in R[[q]].3. Modular Galois representationsLet n and k be positive integers, let F be a �nite �eld of harateristi not dividing n, andlet f ∈ Mk(Γ1(n),F) be an eigenform over F.It follows from work of Eihler, Shimura, Igusa, Deligne and Serre that there exists a ontin-uous semi-simple representation
ρf : Gal(Q/Q) → AutF Vf ,where Vf is a two-dimensional F-vetor spae, with the following properties:� ρf is unrami�ed at all prime numbers p not dividing nl;� if p is suh a prime number, then the harateristi polynomial of the Frobenius onju-gay lass at p equals t2 − ap(f)t+ ǫ(p)pk−1, where ǫ is the harater of f .Publiations mathématiques de Besançon - 2011



26 Computing oe�ients of modular formsThis ρf is unique up to isomorphism.The end produt of [1℄ is a probabilisti algorithm for omputing representations of theform ρf , where f is an eigenform over a �nite �eld F. This allows us to state the followingtheorem.Theorem 3.1. � Let n0 be a positive integer. There exists a probabilisti algorithm that,given� a positive integer k,� a squarefree positive integer n1 oprime to n0,� a �nite �eld F of harateristi greater than k, and� an eigenform f ∈ Mk(Γ1(n)), given by its oe�ients am(f) for 0 ≤ m ≤ k · d(Γ1(n)),omputes ρf in the form of the following data:� the �nite Galois extension Kf of Q suh that ρf fators as
Gal(Q/Q) ։ Gal(Kf/Q)  AutF Vf ,given by the multipliation table of some Q-basis (b1, . . . , br) of Kf ;� for every σ ∈ Gal(Kf/Q), the matrix of σ with respet to the basis (b1, . . . , br) and thematrix of ρf (σ) with respet to some �xed F-basis of Vf ,and that runs in expeted time polynomial in k, n1 and #F.Moreover, one ρf has been omputed, one an ompute ρf (Frobp) using a deterministi al-gorithm in time polynomial in k, n1, #F and log p.Remark 3.2. � This running time is optimal from a ertain perspetive, given the fat thatthe length of the input and output of suh an algorithm is neessarily at least polynomial in

k, n1 and #F (and log p for the seond part).4. Some boundsIn this setion we ollet some bounds that we will need in § 5 below to prove Theorem 1.1.4.1. The disriminant of the new quotient of the Heke algebra. � Let n and kbe positive integers. The Z-algebra T(Snewk (Γ1(n))) is redued, beause there is a basis ofeigenforms for its ation on Snewk (Γ1(n)). Furthermore, it is free of �nite rank as a Z-module.In partiular, it has a non-zero disriminant discT(Snewk (Γ1(n))).Lemma 4.1. � The logarithm of |discT(Snewk (Γ1(n)))| is bounded by a polynomial in nand k.Proof. � The method of Ullmo [15℄, who onsidered usp forms of weight 2 for Γ0(n) with nsquarefree, extends without di�ulty to our situation. For ompleteness, let us give a proofin this more general setting.We abbreviate
T = T(Snewk (Γ1(n)))Publiations mathématiques de Besançon - 2011



Peter Bruin 27and
r = dimC Snewk (Γ1(n))

= rankZT.It follows from Lemma 2.1 and (6) that the Q-vetor spae Q⊗ZT is spanned by the elements
T1, . . . , Tk·d(Γ1(n)), with d(Γ1(n)) as in (1). We an therefore hoose integers

1 ≤ m1 ≤ · · · ≤ mr ≤ k · d(Γ1(n))suh that the elements Tm1 , . . . , Tmr of T are Z-linearly independent. We let T′ denote thesubgroup of T spanned by Tm1 , . . . , Tmr . This T′ is free of rank r as a Z-module, so it has�nite index (T : T′) in T, and
discT =

discT′

(T′ : T)2
.In partiular, this implies

|discT| ≤
∣∣discT′∣∣ .We next use the de�nition of the disriminant:

discT′ = det
(
tr(TmuTmv )

r
u,v=1

)
,where tr(e) denotes the trae of the Z-linear map T′ → T′ sending t to et. Now the traeof an endomorphism e of T′ equals the trae of the endomorphism dual to e on the C-vetorspae

HomZ-modules(T
′,C) ∼= Snewk (Γ1(n)).We let f1, . . . , fr be the primitive usp forms in Snewk (Γ1(n)), and we abbreviate

αt,u = amt(fu).Then we get
tr(TmuTmv ) =

r∑

t=1

αt,uαt,v .We then ompute discT′ as follows:
discT′ = det

( r∑

t=1

αt,uαt,v

)r

u,v=1

= det







α1,1 α2,1 . . . αr,1

α1,2 α2,2 . . . αr,2... ... . . . ...
α1,r α2,r . . . αr,r







α1,1 α1,2 . . . α1,r

α2,1 α2,2 . . . α2,r... ... . . . ...
αr,1 αr,2 . . . αr,r







= det
(
(αt,u)

r
t,u=1

)2
. Publiations mathématiques de Besançon - 2011



28 Computing oe�ients of modular formsDeligne's bound for the oe�ients of eigenforms, proved in [3℄ and [4℄, implies the inequality
|αt,u| = |amt(fu)|

≤ σ0(mt)m
(k−1)/2
t .Here σ0(m) denotes the number of positive divisors of m. Elementary estimates now showthat log |discT| is bounded by a polynomial in n and k.4.2. Primes of small norm in number �elds. � The Riemann hypothesis for the ζ-funtion of a number �eld K has the following well-known impliation of for the existene ofprime ideals of small norm in the ring of integers of K.Lemma 4.2. � Let ǫ and δ be positive real numbers. There exist positive real numbers

A and B suh that the following holds. Let K be an number �eld suh that the Riemannhypothesis is true for the ζ-funtion of K. Let ZK denote the ring of integers of K, and forevery prime number p let λK(p) denote the number of prime ideals of ZK of norm equal to p.Then for all real numbers x ≥ 2 suh that
xδ

(log x)2
≥ A[K : Q] and xδ

log x
≥ B log |discZK |we have ∣∣∣∣∣

∑

p≤x primeλK(p) log p− x

∣∣∣∣∣ ≤ ǫx1/2+δ .Proof. � For every prime number p and every positive integer m, we de�ne
ΛK(pm) =

∑

t|m
t ·#{prime ideals of norm pt in ZK} · log p.In partiular, this implies ΛK(p) = λK(p) log p for every prime number p. We de�ne ΛK(n) =

0 if n is not a prime power. The relation between ζK and ΛK is the Dirihlet series
−ζ

′
K(s)

ζK(s)
=

∞∑

n=1

ΛK(n)n−s.We de�ne
ψK : [1,∞) −→ R

x 7→
∑

n≤x

ΛK(n).Now there exists a positive real number c, independent of K, suh that the generalised Rie-mann hypothesis for ζK implies the estimate
|ψK(x)− x| ≤ c

√
x log(x) log

(
x[K:Q] |discZK |

) for all x ≥ 2;Publiations mathématiques de Besançon - 2011



Peter Bruin 29see Iwanie and Kowalski [9, Theorem 5.15℄. By elementary arguments, it follows that thereexists a positive real number c′, also independent of K, suh that
∣∣∣∣∣
∑

p≤x primeλK(p) log p− x

∣∣∣∣∣ ≤ c′
√
x log(x) log

(
x[K:Q] |discZK |

) for all x ≥ 2.It is now straightforward to hek that taking A = B = 2c′/ǫ works.5. Proof of Theorem 1.1As already mentioned brie�y in the introdution, Theorem 1.1 will be proved as follows. We�rst prove the following basi ases:� f is an element of the form Eǫ1,ǫ2
k in Ek(Γ1(d1d2)), where ǫ1 : (Z/d1Z)× → C× and

ǫ2 : (Z/d2Z)
× → C× are primitive haraters;� f is a primitive usp form in Sk(Γ1(n)).In eah ase, we take K to be the number �eld generated by the oe�ients of f , and weassume that m is a prime number. After proving these speial ases, we show that we anompute the Heke algebra T(Mk(Γ1(n))) in a sense that will be explained in § 5.3 below. Itis then straightforward to dedue Theorem 1.1 in general.5.1. Eisenstein series. � We start by onsidering the Eisenstein series Eǫ1,ǫ2

k , where
ǫ1 : (Z/d1Z)

× → C× and ǫ2 : (Z/d2Z)
× → C× are primitive haraters and e is a divisorof n/(d1d2). For onveniene, we also allow the ase of the `pseudo-Eisenstein series' E2 de-�ned by (8). LetK be the ylotomi extension ofQ generated by the images of ǫ1 and ǫ2. Theformula (7) shows that for every prime number p, we an ompute the element ap(Eǫ1,ǫ2

k ) ∈ Kin time polynomial in n, k and log p.5.2. Primitive forms. � We ontinue with the ase where f is a primitive usp formin Snewk (Γ1(n)) and K is the number �eld generated by the oe�ients of f . Let ZK denotethe ring of integers of K. There exists a unique ring homomorphism
ef : T(Snewk (Γ1(n))) → ZKsending eah Heke operator to its eigenvalue on f . Let A denote the image of ef . It is of�nite index (ZK : A) in ZK , and we have
discA = (ZK : A)2 discZK .Furthermore, we have

|discA| ≤ |discT(Snewk (Γ1(n)))| and [K : Q] ≤ rankZT(Snewk (Γ1(n))).Lemma 4.1 now implies that log |discA|, and hene also log |discZK | and log(ZK : A), arebounded by a polynomial in n and k. The same learly holds for [K : Q].Publiations mathématiques de Besançon - 2011



30 Computing oe�ients of modular formsNow let p be a prime number. We have to show that we an ompute ap(f) in time polynomialin n, k and log p. In Couveignes, Edixhoven et al. [2, § 15.2℄ it is explained in detail how todo this. We only give a sketh.We may assume that p does not divide n; namely, if p does divide n, then we an spend timepolynomial in p, so using modular symbols is fast enough; see § 5.3 below.By Lemma 4.2 applied to K and the fat that log(ZK : A) is bounded by a polynomial in nand k, we an hoose x su�iently large, but bounded by a polynomial in n and k, suh thatif M is the set of maximal ideals of A whose norm is a prime number lying in the interval
(k, x] and di�erent from p, we have(11) ∏

m∈M
Norm(m) ≥

(
2([K:Q]+1)/2 · 2p(k−1)/2

)[K:Q]
.An explanation for the right-hand side will be given below. We ompute ap(f) using thefollowing algorithm.1. Compute a Z-basis for A.2. Compute a bound x and the set M of maximal ideals of A suh that the set M de�nedabove satis�es (11).3. For all m ∈ M , ompute the Galois representation ρf mod m : Gal(Q/Q) → GL2(A/m)using Theorem 3.1.4. For all m ∈M , ompute

(ap(f) mod m) = tr(ρf mod m(Frobp)) ∈ A/m,again using Theorem 3.1.5. Compute an LLL-redued Z-basis for the ideal a =
∏

m∈M m of A.6. From the ap(f) mod m, ompute the image of ap(f) in A/a.7. Using the LLL algorithm, reonstrut ap(f) as the shortest representative in A of theimage of ap(f) in A/a. This works beause of the inequality (11).5.3. Computing Heke operators. � We represent T(Mk(Γ1(n))) in the following form:we speify its multipliation table with respet to a suitable Z-basis (b1, . . . , br), togetherwith the Heke operators Tm for 1 ≤ m ≤ k · d(Γ1(n)) and the diamond operators 〈d〉 forall d ∈ (Z/nZ)× as Z-linear ombinations of (b1, . . . , br). These data speify T(Mk(Γ1(n)))uniquely beause the above operators generate T(Mk(Γ1(n))). In other words, if the samedata are given with respet to a di�erent basis of T(Mk(Γ1(n))), there exists exatly onehange of Z-basis ompatible with the given Tm and 〈d〉.Theorem 5.1. � Let n0 be a positive integer. There exists a probabilisti algorithm that,given� a positive integer k,� a squarefree positive integer n1 oprime to n0, and� a positive integer m in fatored form,omputesPubliations mathématiques de Besançon - 2011



Peter Bruin 31� the Heke algebra T(Mk(Γ1(n))) as above, where n = n0n1, and� the element Tm on the basis (b1, . . . , br),and that runs in expeted time polynomial in k, n1 and logm under the Riemann hypothesisfor ζ-funtions of number �elds.Proof. � We need some more information about the ation of Heke operators on q-expansions. As a basis for Mk(Γ1(n)) we take the union of the basis Fk(Γ1(n)) of Ek(Γ1(n))de�ned by (9) and the basis Bk(Γ1(n)) of Sk(Γ1(n)) de�ned by (10).Let f be either an Eisenstein series Eǫ1,ǫ2
k ∈ Ek(Γ1(d1d2)) as above or a primitive formin Sk(Γ1(d)). In the �rst ase, we put d = d1d2. The formula (4) for the ation of the Hekeoperator Tp shows that the relation between Tp and the maps bd,ne : Mk(Γ1(d)) → Mk(Γ1(n)),where e runs through the divisors of n/d, is as follows:(12) Tp(b

d,n
e f) =





ap · bd,ne f if p ∤ n;
bd,ne/pf if p | e;
ap · bd,ne f − pk−1ǫ(p)bd,npe f if p ∤ d, p ∤ e and p | n;
ap · bd,ne f if p | d and p ∤ e.This formula gives the matrix of Tp with respet to the basis Fk(Γ1(n)) of Ek(Γ1(n)) and thebasis Bk(Γ1(n)) of Sk(Γ1(n)).We �rst ompute the q-expansions of the Eisenstein series Eǫ1,ǫ2

k ∈ Ek(Γ1(d1d2)), with
ǫi : (Z/diZ)

× → C× primitive haraters suh that d1d2 | n, as in § 2.3. From these q-expansions and (12) we then ompute the Heke algebra T(Ek(Γ1(n))) in the form desribedabove in time polynomial in n and k.Given a prime number p, we ompute all the ap(Eǫ1,ǫ2
k ) as in § 5.1, and we �nd the matrixof Tp using (12). We then express Tp on the basis of T(Ek(Γ1(n))) that we omputed earlier.In this way, we an ompute the Heke operator Tp ∈ T(Ek(Γ1(n))) in time polynomial in n,

k and log p.For usp forms, the q-expansions are omputed from the Heke algebra instead of vie versa.We ompute the Heke algebras T(Sk(Γ1(d))), where d runs through the divisors of n, in theform desribed above. These data an be omputed in time polynomial in n and k usingdeterministi algorithms based on modular symbols and the LLL lattie basis redution algo-rithm; see Stein [13, Chapter 8℄ and the author's thesis [1, § IV.4.1℄. From eah T(Sk(Γ1(d))),we ompute the q-expansions of the primitive usp forms in Sk(Γ1(d)).So far, we have only used existing methods. To ompute the Heke operator Tp ∈ T(Sk(Γ1(n)))for a prime number p in time polynomial in log p, we need our new tools. For every divisor
d of n and every primitive form f ∈ Sk(Γ1(d)), we ompute ap(f) as in § 5.2. Using (12), weobtain the matrix of Tp with respet to the basis Bk(Γ1(n)). We �nally express Tp on thebasis of T(Sk(Γ1(n))) that we omputed earlier. Publiations mathématiques de Besançon - 2011



32 Computing oe�ients of modular formsNow let m be an arbitrary positive integer, and suppose that we know the fatorisation of m.Then we an ompute the element
Tm ∈ T(Mk(Γ1(n))) = T(Ek(Γ1(n))) ×T(Sk(Γ1(n)))from the Tp for for p | m prime in time polynomial in logm using the identities (2) and (3).5.4. Proof of Theorem 1.1 in general. � Given n, k, K, f and m as in the theorem,we ompute am(f) as follows. We �rst ompute T(Mk(Γ1(n))) using modular symbols. From

f we then determine the unique Z-linear map
ef : T(Mk(Γ1(n))) → Ksending Ti to ai(f) for all i with 1 ≤ i ≤ k · d(Γ1(n)). Using Theorem 5.1, we then omputethe Heke operator Tm. Finally, we ompute am(f) as

am(f) = ef (Tm).It is straightforward to hek that all these omputations an be done in time polynomial inthe length of the input.Remark 5.2. � The proof shows that the Riemann hypothesis only needs to be assumedfor the ζ-funtions of number �elds that arise as �elds of oe�ients of primitive usp forms.6. Appliations6.1. Counting points on modular urves. � The ase k = 2 of Theorem 5.1 implies anew result on ounting points on modular urves over �nite �elds.Theorem 6.1. � There exists a probabilisti algorithm that, given a squarefree positive in-teger n and a prime number p ∤ n, omputes the zeta funtion of the modular urve X1(n)over Fp, and that runs in time polynomial in n and log p under the Riemann hypothesis for
ζ-funtions of number �elds.Proof. � Let J1(n)Fp denote the Jaobian of X1(n)Fp . Let χ be the harateristi polynomialof the Frobenius endomorphism of the l-adi Tate module TlJ1(n)Fp , where l is any primenumber di�erent from p; then χ has integral oe�ients and does not depend on the hoieof l. Beause of the well-known identity

ZX1(n)/Fp
(t) =

χ∗(t)
(1− t)(1− pt)

,where χ∗(t) = tdegχχ(1/t) is the reiproal polynomial of χ, it su�es to ompute χ.Let T1(n) denote the Heke algebra ating on J1(n)Fp . Then Ql ⊗Zl
TlJ1(n)Fp is a free

Ql⊗ZT1(n)-module of rank 2. By the Eihler�Shimura relation, the harateristi polynomialof Frobp on it equals x2−Tpx+p〈p〉 ∈ T1(n)[x]. This implies that the harateristi polynomialof Frobp viewed as a Ql-linear map equals
χ = NormT1(n)[x]/Z[x](x

2 − Tpx+ p〈p〉) ∈ Z[x].Publiations mathématiques de Besançon - 2011



Peter Bruin 33To ompute the right-hand side, we use the fat that the Heke algebras T(S2(Γ1(n))) and
T1(n) are isomorphi. By Theorem 5.1, we an therefore ompute T1(n) and the matries
MTp and M〈p〉 of Tp and 〈p〉 with respet to some Z-basis (b1, . . . , br) of T1(n). We interpret
(b1, . . . , br) as a Z[x]-basis of T1(n)[x], and we ompute χ as the determinant of the matrix
x2 · id− x ·MTp + p ·M〈p〉 with oe�ients in Z[x].Corollary 6.2. � There exists a probabilisti algorithm that, given a squarefree positive in-teger n and a prime power q oprime to n, omputes the number of rational points on X1(n)over the �eld of q elements, and that runs in time polynomial in n and log q under the Riemannhypothesis for ζ-funtions of number �elds.6.2. Latties. � A partiularly interesting family of modular forms onsists of θ-seriesassoiated to integral latties. An integral lattie is a free Abelian group L of �nite ranktogether with a symmetri, positive-de�nite, bilinear form

〈 , 〉 : L× L→ Z.We identify a lattie L with its image in the Eulidean spae
LR = R⊗Z L.The form 〈 , 〉 extends uniquely to an inner produt 〈 , 〉R on LR. The dual lattie of L is

L∨ = {v ∈ LR | 〈v, L〉 ⊆ Z}equipped with the symmetri positive de�nite bilinear form 〈 , 〉∨ obtained by restriting
〈 , 〉R. The level of L is the exponent of the group L∨/L, i.e. the least positive integer csuh that cL∨ ⊆ L. It an be omputed as the least ommon denominator of the entries ofthe inverse of the matrix of 〈 , 〉 with respet to some Z-basis of L.Let (L, 〈 , 〉) be an integral lattie of even rank k and level n. For every non-negativeinteger m we de�ne

rL(m) = #{x ∈ L | 〈x, x〉 = m}.The θ-series of L is the element of Z[[q]] de�ned by
θL =

∑

x∈L
q〈x,x〉

=

∞∑

m=0

rL(m)qm.This power series is the q-expansion of a modular form of weight k/2 for Γ1(4n). The lattie
L is alled even if the integer 〈x, x〉 is even for all x ∈ L. If L is even, then the level 4n anbe replaed by 2n; if both L and L∨ are even, then it an be replaed by Γ1(n). For proofsof these results, we refer to Miyake [12, § 4.9℄.Couveignes, Edixhoven et al. [2, § 15.3℄ treat the following appliation of their result onomputing oe�ients of modular forms for SL2(Z). They take L equal to the Leeh lattie,whih is the unique self-dual even lattie of rank 24. Its θ-series is a linear ombinationPubliations mathématiques de Besançon - 2011



34 Computing oe�ients of modular formsof the Eisenstein series E12 and the disriminant modular form ∆. The latter is the uniqueelement of S12(SL2(Z)) with a1(∆) = 1. Its q-expansion oe�ients are given by Ramanujan's
τ -funtion:

∆ = q

∞∏

m=1

(1− qm)24

=

∞∑

m=1

τ(m)qm.As mentioned before, the oe�ients of Eisenstein series an be omputed from the formulaein § 2.3. It is proved in [2℄ that given a positive integer m in fatored form, the integer
τ(m), and hene the representation number rL(m), an be omputed deterministially intime polynomial in logm.The orresponding generalisation that is made possible by Theorem 1.1 is the following result.Theorem 6.3. � Let n0 be a positive integer. There exists a probabilisti algorithm that,given� an even positive integer k,� a squarefree positive integer n1 oprime to n0,� the representation numbers rL(0), . . . , rL(k/2 · d(Γ1(4n)) for a lattie L of even rank kand level n, where 4n = n0n1, and� a positive integer m in fatored form,omputes rL(m), and that runs in time polynomial in k, n1 and logm under the Riemannhypothesis for ζ-funtions of number �elds.Remark 6.4. � Unfortunately, in general it is not lear how one an e�iently ompute θLto su�ient order, given only the matrix of 〈 , 〉 with respet to some Z-basis of L.6.3. Sums of squares. � Now onsider the lattie Zk, equipped with the standard bilinearform, so that the standard basis is orthonormal. Its θ-series is(13) θZk = θk,where θ is Jaobi's θ-series:

θ =
∑

m∈Z
qm

2
= 1 + 2

∞∑

m=1

qm
2
.We let rk(m) denote the m-th oe�ient of θZk , so that

rk(m) = #{(x1, . . . , xk) ∈ Zk | x21 + · · · + x2k = m}.The problem of �nding rk(m) is the lassial problem of determining the number of waysin whih m an be written as a sum of k squares. This question has a long and interestinghistory, whih involves (among many others) Fermat, Legendre, Gauÿ, Jaobi, Eisenstein andLiouville. There is a large volume of literature devoted to this problem; we refer only toDikson [7℄, Grosswald [8℄ and Milne [11℄.Publiations mathématiques de Besançon - 2011



Peter Bruin 35From now on we restrit to even values of k. This restrition is imposed on us by the fatthat θ is a modular form of weight 1/2, and our results on omputing oe�ients of modularforms only hold for forms of integral weight.For k = 2, 4, 6, 8, 10, there exist formulae for rk(m). One set of suh formulae is the following:
r2(m) = 4

∑

d|m
ǫ(d),

r4(m) = 8
∑

d|m
d− 32

∑

d|(m/4)

d,

r6(m) = 16
∑

d|m
ǫ(m/d)d2 − 4

∑

d|m
ǫ(d)d2,

r8(m) = 16
∑

d|m
d3 − 32

∑

d|(m/2)

d3 + 256
∑

d|(m/4)

d3,

r10(m) =
4

5

∑

d|m
ǫ(d)d4 +

64

5

∑

d|m
ǫ(m/d)d4 +

8

5

∑

z∈Z[
√
−1]

|z|2=m

z4.Here d runs over the positive divisors of m, m/2 or m/4; if m/2 or m/4 is not an integer,the orresponding sum is omitted. Furthermore, ǫ denotes the unique non-trivial Dirihletharater modulo 4:
ǫ(d) =

(−1

d

)
=





1 if d ≡ 1 mod 4,

−1 if d ≡ 3 mod 4,

0 if d ≡ 0 mod 2.One way to interpret the existene of the above formulae is as follows. For k = 2, 4, 6, 8,the spae Sk/2(Γ1(4)) is trivial; in other words, θZk ∈ Mk/2(Γ1(4)) is a linear ombination ofEisenstein series. Although S5(Γ1(4)) is non-trivial, it is spanned by a usp form with omplexmultipliation, explaining the last term in the formula for r10(m).For k ≥ 12, it is true that various formulae have been proposed for rk(m), but it seems thatnone of these makes it possible to ompute rk(m) time polynomial in k and logm. This maybe understood, from our perspetive, in light of the fat that for every even k ≥ 12, thedeomposition of θk as as a linear ombination of eigenforms ontains usp forms withoutomplex multipliation. The latter fat was proved reently by I. Varma [16℄. No methodwas previously known for omputing the oe�ients of suh usp forms in polynomial time.Using (13), we an quikly ompute θZk to su�ient order to determine it uniquely as anelement of Mk/2(Γ1(4)). The following result is therefore a speial ase (n0 = 4, n1 = 1) ofTheorem 6.3.Theorem 6.5. � There exists a probabilisti algorithm that, given an even positive integer kand a positive integer m in fatored form, omputes the number of representations of m asa sum of k squares of integers, and that runs in time polynomial in k and logm under theRiemann hypothesis for ζ-funtions of number �elds. Publiations mathématiques de Besançon - 2011
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