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1. Introduction

Let R be a non commutative associative ring with unit 1. A left R- module M
is said to satisfy property (I) if every injective endomorphism of M is an auto-
morphism. It is well know that every artinian module satisfies property (I), and
that the converse is false. A ring R is called left (resp right) I-ring if every left
(right)R-module with property (I) is artinian. Recall that a ring R is a left (resp
right) pure-semi-simple ring if every left (resp right) R-module is a direct sum of
indecomposables left (right ) R-modules . R is of finite representation type if R is
left (right) artinian and has finite many non isomorphic indecomposable left (right)
R-modules . We recall that the concept of finite representation type is left-right
symmetric. Following [7] a left R-module M is said to have property (S) if every
surjective endomorphism of M is an automorphism; R is called left (right) S-ring if
every left(right) R-module with property (S) is noetherian . An R-module is said
to be uniserial if its submodules are linearly ordered by inclusion . R is left (right)
serial if it is a direct sum of left (right) uniserial R-modules and R is serial if it is
both left and right serial. A duo-ring is a ring in which every one sided ideal is two
sided. Definitions and notations used in this paper can be found ind [8].

In this paper we prove that for a duo-ring R the following conditions are equiv-
alent.

1. R is a left I -ring.
2. R is of finite representation type.
3. R is left pure-semi-simple.
4. R is an artinian principal ideal ring (uniserial).
5. R is a left S-ring .
6. R is a right I-ring .
7. R is right pure semi-simple.
8. R is a right S-ring .

2. Preliminary

Definition 2.1. Let R be a ring. A left R-module RM is said to satisfy property
(I) if all of its injective endomorphisms are automorphisms. R is called left (right)
I-ring if every left (right) R-module with property (I) is artinian. R is an I-ring
if it is a left and right I-ring. We recall that a ring R is a left (right) duo-ring if
every left (right) ideal of R is a two sided ideal. A left and right duo-ring is called
duo-ring.
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Proposition 2.1. If R is an I-duo ring then every prime ideal of R is a maximal
ideal and further more the set of all prime ideals is finite .

Proof. Let P be a prime ideal of R. the factor ring R/P is an I-duo ring which
is a domain. Let K be the classical ring of fraction of R/P ; K is a division ring,
hence the R/P -module K satisfies property (I). It follows that the module K
is artinian and that K = R/P . Let { Pl/l ∈ L } the set of all prime ideals. If
l 6= m then Hom(R/Pl, R/Pm) = {0}, it follows that the R-module M =

⊕
l∈L

R/P

satisfies property (I) and hence L is a finite set.

Corollary 2.1. The Jacobson radical J of any I−duo ring R is a nil ideal .

Proposition 2.2. Let R be a semi prime duo ring , then every one sided regular
element of R is two sided regular.

Proof. Let x a one sided regular element of R . Assume that x is a right regular;
let y ∈ R such that yx = 0 than

(xy)2 = x(yx)y = 0

since R is semi prime and xy is nilpotent we have xy = 0 and hence y = 0.

Proposition 2.3. Let R be a semi prime I−duo ring; then R is artinian.

Proof. Let R′ = S−1R be the ring of fraction of R where S is the set of all regular
elements of R. Any endomorphism of the leftR–module R′ is obtained by multipli-
cation by a element of R′ ; it follows that the R-module R′ satisfies property (I).
Since R is anI−ring, then R′ is an artinian R–module and hence R = R′. So R is
artinian.

Theorem 2.1. Let R be an I–duo ring ; then R is artinian.

Proof. It follows from corollary 2.1 that the Jacobson radical J of R is a nil ideal.
Then every idempotent of R/J can be lifted to a idempotent of R. Since R/J is
a semi prime I−duo ring, it result from proposition 2.3is semi simple; and that R
is a semi-perfect ring. So R can be written

R = Re1
⊕

Re2
⊕

.....
⊕

R en,

where the ei
′s are central idempotents and each Rei is a local projectif R-module.

To prove that R is artinian, it is sufficient to prove that each Rei is artinian as
left R-module. Let f 6= 0 be an non surjective endomorphism of Rei. We have
f(Rei) ⊆ Jei, let us put f(ei) = rei; r ∈ J . As J is a nil ideal, there exists an
integer n ∈ N∗ such that rnei 6= 0 and rn+1ei = 0. For this integer we have
f(rnei) = rnf(ei) = rn+1ei = 0. It follows that f is not monic. So the R−module
Rei satisfies property (I). Hence Rei is artinian.

Remark 2.1. (a) Every artinian duo-ring is a finite direct product of artinian
local duo-rings (b) It is proved in [3] that if R is an artinian local duo ring with

Jacobson radical J , then R is uniserial or R/J is a field.
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3. Characterization of I-duo rings

In what follows R will denote an artinian local duo-ring with Jacobson radical
J satisfying J2 = 0. It results then from remarks 2.1 that if R has a non principal
ideal, then R/J is a field. We have then two cases : Case 1 : R/J is an infinite field
and dimR/JJ/J

2 = 2 Let H be a complete set of representants of (R/J) \ {0̄}H is

a infinite set. For h ∈ H , set I = R(x1 − hx2) where {x1,x2} is a basis of J/J2

over R/J ; and Mh = R/Ih.

Lemma 3.1. If h 6= h′ are in H then x1 − hx2 /∈ Ih′

Proof. Assume that x1 − hx2 ∈ Ih′ = R(x1 − h′x2). Let α ∈ R\J such that
x1 − hx2 = α(x1 − h′x2) then (1− α)x1 − (h− αh′) = 0, it follows that 1− α ∈ J
and h− αh′ ∈ J. Let m ∈ J such that α = 1 +m. Since h− (1 +m)h′ ∈ J , we
have h− h′ ∈ J which contradicts the choice of H .

Lemma 3.2. Let h, h′ ∈ H,h 6= h′. If g : Mh −→ Mh′ is an homomorphism of
R−modules then g(1+Ih) is note invertible in the ring Mh′ . So g(1+Ih) ∈ J/Ih′

Notation 3.1. If x ∈ R and h ∈ H, we set x+ Ih = xMh
.

Proof of lemma 3.2. We have

0Mh′ = g(0Mh
) = g[(x1 − hx2) + Ih] = (x1 − hx2)g(1 + Ih),

hence g(1 + Ih) is not invertible in Mh′ so g(1 + Ih) ∈ J/Ih′ .

Corollary 3.1. Let f :
⊕
h∈H

Mh −→ ⊕
h∈H

Mh be an endomorphism of the R−module
⊕
h∈H

Mh. If ih and ph′ are respectively the canonical injection of Mh in
⊕
k∈H

Mk

and the canonical projection of
⊕
h∈H

Mh on Mh′ , then ph ◦ f ◦ ih (1 + Ih) ∈ J/Ih′ .

If x ∈ ⊕
h∈H

Mh = M , we note x =
∑
h∈H

αheh where eh = 1 + Ih and αh ∈ R, and

f(eh) =
∑

h′∈H

βh′eh′ where βh′eh′ = ph′ ◦ f ◦ ih(eh). So βh′ ∈ J if h 6= h′. Let f be

an injective endomorphism of M =
⊕
h∈H

Mh we have the following lemmas.

Lemma 3.3. For every h ∈ H, f(eh) = βheh +
∑

h 6=h′
βh′eh′ ; where βh /∈ J .

Proof. Let h ∈ H . If h′ ∈ H and h′ 6= h then, by lemma 3.1, we have

0M 6= f [(x1 − h′x2)eh] = (x1 − h′x2)βheh,

it follows that βh /∈ J .

Lemma 3.4. J.M ⊆ Imf .

Proof. Let m be an element of J . For h ∈ H , we have f(meh) = mβheh. Since R
is a duo ring and βh /∈ J , there exists β′

h ∈ R \ J such that mβh = β′
hm; we have

then meh = f(β′−1

h meh). So meh ∈ Imf and hence J.M ⊆ Imf .

Lemma 3.5. For every h ∈ H , eh ∈ Imf .
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Proof. Let h ∈ H . By lemma 3.3 we have

f(eh) = βheh +
∑

h 6=h′

βh′eh′βh /∈ J and βh′ ∈ J, forh 6= h′.

Then βheh = f(eh)−
∑
h 6=h

βh′eh′ , so eh = f(β−1
h eh)−

∑
h 6=h′

β−1
h β′

heh′ . Since f(β−1
h eh)

and
∑

h 6=h′
β−1
h β′

heh′ are in Imf then eh ∈ Imf .

We can now state the following assertion.

Theorem 3.1. Let R be a local artinian duo ring with maximal ideal J such thatJ2 =
0 . If R/J is an infinite field and dimR/JJ/J

2 ≥ 2 then there exists an non
artinian R-module M with property (I).

Case2: We assume that R/J is a finite field and that dimR/JJ/J
2 = 2. In this

case the characteristic of the field R/J is a prime number p and the characteristic
of R is p or p2. and hence R/J is a separable finite extension of Z(R)/J ∩ Z(R)
where Z(R) is the center of R. It follows from[6] that there exists an artinian
principal ideal subring B of R such that R = B

⊕
Bc as B− modules, where

c ∈ J . So let us set Bb the Jacobson radical of B, we have b2 = bc = c2 = 0.
In what follows homomorphism will be in the opposite side of the scalars. Let

MR = R
(N∗)
R =

⊕
i∈N∗

eiR where ei = (δji )j∈N∗ and

δji =





1R, if i = j

i0R , if i 6= j

and let σ : MR −→ MR be the endomorphism of MR given by :

σ(ei) =





0, if i = 1

ei−1, if i ≥ 2

If z ∈ R we denote Lz the endomorphism of MR defined for m ∈ MR by
Lz(m) = zm . Let Λ be the subring of EndMR generated by d = Lc ◦ σ and
the elements Lx, x ∈ B . By the ring homomorphism

R = B
⊕

Bb −→ Λ

x+ yb −→ Lx + Ly ◦ d.
M has a structure of left R- module defined as follows

(x+ yc)m = (Lx + Ly ◦ d)(m).

Let now f be an injective endomorphism of RM , we have (d.m)f = d.(m)f for
m ∈ M . We shall prove the following lemmas.

Lemma 3.6. For every n ∈ N∗, we have d(en)f = (cen−1)f, for n ≥ 2, and
0 = d(e1)f .
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Lemma 3.7. For every n ∈ N∗, we have

(en)f =
∑

in

αk,n ek

where αn,n is invertible in R, and αk,n ∈ J for k > n.

Proof. Set (e1)f = α1,1e1 +
∑
i>1

αi,1ei. Since ce1 6= 0, then

c(α1,1 +
∑

αi,1ei
i>1

) = (ce1)f 6= 0 (1).

But c(
∑

i>1

αi,1ei−1) = cσ(α1,1e1 +
∑

1<1

αi,1ei) = cσ[(e1)f ] = (cσe1)f = (0)f = 0 (2).

So by (2), αi,1 ∈ Jfori > 1 and by (1)α1,1 /∈ J .

Suppose now that

(en−1)f =
∑

i<n−1

αi,n−1ei + αn−1,n−1en−1 +
∑

i>n−1

αi,n−1ei,

where αn−1,n−1 /∈ J. and αi,n−1 ∈ J for i > n − 1 ; and let us set (en)f =∑
i≥1 αi,nei. Then

cσ(
∑

i≥1

αi,nei.) = cσ(en)f = c(en−1)f = (cen−1)f 6= 0.

Since c(
∑

i≥2 αi,nei−1.) = cσ(en)f = c(en−1)f =
∑

i<n−1 cαi,n−1ei+cαn−1,n−1en−1,
where cαn−1,n−1en−1 6= 0, then cαn,n 6= 0 and cαi,n = 0 for i > n. It follows then
that αn,n /∈ J and αi,n ∈ J for i > n.

Lemma 3.8. For every n ∈ N⋆, we have J.en ⊆ Imf .

Proof. Let m ∈ J we have(me1)f = m(e1)f = mα1,1e1. Let α′
1,1 ∈ R \ J such

that mα1,1 = a′1,1m, then (me1)f = α′
1,1me1 hence me1 = (α′

1,1)
−1(me1)f ∈ Imf.

Suppose that Jek ⊆ Imf for k ≤ n− 1 and let m ∈ J , we have :

(men)f =
∑

i,1

ci,1ei

where α1,1 /∈ J andαi,1 ∈ J for i > 1.

Assume that for every k < n, ek ∈ Im f. Since

(en)f =
∑

∈
ck,nek

where αn,n is invertible and ck,n ∈ J , we have

αn,nen = (en)f −
∑

∈
ck,nek ∈ Im f

and so

en(α
−1
n,nen)f −

∑

n>i

α−1
i,nei −

⊕

nn

Jei

of RM is strictly decreasing.

We have proved the following result :
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Theorem 3.2. Let R be an artinian local duo ring with maximal ideal J such that
J2 = (0). If R/J is a finite field and dimR/J J/J2 ≥ 2 then there exists a non
artinian R-module with property (I).

We have the following theorem :

Theorem 3.3. Let R be a duo ring. The following statements are equivalent.

1. R is a left I−ring.
2. R is an uniserial ring.
3. R is a left S−ring.
4. R is a left pure semi-simple ring.
5. R has a finite representation type.
6. R is a right I−ring.
7. R is a right S−ring.
8. R is a right pure semi-simple ring.

Proof. It suffices to proved the equivalence 1) ⇐⇒ 2).
1) =⇒ 2). By theorem 2.1 R is Artinian and by theorem 3.1 and theorem 3.2

R is necessarily a principal ideal ring .
(2) =⇒ (1) If R is an uniserial ring than every left R−module is a direct sum of

cyclic modules . Let M be an artinian R− module , since there is only finite non
isomorphic cyclic R−modules we can write M = K(N∗)

⊕
L where K is cyclic

submodule of M . Since K(N∗) does not satisfy property (I), it follows that M
does not satisfy property (I).
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