
MathematicS

In Action

Luc Paquet, Raouf El Cheikh, Dominique Lochegnies & Norbert Siedow
Radiative Heating of a Glass Plate

Volume 5 (2012), p. 1-30.

<http://msia.cedram.org/item?id=MSIA_2012__5_1_1_0>

© Société de Mathématiques Appliquées et Industrielles, 2012, tous droits réservés.
L’accès aux articles de la revue « MathematicS In Action » (http://msia.cedram.org/), im-
plique l’accord avec les conditions générales d’utilisation (http://msia.cedram.org/legal/).
Toute utilisation commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de
copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://msia.cedram.org/item?id=MSIA_2012__5_1_1_0
http://msia.cedram.org/
http://msia.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


MathematicS In Action
Vol. 5, 1-30 (2012)

Radiative Heating of a Glass Plate

Luc Paquet ∗
Raouf El Cheikh ∗∗

Dominique Lochegnies ∗∗
Norbert Siedow ∗ ∗ ∗

∗ Univ. Lille Nord de France UVHC-ISTV, LAMAV-EDP FR no 2956, 59313 Valenciennes,
France (Author to whom all correspondence should be addressed)
E-mail addresses: luc.paquet@univ-valenciennes.fr, paquet.luc@wanadoo.fr
∗∗ Univ. Lille Nord de France UVHC-ISTV, TEMPO, 59313 Valenciennes, France
E-mail address: raouf_cheikh@hotmail.com
E-mail address: Dominique.Lochegnies@univ-valenciennes.fr
∗ ∗ ∗ Fraunhofer Institute for Industrial Mathematics, ITWM, 67663 Kaiserlautern, Germany
E-mail address: norbert.siedow@itwm.fraunhofer.de.

Abstract

This paper aims to prove existence and uniqueness of a solution to the coupling of a nonlinear heat equa-
tion with nonlinear boundary conditions with the exact radiative transfer equation, assuming the absorption
coefficient κ(λ) to be piecewise constant and null for small values of the wavelength λ as in the paper of N.
Siedow, T. Grosan, D. Lochegnies, E. Romero, “Application of a New Method for Radiative Heat Tranfer to
Flat Glass Tempering”, J. Am. Ceram. Soc., 88(8):2181-2187 (2005). An important observation is that for
a fixed value of the wavelength λ, Planck function is a Lipschitz function with respect to the temperature.
Using this fact, we deduce that the solution is at most unique. To prove existence of a solution, we define a
fixed point problem related to our initial boundary value problem to which we apply Schauder theorem in a
closed convex subset of the Banach separable space L2(0, tf ;C([0, l])). We use also Stampacchia truncation
method to derive lower and upper bounds on the solution.

1. Introduction and statement of the problem

We consider an infinite plane horizontal glass plate of width l, laid down on its lower face
xg = 0, on a black sheet-metal maintained at absolute ambient temperature T = Ta. The x-axis
is directed upward orthogonally to the glass plate so that the upper (resp. lower) face of the glass-
plate has xg = l (resp. xg = 0) for equation. An infinite plane black sheet metal S, at absolute
temperature TS(t) at time t, placed above the glass plate emits radiation i.e. thermal rays in
every direction. For a thermal ray, we denote by θ the angle of its unit directing vector ~s with the
unit vector ~ex of the x−axis and by µ := cos(θ). After refraction at the interface xg = l between
air and glass, some part of the radiative energy emitted by the source S, will be absorbed i.e.
converted into heat in the glass producing in such a way an increase of the temperature T (x, t)
in the glass plate. We have assumed independency of the temperature field in the glass plate
with respect to the coordinates y and z. To describe the energetic flux associated to a radiation,
one introduces in Photometry the notion of spectral radiative intensity which is defined in the
following way. Let us consider a small oriented surface

−→
dA = ~n dA through a point P with

normal ~n at P . The radiative energy dE with wavelength in the interval [λ, λ+ dλ] which flows
through

−→
dA, during the time interval [t, t+ dt], in directions confined to a narrow cone of solid

Keywords: elementary pencil of rays, Planck function, radiative transfer equation, glass plate, nonlinear heat-
conduction equation, Stampacchia truncation method, Schauder theorem, Vitali theorem.
Math. classification: 35K20, 35K55, 35K58, 35K90, 35Q20, 35Q60, 35Q80.
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angle dΩ whose mean axis ~s makes an angle ϕ with ~n, is given by the formula ([10], p. 7) ([23],
p. 13):

dE = I(P, t, ~s, λ) cos(ϕ)dA dt dΩ dλ. (1.1)
The coefficient of proportionality I(P, t, ~s, λ) is called the spectral radiative intensity at point
P and time t, in the direction ~s, and at wavelength λ. As usual in Thermics, λ means the
wavelength of the wave in vacuum (or dry air), the corresponding wavelength in glass being
then λ

ng
, where ng denotes the refractive index of the material (for glass: ng ≈ 1.46) (to avoid

confusion, the wavelength in vacuum is denoted λ0 in [20] p.8). We assume that the spectral
radiative intensity I(P, t, ~s, λ) is independent with respect to the y and z coordinates of the
point P and of the azimuthal angle of the direction ~s. Consequently: I(P, t, ~s, λ) = I(x, t, µ, λ).
Concerning the radiative intensity of the radiation emitted by the black source (sheet metal) S,
it is given at any point P of the air gap between S and the glass plate and in any direction, by
the famous Planck function:

B(T, λ) = 2C1

λ5(e
C2
λT − 1)

with T = TS(t), (1.2)

where C1 = hc2
0 = 0.595531 10−16 W.m2/sr and C2 = hc0

kB
= 1.438786 10−2 m.◦K ([5], p.98). Let

us note that B(T, λ) depends only on the absolute temperature T and on the wavelength λ. We
also denote by Bg(T, λ) := n2

gB(T, λ) Planck function in glass.
Following [25], [15], [3], we assume that the absorption coefficient κ(λ) is piecewise constant:

κ(λ) = κk ∈ R∗+ for λ ∈ [λk, λk+1[, k = 1, . . . ,M, (1.3)
where the M intervals [λk, λk+1[, k = 1, . . . ,M , form a partition of the glass’ electromagnetic
wave spectrum in the semi-tranparent region (as explained a few lines above, the genuine wave-
length in glass is λ

ng
). Like in [25], we introduce the “mean” radiative intensity Ik(x, t, µ) on

each interval [λk, λk+1[, (k = 1, . . . ,M) of the partition (1.3) of the glass’ electromagnetic wave
spectrum in the semi-transparent region, by:

Ik(x, t, µ) :=
λk+1∫
λk

I(x, t, µ, λ) dλ.

Similarly for a given absolute temperature T , we define:

Bk(T ) :=
λk+1∫
λk

B(T, λ) dλ, k = 1, . . . ,M,

where B(T, λ) denotes the Planck function defined by formula (1.2). Let us denote by Bk
g (T ) :=

n2
gB

k(T ) (k = 1, . . . ,M). In the glass plate, the spectral radiative intensity is governed by the
radiative transfer equation, which assuming no scattering in the glass plate ([10], p.343, p.9),
reduces to:

µdI(x,t,µ,λ)
dx + κ(λ)I(x, t, µ, λ) = κ(λ)Bg(T (x, t), λ),

(0 ≤ x ≤ l, 0 ≤ t ≤ tf , −1 < µ < 1, λ > 0). (1.4)

Integrating both sides of (1.4) and using (1.3), we obtain the following system of M differ-
ential equations in the M dependent variables I1(x, t, µ), . . . , IM (x, t, µ), only coupled by the
temperature T (x, t):{

µdI
k(x,t,µ)
dx + κkI

k(x, t, µ) = κkB
k
g (T (x, t)),

(0 ≤ x ≤ l, 0 ≤ t ≤ tf , −1 < µ < 1), k = 1, . . . ,M.
(1.5)

Now let us derive the boundary conditions for the differential equations (1.5). Considering an
elementary pencil of thermal rays ([23], p.18, second paragraph) emitted by the black source S

2



Radiative Heating of a Glass Plate

of radiative intensity B(TS(t), λ) in (dry) air, a balance of energy shows that after refraction
in the “direction” µ (−1 < µ < 0) at the interface xg = l between air and glass, its radiative
intensity is

(1− ρg(µ))n2
gB(TS(t), λ) = (1− ρg(µ))Bg(TS(t), λ), (1.6)

where ρg(µ) denotes the reflectivity coefficient given by Fresnel’s relation ([20], formula (2.96) p.
47). The factor n2

g appearing in the left-hand side of equation (1.6) is due to the conservation of
the optical outspread of an elementary pencil of thermal rays after refraction (see [10] p.8 or [5]
(29) p.35 or [17], pp.56-59). Making once again a balance of energy, in an elementary pencil of
thermal rays diverging in directions forming a narrow cone of solid angle dΩ, whose mean axis
makes an angle θ = Arc cos(µ) (−1 < µ < 0) with the x-axis, from a small area dA ([23], p.18,
second paragraph) contained in the interface xg = l, we obtain the following boundary condition
on the surface xg = l of the glass plate (somewhat similar to [23], p.33-34):

I(l, t, µ, λ) = ρg(µ)I(l, t,−µ, λ) + (1− ρg(µ))Bg(TS(t), λ),
for − 1 < µ < 0, 0 ≤ t ≤ tf , λ > 0.

After integration of both sides of this equation with respect to wavelength λ from λk to λk+1,
we obtain the following boundary condition on the surface xg = l of the glass plate for equation
(1.5):

Ik(l, t, µ) = ρg(µ)Ik(l, t,−µ) + (1− ρg(µ))Bk
g (TS(t)), −1 < µ < 0, 0 ≤ t ≤ tf , (1.7)

for k = 1, . . . ,M . On the lower face xg = 0 of the glass plate in contact with the black-sheet metal
maintained at ambient absolute temperature T = Ta, we have the simple boundary condition
for the “integrated” radiative intensity Ik(x, t, µ):

Ik(0, t, µ) = Bk
g (Ta), 0 < µ < 1, 0 ≤ t ≤ tf . (1.8)

Thus Ik(x, t, µ) may be seen as the solution of the first-order differential equation (1.5) in the
x variable with parameter µ, and boundary condition (1.8) at x = 0 (resp. boundary condition
(1.7) at x = l) if 0 < µ < 1 (resp. −1 < µ < 0). The right-hand side κkBk

g (T (x, t)) of the
first-order differential equation (1.5) depending on the distribution of temperature T (·, t) in the
glass plate at time t, it follows that Ik(·, t, µ) depends nonlinearly of T (·, t). When, wanting to
underline this fact, we will write in the following IkT (x, t, µ) instead of Ik(x, t, µ). Now, the heat
source in the heat-conduction equation is given by minus times the divergence of the radiative
flux ([28], p.221-222), ([27], p.354-355):

q(x, t) = 2π
+∞∫
0

+1∫
−1

µ I(x, t, µ, λ) dµ dλ.

Using the radiative transfer equation (1.4) and our hypothesis (1.3) on the absorption coefficient
κ(λ), we have:

− ∂q
∂x(x, t) = −2π

+∞∫
0

+1∫
−1

µ ∂I∂x(x, t, µ, λ) dµ dλ

= −4π
+∞∫
0

κ(λ)Bg(T (x, t), λ) dλ+ 2π
+∞∫
0

+1∫
−1

κ(λ) I(x, t, µ, λ) dµ dλ

= −
k=M∑
k=1

4πκkBk
g (T (x, t)) +

k=M∑
k=1

2πκk
+1∫
−1

IkT (x, t, µ) dµ.

(1.9)
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Thus the quantities of interest are
+1∫
−1

IkT (x, t, µ) dµ (k = 1, . . . ,M) for which we shall give an

explicit formula by solving explicitely for each k ∈ {1, . . . ,M} equation (1.5) with the boundary
condition (1.7) for −1 < µ < 0, respectively (1.8) for 0 < µ < 1. Now by (1.9), the heat-
conduction equation inside the glass plate is the following:

cpmg
∂T
∂t (x, t) = kh

∂2T
∂x2 (x, t)−

k=M∑
k=1

4πκkBk
g (T (x, t))

+
k=M∑
k=1

2πκk
+1∫
−1

IkT (x, t, µ) dµ, 0 < x < l, 0 < t < tf ,

(1.10)

where cp, mg, kh are assumed to be positive constants named respectively heat capacity, mass
density and thermal conductivity of the glass [28], [27]. Now, what are the boundary conditions
for the heat-conduction equation (1.10). On the lower face xg = 0 of the glass plate which is in
contact with a black sheet-metal maintained at absolute ambient temperature T = Ta, we have
simply the inhomogeneous Dirichlet boundary condition:

T (0, t) = Ta, ∀t ∈]0, tf [. (1.11)

On the upper face xg = l of the glass plate, due to radiative emission and absorption very
near the boundary for wavelengths λ belonging to the glass opaque region [λ0,+∞[ (λ0 ≈ 5µm
for glass, [26], p.70) in the electromagnetic wave spectrum, we have the following nonlinear
boundary condition expressing the continuity of the density of heat flux:

−kh ∂T∂x (l, t) = hc(T (l, t)− Ta) + π

+∞∫
λ0

ελ[B(T (l, t), λ)−B(TS(t), λ)] dλ,

∀t ∈]0, tf [.

(1.12)

In the boundary condition (1.12), ελ is a positive constant called the spectral hemispherical
emittance ([20], pp.62-63); like in ([26], p. 70), we have supposed that the spectral hemispherical
absorptance is equal to the spectral hemispherical emittance for wavelength λ belonging to the
glass opaque region in the electromagnetic wave spectrum, and independent of the temperature.
Boundary condition (1.12) is the same as boundary condition (3) in [3] or (3) in [15]. In the
boundary condition (1.12), hc > 0 denotes the convective heat transfer coefficient, the term
hc(T (l, t)−Ta) representing the conducto-convective flux density at the infinite surface xg = l of
the glass plate according to Newton’s law ([28], p.16) ([27], p.13-16). Finally, to close our system
of equations, we need an initial condition for the temperature:

T (x, 0) = T0(x), ∀x ∈ [0, l]. (1.13)

We assume that the initial condition T0(·) is a continuous strictly positive function on the closed
interval [0, l], as an absolute temperature is always positive in classical physics and T0(·) is a
datum. For the same reasons, we also assume that Ta > 0 and that TS(t) > 0, ∀t ∈ [0, tf ].
We suppose that the compatibility condition T0(0) = Ta between the initial condition and the
inhomogeneous Dirichlet boundary condition (1.11) on the lower face xg = 0 of the glass plate
is verified and that TS is bounded.
Our main purpose in this paper is to give a rigorous proof that the coupled problem formed
by equations (1.5) with the boundary conditions (1.7) (resp. (1.8)) for −1 < µ < 0 (resp. for
0 < µ < 1) and equation (1.10) completed by the boundary conditions (1.11), (1.12) and the
initial condition (1.13) has a unique bounded weak solution

T ∈ {T ∈ L2(0, tf ;H1(]0, l[); dT
dt
∈ L2(0, tf ;

[
H1
L(]0, l[)

]∗
)}, (1.14)
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which is also continuous on [0, l]× [0, tf ]. In (1.14), H1
L(]0, l[) denotes the subspace of H1(]0, l[)

formed by those functions of H1(]0, l[) which vanish at the left extremity xg = 0 of the interval
]0, l[. The proof of the existence will be achieved by defining a fixed point problem to which we will
apply Schauder’s theorem. Using Stampacchia’s trunction method [2], we will also prove that the
solution T is positive, lower bounded by Ta if TS(t) ≥ Ta, ∀t ∈ [0, tf ] and T0(x) ≥ Ta, ∀x ∈ [0, l]
and upper bounded by

max(‖T0‖∞,[0,l] , ‖TS‖∞,[0,tf ] , Ta).
Let us conclude by mentioning, that though an absolute temperature is always positive in clas-
sical physics, for mathematical purposes only, we extend the definition of the Planck’s function
(1.2) to negative real numbers T by setting B(T, λ) = 0, if T ≤ 0; in that way for fixed λ > 0,
the function T 7→ B(T, λ) is defined on the whole real line and is Lipschitz with constant 2C1

C2λ4

(see Lemma 3.6).
To close this introductory section, let us situate our paper among existing works in the litter-
ature. Assuming the grey property of the material (i.e. that the absorption coefficients of the
material are independent of the wavelength λ), the existence and uniqueness of the solution of
the SP1-approximation to the radiative heat tranfer equation, coupled with the heat conduction
equation assuming Robin-type boundary conditions has been established by R. Pinnau in [22].
This SP1-approximation is sufficiently accurate only if the optical thickness of the plate is large
which is certainly not the case with a glass plate of 6 mm thickness. In the present work, we
have considered the exact radiative transfer equation, we do not assume the grey hypothesis
and we consider the exact nonlinear boundary condition (1.12) on the upper face {x = l} of the
glass plate for the heat conduction equation. In [14], the authors assume the grey hypothesis
and consider the nonlinearity arising from the well-known Stefan-Boltzmann law, making the
resulting heat equation non-monotone but pseudo-monotone. In M. Laitinen’s thesis [13], only
grey materials are considered. The paper of P.-E. Druet [6] is concerned by proving the exis-
tence of a solution to a time-dependent heat equation modelizing the heating of several opaque
bodies contained in an inclosure and separated from each other by a transparent medium. He
has mathematically implemented the well-known inverse square law in heat radiation’s theory
for two boundary points of the opaque bodies in each other’s range of vision (see e.g. [20],
pp.133-136). In [19], the problem of optimizing the temperature gradient in the gas phase by
directly controlling the heat source in the solid phase is considered in a crucible. The problem is
described by the stationary heat equation with a nonlocal radiation interface between the solid
and the gas phase and a local radiative boundary condition. In particular, these authors show
the boundedness of weak solutions of the state equation.
One of the main characteristic of the model of radiative heating of a glass plate studied math-
ematically here, defined by the equations (1.5), (1.10) completed with the boundary conditions
(1.7), (1.8), (1.11), (1.12) and the initial condition (1.13), is that the short wavelengths of the
radiation emitted by the black source S are neglected, which seems reasonable. One possible jus-
tification of that attitude of mind is that the emissive power of the black source S for radiations
of wavelength λ ∈ [0, λinf ]:

π

λinf∫
0

B(TS , λ) dλ

([20], pp. 6-11) may be made as small as desired with respect to the total emissive power

π

+∞∫
0

B(TS , λ) dλ

of the black source S, equal to σT 4
S , where σ denotes the Stefan-Boltzmann constant equal to

5.670 10−8 W/m2.◦K4, by choosing λinf sufficiently small.
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Remark 1.1. As pointed out to us by one of the referees, we could extend the following exis-
tence and uniqueness theory to non piecewise constant absorption coefficient in the glass semi-
transparent region, only assuming it measurable and positively lower and upper bounded. Our
purpose was merely to study from the mathematical point of view the extension of the model
introduced by N. Siedow et al. in [25] to radiative heating, i.e. to prove existence and uniqueness
of the solution. Thus, we prefer to remain in the setting of [25].

2. Computation of the integrals
+1∫
−1

IkT (x, t, µ) dµ (k = 1, . . . ,M)

Let us recall, that we write IkT (x, t, µ) instead of more simply Ik(x, t, µ), to emphasize the
dependence of Ik(x, t, µ) with respect to the temperature T (·, ·), as shown by formula (1.5).
Firstly, we are going to compute the explicit solution of equation (1.5) with the boundary
condition (1.7) for −1 < µ < 0, respectively (1.8) for 0 < µ < 1, from which we will derive

explicit expressions for the integrals
+1∫
−1

IkT (x, t, µ) dµ (k = 1, . . . ,M). From differential equation

(1.5), it follows that for −1 < µ < 1:

IkT (x, t, µ) = IkT (0, t, µ) e−κk
x
µ + κk

µ
e
−κk xµ

x∫
0

e
κk

x
′

µ Bk
g (T (x′, t)) dx′ (2.1)

or:

IkT (x, t, µ) = IkT (l, t, µ) eκk
l−x
µ − κk

µ
e
−κk xµ

l∫
x

e
κk

x
′

µ Bk
g (T (x′, t)) dx′. (2.2)

Suppose 0 < µ < 1. By boundary condition (1.8), we have:

IkT (0, t, µ) = Bk
g (Ta), for 0 < µ < 1. (2.3)

Thus by equation (2.1) it follows that

IkT (x, t, µ) = Bk
g (Ta) e−κk

x
µ + κk

µ e
−κk xµ

x∫
0

e
κk

x
′

µ Bk
g (T (x′, t)) dx′,

for 0 < µ < 1.
(2.4)

Suppose now −1 < µ < 0. By boundary condition (1.7) and equation (2.1), we obtain:

IkT (l, t, µ) = ρg(µ) IkT (0, t,−µ)eκk
l
µ − ρg(µ)κkµ e

κk
l
µ

l∫
0

e
−κk x

′

µ Bk
g (T (x′, t)) dx′

+(1− ρg(µ))Bk
g (TS(t)), for − 1 < µ < 0.

(2.5)

For −1 < µ < 0: 0 < −µ < 1; thus using (2.3), (2.5) becomes:

IkT (l, t, µ) = ρg(µ) Bk
g (Ta)eκk

l
µ − ρg(µ)κkµ

l∫
0

e
−κk x

′
−l
µ Bk

g (T (x′, t)) dx′

+(1− ρg(µ))Bk
g (TS(t)), for − 1 < µ < 0.

(2.6)
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Now using formula (2.2), we obtain for −1 < µ < 0:

IkT (x, t, µ) = ρg(µ) Bk
g (Ta)eκk

2l−x
µ + (1− ρg(µ))Bk

g (TS(t))eκk
l−x
µ

−ρg(µ)κkµ

l∫
0

e
−κk x

′
+x−2l
µ Bk

g (T (x′, t)) dx′ − κk
µ e
−κk xµ

l∫
x

e
κk

x
′

µ Bk
g (T (x′, t)) dx′.

(2.7)

Thus the explicit solution of equation (1.5) with the boundary condition (1.7) for −1 < µ < 0,
respectively (1.8) for 0 < µ < 1, is given by formula (2.4) for 0 < µ < 1 and by formula (2.7)

for −1 < µ < 0. Now, these two formulas allow us to compute
+1∫
−1

IkT (x, t, µ) dµ:

+1∫
−1

IkT (x, t, µ) dµ =
1∫

0

IkT (x, t, µ) dµ+
0∫
−1

IkT (x, t, µ) dµ

= Bk
g (Ta)

1∫
0

e
−κk xµ dµ+

1∫
0

κk
µ e
−κk xµ

 x∫
0

e
κk

x
′

µ Bk
g (T (x′, t)) dx′

 dµ

+ Bk
g (Ta)

0∫
−1

ρg(µ) eκk
2l−x
µ dµ+Bk

g (TS(t))
0∫
−1

(1− ρg(µ))eκk
l−x
µ dµ

−
0∫
−1

ρg(µ)κkµ e
κk

2l−x
µ

 l∫
0

e
−κk x

′

µ Bk
g (T (x′, t)) dx′

 dµ

−
0∫
−1

κk
µ e
−κk xµ

 l∫
x

e
κk

x
′

µ Bk
g (T (x′, t)) dx′

 dµ .

(2.8)

Let us now examine the different terms in the right-hand side of formula (2.8). For the first term
it is rather immediate:

Bk
g (Ta)

1∫
0

e
−κk xµ dµ = Bk

g (Ta)
+∞∫
1

e−κkxζ
dζ

ζ2 = Bk
g (Ta) E2(κkx), (2.9)

where

E2 : R∗+ → R : y 7→
+∞∫
1

e−yζ
dζ

ζ2 =
1∫

0

e
− y
µdµ

denotes the integro-exponential function of order 2 ([28], p.244-245) ([20], p.779-781). Let us
now inspect the second term in the right-hand side of formula (2.8):

1∫
0

κk
µ e
−κk xµ

 x∫
0

e
κk

x
′

µ Bk
g (T (x′, t)) dx′

 dµ

=
x∫

0

 1∫
0

κk
µ e
−κk x−x

′
µ dµ

 Bk
g (T (x′, t)) dx′

=
x∫

0

κk +∞∫
1

e−κk(x−x′)ζ dζ
ζ

 Bk
g (T (x′, t)) dx′

=
x∫

0

κk E1(κk(x− x′)) Bk
g (T (x′, t)) dx′ =

x∫
0

Gk(x, x′) Bk
g (T (x′, t)) dx′,

(2.10)
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where

E1 : R∗+ → R : y 7→
+∞∫
1

e−yζ
dζ

ζ
=

1∫
0

e
− y
µ
dµ

µ

denotes the integro-exponential function of order 1 ([28], p.244-245) ([20], p.779-781), and where
we have set:

Gk(x, x′) := κkE1(κk
∣∣x− x′∣∣), ∀ (x, x′) ∈ [0, l]2. (2.11)

Similarly for the sixth term in the right-hand side of formula (2.8):

−
0∫
−1

κk
µ e
−κk xµ

 l∫
x

e
κk

x
′

µ Bk
g (T (x′, t)) dx′

 dµ

=
1∫

0

κk
µ e

κk
x
µ

 l∫
x

e
−κk x

′

µ Bk
g (T (x′, t)) dx′

 dµ

=
l∫
x

 1∫
0

κk
µ e
−κk x

′
−x
µ dµ

Bk
g (T (x′, t)) dx′

=
l∫
x

 +∞∫
1

κk e
−κk(x′−x)ζ dζ

ζ

Bk
g (T (x′, t)) dx′

=
l∫
x

κk E1(κk(x′ − x)) Bk
g (T (x′, t)) dx′

=
l∫
x

κk E1(κk |x− x′|) Bk
g (T (x′, t)) dx′ =

l∫
x

Gk(x, x′) Bk
g (T (x′, t)) dx′.

(2.12)

These two terms can be gathered in
l∫

0

Gk(x, x′) Bk
g (T (x′, t)) dx′. To write the third and fourth

terms in the right-hand side of formula (2.8) each containing ρg(µ) under the integral sign in a
compact fashion, let us introduce the function

Φ2 : R∗+ → R+ : y 7→ Φ2(y) :=
1∫

0

ρg(µ)e−
y
µdµ . (2.13)

Let us note that ρg(µ) = 1 for µ ∈ [0,
√

n2
g−1
n2
g

], as for such grazing incidence “angles”, elementary
pencils of rays are completely reflected. Thus Φ2(·) is somewhat similar to the integro-exponential
function E2(·), but it takes into account the reflectivity coefficient. Using the function Φ2(·) the

third term Bk
g (Ta)

0∫
−1

ρg(µ) eκk
2l−x
µ dµ in (2.8) may now be rewritten:

Bk
g (Ta)

0∫
−1

ρg(µ) eκk
2l−x
µ dµ = Bk

g (Ta)
1∫

0

ρg(µ) e−κk
2l−x
µ dµ

= Bk
g (Ta) Φ2(κk(2l − x)).

(2.14)

8
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The fourth term Bk
g (TS(t))

0∫
−1

(1 − ρg(µ))eκk
l−x
µ dµ in the right-hand side of formula (2.8) may

be rewritten:

Bk
g (TS(t))

0∫
−1

(1− ρg(µ))eκk
l−x
µ dµ = Bk

g (TS(t))
1∫

0

(1− ρg(µ))e−κk
l−x
µ dµ

= Bk
g (TS(t))E2(κk(l − x))−Bk

g (TS(t))
1∫

0

ρg(µ) e−κk
l−x
µ dµ

= Bk
g (TS(t))[E2(κk(l − x))− Φ2(κk(l − x))].

(2.15)

To write the fifth term in the right-hand side of formula (2.8) containing also ρg(µ) under
the integral sign in a compact fashion, let us introduce the integro-exponential function Φ1(·)
somewhat similar to E1(·)

Φ1 : R∗+ → R+ : y 7→ Φ1(y) :=
1∫

0

ρg(µ)e−
y
µ
dµ

µ
. (2.16)

Using the function Φ1, the next to last term in (2.8) may now be rewritten:

−
0∫
−1

ρg(µ)κkµ e
κk

2l−x
µ

 l∫
0

e
−κk x

′

µ Bk
g (T (x′, t)) dx′

 dµ

=
1∫

0

ρg(µ)κkµ e
−κk 2l−x

µ

 l∫
0

e
κk

x
′

µ Bk
g (T (x′, t)) dx′

 dµ

= κk

l∫
0

 1∫
0

ρg(µ) e−κk
2l−x−x

′

µ dµ
µ

Bk
g (T (x′, t)) dx′

= κk

l∫
0

Φ1(κk(2l − x− x
′))Bk

g (T (x′, t)) dx′.

(2.17)

Thus formula (2.8) may be rewritten:
+1∫
−1

IkT (x, t, µ) dµ =
l∫

0

Gk(x, x′) Bk
g (T (x′, t)) dx′ +Bk

g (Ta) E2(κkx)

+Bk
g (Ta) Φ2(κk(2l − x)) +Bk

g (TS(t))[E2(κk(l − x))− Φ2(κk(l − x))]

+κk
l∫

0

Φ1(κk(2l − x− x
′))Bk

g (T (x′, t)) dx′.

(2.18)

3. Weak formulation of the nonlinear initial boundary value problem (1.10)-
(1.13).

Let us set:

hT (x, t) :=
k=M∑
k=1

2πκk
+1∫
−1

IkT (x, t, µ) dµ and ψ(T (x, t)) := −
k=M∑
k=1

4πκkBk
g (T (x, t)) (3.1)

for (x, t) ∈]0, l[×]0, tf [. Firstly, we want to prove that if T ∈ L2
+(]0, l[×]0, tf [) and TS ∈

L2
+(]0, tf [), then hT and ψ ◦ T belong to L2(]0, l[×]0, tf [). We will need several lemmas.

9



Luc Paquet, Raouf El Cheikh, et al.

Lemma 3.1. Bk
g (T ) ≤ cT for every T ∈ R∗+, where c denotes some positive constant depending

on k.

Proof. B(T, λ) = 2C1

λ5(e
C2
λT −1)

≤ 2C1
λ5(C2

λT
)
≤ 2C1

C2
T
λ4 . Thus Bk(T ) =

λk+1∫
λk

B(T, λ) dλ ≤ 2C1
C2
T

λk+1∫
λk

dλ
λ4 ≤

cT . As Bk
g (T ) = n2

gB
k(T ), the previous inequality implies that: Bk

g (T ) ≤ cn2
gT. �

Remark 3.2. To simplify the notations, in the following, we shall occasionally use the symbol .
to mean that the left-hand side is bounded by a constant times the right-hand side. Also in the
sequel, the notation ∀′ means “for almost every. . . ”. We shall also use the notation a.e. to mean
“almost everywhere”.

Corollary 3.3. If T ∈ L2(]0, l[×]0, tf [) and TS ∈ L2
+(]0, tf [), then hT and ψ ◦ T belong to

L2(]0, l[×]0, tf [).

Proof. Firstly, a little thought shows that we can reduce us to the case T ∈ L2
+(]0, l[×]0, tf [).

Due to the preceding lemma, the function:

Bk
g ◦ T :]0, l[×]0, tf [→ R+ : (x, t) 7→ Bk

g (T (x, t))

belongs to L2(]0, l[×]0, tf [). Thus ψ ◦ T which is a linear combination of the functions Bk
g ◦

T belongs to L2(]0, l[×]0, tf [). To prove that hT belongs to L2(]0, l[×]0, tf [), it suffices to prove
that the functions

]0, l[×]0, tf [→ R+ : (x, t) 7→
+1∫
−1

IkT (x, t, µ) dµ

belong to L2(]0, l[×]0, tf [), ∀k = 1, . . . ,M . Firstly, in view of formula (2.18), we have to prove
that the function

]0, l[×]0, tf [→ R+ : (x, t) 7→
l∫

0

Gk(x, x′) Bk
g (T (x′, t)) dx′

= κk

l∫
0

E1(κk |x− x′|) Bk
g (T (x′, t)) dx′

(3.2)

belongs to L2(]0, l[×]0, tf [), ∀k = 1, . . . ,M . By Lemma 3.1

l∫
0

E1(κk
∣∣x− x′∣∣) Bk

g (T (x′, t)) dx′ ≤ c
l∫

0

E1(κk
∣∣x− x′∣∣) T (x′, t) dx′

which, by using Cauchy-Schwarz inequality, implies

 l∫
0

E1(κk
∣∣x− x′∣∣) Bk

g (T (x′, t)) dx′
2

≤ c2
l∫

0

E1(κk
∣∣x− x′∣∣)2 dx′ ·

l∫
0

T (x′, t)2 dx′.

10
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Integrating both sides with respect to x from 0 to l and with respect to t from 0 to tf , we obtain:
tf∫

0

l∫
0

 l∫
0

E1(κk |x− x′|) Bk
g (T (x′, t)) dx′

2

dx ⊗ dt

≤ c2
tf∫

0

l∫
0

 l∫
0

E1(κk |x− x′|)2 dx′ ·
l∫

0

T (x′, t)2 dx′

 dx⊗ dt

≤ c2
l∫

0

l∫
0

E1(κk |x− x′|)2 dx′ ⊗ dx ·
tf∫

0

l∫
0

T (x′, t)2 dx′ ⊗ dt.

Now, for 0 < y ≤ 1:

E1(y) =
+∞∫
1

e−yt

t dt =
+∞∫
y

e−u

u du ≤
1∫
y

e−u

u du+
+∞∫
1

e−u

u du

≤
1∫
y

1
udu+

+∞∫
1

1
u(1+u+··· )du ≤ |ln y|+ 1

inequality which is a fortiori true for y > 1. This inequality implies the bound E1(y)2 ≤ 2 +
2 (ln y )2, from which follows easily that

l∫
0

l∫
0

E1(κk
∣∣x− x′∣∣)2 dx′ ⊗ dx is finite.

Thus
tf∫

0

l∫
0

 l∫
0

E1(κk
∣∣x− x′∣∣) Bk

g (T (x′, t)) dx′
2

dx⊗ dt .
tf∫

0

l∫
0

T (x′, t)2 dx
′ ⊗ dt < +∞.

We have thus proven (3.2). The proof that the function

(x, t) 7→
l∫

0

Φ1(κk(2l − x− x
′)) Bk

g (T (x′, t)) dx′

belongs also to L2(]0, l[×]0, tf [) is similar to the preceding one, the only point we have to check
being that

l∫
0

l∫
0

Φ1(κk(2l − x− x
′))2 dx′ ⊗ dx =

l∫
0

l∫
0

Φ1(κk(x+ x
′))2 dx′ ⊗ dx

is finite. But, by the definition (2.16) of the function Φ1, Φ1(y) ≤ E1(y), ∀y ∈ R∗+ and thus
Φ1(κk(x+ x

′))2 ≤ E1(κk(x+ x
′))2 ≤ 2 + 4 (ln κk)2 + 4

(
ln
(
x+ x

′
) )2

. Thus
l∫

0

l∫
0

Φ1(κk(2l − x− x
′))2 dx′ ⊗ dx < +∞.

To conclude that hT belongs to L2(]0, l[×]0, tf [), in view of the definition of hT (., .) and (2.18),
it remains to prove that the three functions of (x, t):
Bk
g (Ta) E2(κkx), Bk

g (Ta) Φ2(κk(2l−x)), Bk
g (TS(t))[1−Φ2(κk(l−x))] belong to L2(]0, l[×]0, tf [).

Since E2(y) ≤ 1, ∀y ∈ R∗+, it is clear that the first term is square integrable. Also from the
definition (2.13) of Φ2, it follows that Φ2(y) ≤ 1, ∀y ∈ R∗+, so that it is also clear that the second

11
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term belongs to L2(]0, l[×]0, tf [). Let us now turn to the third term. It results immediately from
the hypothesis TS ∈ L2

+(]0, tf [), which combined with Lemma 3.1, implies that Bk
g (TS(·)) ∈

L2(]0, tf [). �

Corollary 3.4. Let us consider the mapping

Θ : R→ R : T 7→ π

+∞∫
λ0

ελB(T, λ) dλ.

Then, Θ is an increasing function and for every T̂ ∈ L2(]0, tf [), the function Θ ◦ T̂ also denoted
Θ(T̂ ) belongs to L2

+(]0, tf [).

Proof. It is obvious that Θ is an increasing function. As we have seen in the proof of lemma 3.1:

B(T, λ) = 2C1

λ5(e
C2
λT − 1)

≤ 2C1

λ5(C2
λT )
≤ 2C1

C2

T

λ4 , ∀λ > 0, ∀T > 0.

Let us recall that we have set B(T, λ) = 0 if T ≤ 0. Taking T = T̂ (t), it follows that

+∞∫
λ0

ελB(T̂ (t), λ) dλ ≤ 2C1
C2
T̂+(t)

+∞∫
λ0

ελ
dλ

λ4 ≤ 2C1
C2
T̂+(t)

+∞∫
λ0

dλ

λ4 ≤
2C1

3C2λ3
0
T̂+(t)

as ∀λ > 0: ελ ∈ [0, 1]. Thus:

tf∫
0

Θ(T̂ (t))2dt ≤ π2
tf∫

0

 +∞∫
λ0

ελB(T̂ (t), λ) dλ


2

dt .

tf∫
0

T̂+(t)2dt < +∞.

Thus Θ ◦ T̂ belongs to L2(]0, tf [). �

In terms of the functions hT (·, ·), ψ(T (·, ·)) and Θ(TS)(.), the initial boundary value problem
(1.10), (1.11), (1.12), (1.13) can be rewritten:

cpmg
∂T
∂t (x, t) = kh

∂2T
∂x2 (x, t) + ψ(T (x, t)) + hT (x, t), ∀′(x, t) ∈]0, l[×]0, tf [,

T (0, t) = Ta, ∀′t ∈]0, tf [,
−kh ∂T∂x (l, t) = hc(T (l, t)− Ta) + Θ(T (l, t))−Θ(TS)(t), ∀′t ∈]0, tf [,

T (x, 0) = T0(x), ∀′x ∈ [0, l].

(3.3)

(3.3) has sense if we suppose that

T ∈ L2(0, tf ;H2(]0, l[) and dT

dt
∈ L2(0, tf ;L2(]0, l[)).

Also, a priori, we do not know if the solution (which could even a priori not be unique) is positive,
which is a natural property for an absolute temperature in classical physics. Thus to give sense to
(3.3) and also to the equations which will follow, we have set B(T, λ) = 0 if T ≤ 0 as we have said
at the end of the introduction. We shall now define what is a weak solution to the initial boundary
value problem (3.3). Let us consider any function ϕ ∈ H1

L(]0, l[) := {ϕ ∈ H1(]0, l[); ϕ(0) = 0}.
Multiplying both members of equation (3.3)(i) by ϕ(x) and integrating by parts from 0 to l using

12
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the boundary conditions (3.3)(iii) and (3.3)(ii) , we obtain for ∀′t ∈]0, tf [:

cpmg

l∫
0

∂T
∂t (x, t)ϕ(x)dx = kh

l∫
0

∂2T
∂x2 (x, t)ϕ(x)dx+

l∫
0

ψ(T (x, t))ϕ(x)dx

+
l∫

0

hT (x, t)ϕ(x)dx = −hc(T (l, t)− Ta)ϕ(l)−Θ(T (l, t)) · ϕ(l) + Θ(TS(t))

· ϕ(l)− kh
l∫

0

∂T
∂x (x, t)ϕ′(x)dx+

l∫
0

ψ(T (x, t))ϕ(x)dx+
l∫

0

hT (x, t)ϕ(x)dx.

(3.4)

To give sense to (3.4) under the weak assumption that T ∈ L2(0, tf ;H1(]0, l[)) and that dT
dt ∈

L2(0, tf ;
[
H1
L(]0, l[)

]∗), we have to replace in the left-hand side of (3.4) the integration on ]0, l[
by a duality bracket: ∀′t ∈]0, tf [:

cpmg

〈
dT
dt (·, t), ϕ

〉
H1
L(]0,l[)∗,H1

L(]0,l[)
= −kh

l∫
0

∂T
∂x (x, t)ϕ′(x)dx

+
l∫

0

ψ(T (x, t))ϕ(x)dx+
l∫

0

hT (x, t)ϕ(x)dx

+ [Θ(TS(t))−Θ(T (l, t))] · ϕ(l) + [hc (Ta − T (l, t))]ϕ(l).

(3.5)

As T ∈ L2(0, tf ;H1(]0, l[)) and Ṫ ∈ L2(0, tf ;
[
H1
L(]0, l[)

]∗), it follows that T ∈ C([0, tf ];L2(]0, l[))
([9], p.40) which gives sense to the initial condition T (·, 0) = T0(·). As T ∈ L2(0, tf ;H1(]0, l[))
and H1(]0, l[) ↪→ C([0, l]), it follows that T (0, ·) ∈ L2(]0, tf [) which gives sense to the boundary
condition T (0, ·) = Ta. We can now define what is a weak solution of the initial boundary value
problem (3.3):
Definition 3.5. We shall say that

T ∈ L2(0, tf ;H1(]0, l[)) such that dT
dt
∈ L2(0, tf ;

[
H1
L(]0, l[)

]∗
)

is a weak solution of the initial boundary value problem (3.3) iff (3.5) is satisfied ∀ϕ ∈ H1
L(]0, l[),

T (·, 0) = T0(·) and T (0, t) = Ta, ∀′t ∈]0, tf [.
We begin by proving uniqueness of the solution of the initial boundary value problem (3.5).

We will need the following lemmas:
Lemma 3.6. Let us fix λ > 0. Then the function R → R : T̂ 7−→ B(T̂ , λ) is Lipschitz with
constant 2C1

C2λ4 .

Proof. Let us recall that Planck’s function (1.2) is defined by B(T, λ) := 2C1

λ5(e
C2
λT −1)

.

First case: T̂1, T̂2 ∈ R, T̂1 > 0 and T̂2 ≤ 0 (or T̂1, T̂2 ∈ R, T̂1 ≤ 0 and T̂2 > 0). Then:∣∣∣B(T̂1, λ)−B(T̂2, λ)
∣∣∣ = B(T̂1, λ) = 2C1

λ5(e
C2
λT̂1 − 1)

≤ 2C1
C2λ4 T̂1 ≤

2C1
C2λ4

∣∣∣T̂1 − T̂2
∣∣∣ .

Second case: T̂1, T̂2 ∈ R, T̂1 ≤ 0 and T̂2 ≤ 0. Then B(T̂1, λ) = B(T̂2, λ) = 0 so that the inequality∣∣∣B(T̂1, λ)−B(T̂2, λ)
∣∣∣ ≤ 2C1

C2λ4

∣∣∣T̂1 − T̂2
∣∣∣ (3.6)

is obvious.
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Third case: T̂1, T̂2 ∈ R, T̂1 > 0 and T̂2 > 0. Then by Lagrange’s theorem on finite increments:

B(T̂1, λ)−B(T̂2, λ) = (T̂1 − T̂2)∂B
∂T

(Ť , λ)

where Ť ∈ R is some intermediate point between T̂1 and T̂2.
∂B
∂T (Ť , λ) = 2C1C2

eC2/λŤ

λ6Ť 2
(
eC2/λŤ−1

)2 = 2C1
C2λ4

(
C2
µ̌

)2
eC2/µ̌

(eC2/µ̌−1)2 where we have set µ̌ := λŤ . This formula

shows that ∂B
∂T (Ť , λ) > 0.

Also: ∀s ∈ R∗+ : s2es

(es−1)2 = s2(
e
s
2−e−

s
2
)2 = s2

4 sinh( s2 )2 =
( s

2
sinh( s2 )

)2
≤ 1. Thus: ∂B∂T (Ť , λ) ≤ 2C1

C2λ4 . So

inequality (3.6) is still true. �

Corollary 3.7. Let T1, T2 ∈ L2(]0, l[). Then:

∥∥∥Bk
g (T1(·))−Bk

g (T2(·))
∥∥∥
L2([0,l])

≤ 2n2
g

C1
C2

λ3
k+1 − λ3

k

3λ3
k λ

3
k+1
‖T1(·)− T2(·)‖

L2([0,l])
. (3.7)

Proof. Let us recall that Bk
g (T ) := n2

g

λk+1∫
λk

B(T, λ)dλ. By lemma 3.6, we have:

∣∣∣Bk
g (T1(x))−Bk

g (T2(x))
∣∣∣ ≤

n2
g

2C1
C2

λk+1∫
λk

dλ

λ4

 |T1(x)− T2(x)| ,

from which follows (3.7). �

Proposition 3.8. There is at most one weak solution T belonging to

{T ∈ L2(0, tf ;H1(]0, l[)); dT
dt
∈ L2(0, tf ;

[
H1
L(]0, l[)

]∗
)} ∩ C([0, l]× [0, tf ])

of the initial boundary value problem (3.3).

Proof. Let T1, T2 ∈ {T ∈ L2(0, tf ;H1(]0, l[)); Ṫ ∈ L2(0, tf ;
[
H1
L(]0, l[)

]∗)} ∩ C([0, l] × [0, tf ]) be
two weak solutions of the initial boundary value problem (3.5). We are going to prove that
T1 = T2. T := T1 − T2 is solution of

cpmg

〈
dT
dt (·, t), T (·, t)

〉
H1(]0,l[)∗,H1(]0,l[)

= −kh
l∫

0

[
∂T
∂x (x, t)

]2
dx

+
l∫

0

[ψ(T1(x, t))− ψ(T2(x, t))]T (x, t)dx

−hcT (l, t)2 − [Θ(T1(l, t))−Θ(T2(l, t))] · T (l, t)

+
l∫

0

[hT1(x, t)− hT2(x, t)]T (x, t)dx, ∀′t ∈]0, tf [.

14



Radiative Heating of a Glass Plate

This last equation may be rewritten:

cpmg
2

d
dt

l∫
0

T (x, t)2dx+ kh

l∫
0

[
∂T
∂x (x, t)

]2
dx+ hcT (l, t)2 + [Θ(T1(l, t))−Θ(T2(l, t))

] · T (l, t) +
k=M∑
k=1

4πκk
l∫

0

[
Bk
g (T1(x, t))−Bk

g (T2(x, t))
]

(T1(x, t))− T2(x, t)) dx

=
k=M∑
k=1

2πκk
l∫

0

[
+1∫
−1

IkT1
(x, t, µ) dµ−

+1∫
−1

IkT2
(x, t, µ) dµ](T1(x, t))− T2(x, t)) dx.

(3.8)

As for T, T̂ ∈ R, T ≤ T̂ implies B(T, λ) ≤B(T̂ , λ), ∀λ > 0 ([20], p.8), the last two terms in the

left-hand side of (3.8) are positive. Thus by (2.18):

cpmg
2

d
dt

l∫
0

T (x, t)2dx ≤
k=M∑
k=1

2πκk·

l∫
0

[
+1∫
−1

IkT1
(x, t, µ) dµ−

+1∫
−1

IkT2
(x, t, µ) dµ](T1(x, t))− T2(x, t)) dx ≤

k=M∑
k=1

2πκk

·
l∫

0

 l∫
0

Gk(x, x′) (Bk
g (T1(x′, t))−Bk

g (T2(x′, t)) dx′
 (T1(x, t)− T2(x, t)) dx

+
k=M∑
k=1

2πκ2
k

l∫
0

 l∫
0

Φ1(κk(2l − x− x
′)) (Bk

g (T1(x′, t))−Bk
g (T2(x′, t)) dx′


· (T1(x, t))− T2(x, t)) dx

≤
k=M∑
k=1

2πκk ‖Gk(·, ·)‖L2([0,l]2)

∥∥∥Bk
g (T1(·, t))−Bk

g (T2(·, t))
∥∥∥
L2([0,l])

· ‖T1(·, t)− T2(·, t)‖
L2([0,l])

+
k=M∑
k=1

2πκ2
k ‖Φ1(κk(2l − · − ·))‖L2([0,l]2)

·
∥∥∥Bk

g (T1(·, t))−Bk
g (T2(·, t))

∥∥∥
L2([0,l])

‖T1(·, t)− T2(·, t)‖
L2([0,l])

.

Applying corollary 3.7 to T1(·, t) and T2(·, t), it follows from the preceding inequality that for
some positive constant C:

d

dt

l∫
0

T (x, t)2dx ≤ C
l∫

0

T (x, t)2dx.

Thus d
dt

e−Ct l∫
0

T (x, t)2dx

 = e−Ct

 d
dt

l∫
0

T (x, t)2dx− C
l∫

0

T (x, t)2dx

 ≤ 0. Thus the function

R∗+ → R+ : t 7→ e−Ct
l∫

0

T (x, t)2dx

is a decreasing positive function and being 0 at time t = 0, is identically 0. Thus T (·, ·) = 0 i.e.
T1(·, ·) = T2(·, ·). �
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Now, we are going to prove the existence of a weak solution (3.5) to the initial boundary value
problem (3.3). The nonlinear integral term hT in (3.3) defines a Lipschitz mapping

L2(Q)→ L2(Q) : T 7→ hT .

However, we have also an inhomogeneous nonlinear boundary condition on the face {x = l} of
the glass plate so that, it does not seem possible to use perturbation results of the semi-groups
theory. Rather, to circumvent this difficulty, we define the following “fixed point problem”: find
T̃ ∈ {T̃ ∈ L2(0, tf ;H1(]0, l[)); dT̃dt ∈ L

2(0, tf ;
[
H1
L(]0, l[)

]∗)} such that
cpmg

∂T̃
∂t (x, t) = kh

∂2T̃
∂x2 (x, t) + ψ(T̃ (x, t)) + hT (x, t), ∀′(x, t) ∈]0, l[×]0, tf [,

T̃ (0, t) = Ta, ∀′t ∈]0, tf [,
−kh ∂T̃∂x (l, t) = hc(T̃ (l, t)− Ta) + Θ(T̃ (l, t))−Θ(TS(t)), ∀′t ∈]0, tf [,

T̃ (x, 0) = T0(x), ∀′x ∈ [0, l].

(3.9)

By a weak solution of the initial boundary value problem (3.9), we mean a function

T̃ ∈ {T̃ ∈ L2(0, tf ;H1(]0, l[)); dT̃
dt
∈ L2(0, tf ;

[
H1
L(]0, l[)

]∗
)}

such that ∀′t ∈]0, tf [:

cpmg

〈
dT̃
dt (·, t), ϕ

〉
H1
L(]0,l[)∗,H1

L(]0,l[)
= −kh

l∫
0

∂T̃
∂x (x, t)ϕ′(x)dx+

l∫
0

ψ(T̃ (x, t))ϕ(x)dx+ hc
(
Ta − T̃ (l, t)

)
ϕ(l) +

[
Θ(TS(t))−Θ(T̃ (l, t))

]

· ϕ(l) +
l∫

0

hT (x, t)ϕ(x)dx, ∀ϕ ∈ H1(]0, l[) such that ϕ(0) = 0,

T̃ (0, t) = Ta,
T̃ (x, 0) = T0(x), ∀′x ∈ [0, l].

(3.10)

Let us assume that the function T in the definition of hT (·, ·) which appears in the right-hand
side of equation (3.9)(i) or (3.10) is given and belongs to L2(]0, l[×]0, tf [). Corollary 3.3 tells us
that hT belongs to L2(]0, l[×]0, tf [). Firstly, we want to prove that the initial boundary value
problem (3.9) possesses one and only one weak solution T̃ ∈ L2(0, tf ;H1(]0, l[)) ∩ C([0, l] ×
[0, tf ]) such that dT̃

dt ∈ L2(0, tf ;
[
H1(]0, l[)

]∗) i.e. that T̃ verifies (3.10). To prove this, we will
use Theorem 1.40 page 49 of [9] on semilinear parabolic equations, but we have to check the
hypotheses of that theorem. We know already that hT belongs to L2(]0, l[×]0, tf [) and thus a
fortiori to Lr(]0, l[×]0, tf [) with r > 3

2 . The function g :]0, tf [→ R : t 7→ hcTa
kh

+ Θ(TS(t))
kh

= hcTa
kh

+

π
kh

+∞∫
λ0

ελB(TS(t), λ) dλ belongs to Ls∗(]0, tf [) for some s∗ > 2 if we suppose that TS ∈ Ls
∗(]0, tf [)

as follows from the inequality B(T̂ , λ) . T̂
λ4 , ∀T̂ ∈ R∗+. In particular, this will be the case

if TS ∈ H1(]0, tf [). Now, the nonlinear term in equation (3.9)(i) is given by −ψ(T̃ (x, t) :=
k=M∑
k=1

4πκkBk
g (T̃ (x, t)) for (x, t) ∈]0, l[×]0, tf [. We must verify that the nonlinear mapping

R→ R : T̂ 7→
k=M∑
k=1

4πκkBk
g (T̂ ) (3.11)
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is monotone increasing and Lipschitz continuous (let us recall that we have set Bk
g (T̂ ) = 0 in

case T̂ would be negative). It is obvious that it is monotone increasing. By Corollary 3.7:∣∣∣Bk
g (T̂1)−Bk

g (T̂2)
∣∣∣ ≤ 2n2

g

C1
C2

λ3
k+1 − λ3

k

3λ3
k λ

3
k+1

∣∣∣T̂1 − T̂2
∣∣∣ .

This proves that the nonlinear mapping (3.11) is Lipschitz continuous. The nonlinear term
in the boundary condition on the surface xg = l of the glass plate is given by Θ(T̃ (l, t)) =

π

+∞∫
λ0

ελ[B(T̃ (l, t), λ)]dλ for t ∈]0, tf [. As already said in Corollary 3.4 the nonlinear mapping

R→ R : T̂ 7→
+∞∫
λ0

ελ[B(T̂ , λ)]dλ (3.12)

is obviously monotone increasing. By an immediate adaptation of the proof of Corollary 3.7:∣∣∣∣∣∣∣
+∞∫
λ0

ελ[B(T̂1, λ)]dλ−
+∞∫
λ0

ελ[B(T̂2, λ)]dλ

∣∣∣∣∣∣∣ ≤
2C1
C2

1
3λ3

0

∣∣∣T̂1 − T̂2
∣∣∣ . (3.13)

Thus the nonlinear mapping Θ is also Lipschitz continuous. All the hypotheses of Theorem 1.40
page 49 of [9] on semilinear parabolic equations being verified (see also [12]) we have:

Theorem 3.9. Let us assume that function T that appears in the definition (3.1)-(2.18) of
hT (·, ·) which appears in the right-hand side of equation (3.9)(i) or (3.10) is given and belongs to
L2(]0, l[×]0, tf [). We assume that the initial condition T0 ∈ C([0, l]) and verifies the compatibility
condition T0(0) = Ta with the boundary condition on the surface xg = 0 of the glass plate and
that the absolute temperature of the black source TS(·) belongs to Ls∗(]0, tf [) for some s∗ > 2.
Then, the initial boundary value problem (3.9) possesses one and only one weak solution T̃ ∈
L2(0, tf ;H1(]0, l[))∩C([0, l]×[0, tf ]) such that dT̃dt ∈ L

2(0, tf ;
[
H1
L(]0, l[)

]∗) i.e. T̃ verifies equation
(3.10). Moreover, we have the following estimate:∥∥∥T̃∥∥∥

L2(0,tf ;H1(]0,l[))
+
∥∥∥dT̃dt ∥∥∥L2(0,tf ;[H1

L(]0,l[)]∗) +
∥∥∥T̃∥∥∥

C([0,l]×[0,tf ])

≤ C1(

∥∥∥∥∥∥
k=M∑
k=1

2πκk
+1∫
−1

IkT (·, ·, µ) dµ

∥∥∥∥∥∥
L2([0,l]×[0,tf ])

+ Ta

+ ‖Θ(TS(·))‖Ls∗ (]0,tf [) + ‖T0‖C([0,l]))
≤ C2(‖T (·, ·)‖

L2([0,l]×[0,tf ])
+ Ta + ‖TS(·)‖Ls∗ (]0,tf [) + ‖T0‖C([0,l])).

(3.14)

Remark 3.10. For uniqueness, the requirement T̃ ∈ C([0, l]× [0, tf ]) is not necessary as may be
seen by adapting to this new initial boundary value problem the proof of Proposition 3.8 which
simplifies greatly, the right-hand side of equation (3.8) being 0 in the present case.

We want now to prove under certain hypotheses on T , T0, TS that the solution of the initial
boundary value problem (3.9) T̃ is lower bounded by Ta. We will use Stampacchia’s truncation
method [2]. Before, we need the following lemmas:

Lemma 3.11. 1◦) If ϕ ∈ H1(]0, l[) and θ ∈ H1(]0, l[), then ϕθ ∈ H1(]0, l[).
2◦) If ϕ ∈ H1(]0, l[) (resp. H1

L(]0, l[)) and ψ ∈
[
H1(]0, l[)

]∗ (resp. [H1
L(]0, l[)

]∗), then ϕψ defined
by 〈ϕψ, θ〉 := 〈ψ,ϕθ〉 ,∀θ ∈ H1(]0, l[) belongs to

[
H1(]0, l[)

]∗ and
‖ϕψ‖[H1(]0,l[)]∗ . ‖ϕ‖H1(]0,l[) ‖ψ‖[H1(]0,l[)]∗ (3.15)
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respectively
‖ϕψ‖[H1(]0,l[)]∗ . ‖ϕ‖H1

L(]0,l[) ‖ψ‖[H1
L(]0,l[)]∗ . (3.16)

Proof. 1◦) This is the well known fact that in dimension 1, the space H1(]0, l[) is a normed
algebra [2].
2◦) ϕψ is defined by 〈ϕψ, θ〉[H1]∗, H1 := 〈ψ,ϕθ〉[H1]∗, H1 , ∀θ ∈ H1(]0, l[) (for short, we have
denoted H1(]0, l[) by H1). By the previous point ϕθ ∈ H1(]0, l[) and we have the inequality∣∣∣〈ψ,ϕθ〉[H1]∗, H1

∣∣∣ . ‖ψ‖[H1(]0,l[)]∗ ‖ϕ‖H1(]0,l[) ‖θ‖H1(]0,l[) . ‖θ‖H1(]0,l[) ,

∀θ ∈ H1(]0, l[). Thus the mapping θ 7→ 〈ψ,ϕθ〉[H1]∗, H1 is a continuous linear form on H1(]0, l[),
i.e. an element of

[
H1(]0, l[)

]∗ and inequality (3.15) holds. The proof of inequality (3.16) is
similar. �

Lemma 3.12. We have the following equality: ∀k = 1, . . . ,M :
l∫

0

Gk(x, x′) dx′ + E2(κkx) + Φ2(κk(2l − x)) + [E2(κk(l − x))− Φ2(κk(l − x))]

+κk
l∫

0

Φ1(κk(2l − x− x
′)) dx′ = 2.

Proof. Firstly:
l∫

0

Gk(x, x′) dx′ =
x∫

0

Gk(x, x′) dx′ +
l∫
x

Gk(x, x′) dx′ = κk

x∫
0

E1(κk(x− x′)) dx′

+κk
l∫
x

E1(κk(x′ − x))dx′ = κk

x∫
0

E1(κky)dy + κk

l−x∫
0

E1(κky)dy =
κkx∫
0

E1(z)dz

+
κk(l−x)∫

0

E1(z) dz = [−E2(z)]z=κkxz=0 + [−E2(z)]z=κk(l−x)
z=0 as E′2 = −E1

= 1− E2(κkx) + 1− E2(κk(l − x)) = 2− E2(κkx)− E2(κk(l − x)).

Thus
l∫

0

Gk(x, x′) dx′ + E2(κkx) + E2(κk(l − x)) = 2.

Secondly:

κk

l∫
0

Φ1(κk(2l − x− x
′)) dx′ =

l∫
0

 1∫
0

κk
µ ρg(µ)e−κk

2l−x−x
′

µ dµ

 dx′

=
1∫

0

ρg(µ)e−κk
2l−x
µ

 l∫
0

κk
µ e

κkx
′

µ dx′

 dµ =
1∫

0

ρg(µ)e−κk
2l−x
µ

[
e
κkl

µ − 1
]
dµ

=
1∫

0

ρg(µ)e−κk
l−x
µ dµ−

1∫
0

ρg(µ)e−κk
2l−x
µ dµ.

Thus: κk
l∫

0

Φ1(κk(2l − x− x
′)) dx′ − Φ2(κk(l − x)) + Φ2(κk(2l − x)) = 0.

The result follows from these two points. �

18



Radiative Heating of a Glass Plate

In the following, to alleviate the notations, we will allow us to write Lp(X) instead of
Lp(0, tf ;X), for 1 ≤ p ≤ +∞ and X a Banach space. Also, in the following, to shorten the
notations, we will write sometimes H1 (resp. H1

L) instead of H1(]0, l[) (resp. H1
L(]0, l[)) and(

H1)∗ (resp. (H1
L

)∗) instead of H1(]0, l[)∗ (resp. H1
L(]0, l[)∗).

Proposition 3.13. We keep the hypotheses of theorem 3.9. Moreover, we assume that T (·, ·) ≥
Ta a.e. on ]0, l[×]0, tf [, that TS(·) ≥ Ta a.e. on ]0, tf [, and that the initial condition T0(.) ≥ Ta.
Then the weak solution T̃ of the initial boundary value problem (3.9) satisfies the lower bound
T̃ (·, ·) ≥ Ta on [0, l]× [0, tf ].

Proof. Let us introduce the function

H : R→ R : y 7→
{

y2

2 if y < 0,
0 if y ≥ 0,

(3.17)

and let us set

ϕ̃(t) := cpmg

l∫
0

H(T̃ (x, t)− Ta)dx = cpmg

〈
H(T̃ (·, t)− Ta),1]0,l[

〉
, ∀t ∈ [0, tf ].

As the mapping from L2(]0, l[) into L2(]0, l[) which sends a function onto its negative part is
lipschitzian according to Lemma 4.1 and thus continuous, ϕ̃ : [0, tf ]→ R is a continuous function.
Moreover ϕ̃(0) = 0 because T̃ (·, 0)−Ta = T0(.)− Ta ≥ 0. Using the density of D([0, tf ];H1

L(]0, l[)
in the space ([4], p.571)

W (0, tf ;H1
L(]0, l[) := {v ∈ L2(0, tf ;H1

L(]0, l[)); dv
dt
∈ L2(0, tf ;

[
H1
L(]0, l[)

]∗
)}

endowed with its natural norm, one can prove that

d

dt
H(T̃ − Ta) = −(T̃ − Ta)−

dT̃

dt
, (3.18)

in the sense of distributions and belongs to the space L1(0, tf ;
[
H1
L(]0, l[)

]∗. Formula (3.18) is
first proved for regular functions θn ∈ D([0, tf ];H1

L(]0, l[) approaching T̃ − Ta in the norm of
the space W (0, tf ;H1

L(]0, l[) as n→ +∞. Proposition 4.3 and the remark which follows implies
that (θn)− tends to (T̃ − Ta)− in L2(0, tf ;H1

L(]0, l[)) as n → +∞. Then, the second point
of Lemma 3.11 implies that the sequence of mappings t 7→ (θn(·, t))− dθndt (·, t) converges as
n → +∞ to t 7→ (T̃ (·, t) − Ta)− dT̃dt (·, t) in the space L1(0, tf ;

[
H1
L(]0, l[)

]∗). In particular, this
proves (3.18). Moreover, as 1]0,l[ ∈ H1(]0, l[), it follows that

〈
(T̃ − Ta)− dT̃dt ,1]0,l[

〉
∈ L1(]0, tf [).

By the definition of the function ϕ̃ and (3.18):

dϕ̃

dt
(t) = −cpmg

〈
(T̃ − Ta)−

dT̃

dt
,1]0,l[

〉
, ∀′t ∈]0, tf [.

Thus dϕ̃
dt ∈ L

1(]0, tf [) which implies that the function ϕ̃ is absolutely continuous on the interval
[0, tf ]. By the definition of the product of an element of

[
H1
L(]0, l[)

]∗ by an element of H1
L(]0, l[)

stated in lemma 3.11:〈
(T̃ (·, t)− Ta)−

dT̃

dt
(·, t),1]0,l[

〉
=
〈
dT̃

dt
(·, t), (T̃ (·, t)− Ta)−

〉
, ∀′t ∈]0, tf [.

∀′t ∈]0, tf [: (T̃ (·, t)−Ta)− ∈ H1(]0, l[) and vanishes at the point x = 0 of the interval [0, l]. Thus
by the definition (3.10) of what is a weak solution of the initial boundary value problem (3.9):
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∀′t ∈]0, tf [:
dϕ̃
dt (t) = −cpmg

〈
(T̃ (·, t)− Ta)− dT̃dt (·, t),1]0,l[

〉
[H1(]0,l[)]∗,H1(]0,l[)

=

−cpmg

〈
dT̃
dt (·, t), (T̃ (·, t)− Ta)−

〉
(H1

L)∗,H1
L

= −kh
l∫

0

∂T̃
∂x (x, t)21{T̃ (·,t)<Ta}(x)dx

−
l∫

0

ψ(T̃ (x, t))(T̃ (x, t)− Ta)−dx−
l∫

0

hT (x, t)(T̃ (x, t)− Ta)−dx+ hc·(
T̃ (l, t)− Ta

)
(T̃ (l, t)− Ta)− +

[
Θ(T̃ (l, t))−Θ(TS(t))

]
· (T̃ (l, t)− Ta)−.

(3.19)

In (3.19), we have used the fact that

∀′t ∈]0, tf [: ∂

∂x
(T̃ (·, t)− Ta)− = −∂T̃

∂x
(·, t)1{T̃ (·,t)<Ta}

by ([11], pp.50-54). Now let us look carefully at each term in the right-hand side of equality (3.19)
in order to see that dϕ̃

dt (t) is negative for almost every t ∈]0, tf [. The first term in the right-hand

side of equality (3.19) is obviously negative. By the explicit expression of
+1∫
−1

IkT (x, t, µ) dµ given

by formula (2.18) and the hypotheses T (·, ·) ≥ Ta a.e. on ]0, l[×]0, tf [, and TS(·) ≥ Ta a.e. on
]0, tf [, it follows by lemma 3.12 that

+1∫
−1

IkT (x, t, µ) dµ ≥ 2Bk
g (Ta), a.e. on ]0, l[×]0, tf [.

Thus hT (x, t) :=
k=M∑
k=1

2πκk
+1∫
−1

IkT (x, t, µ) dµ ≥
k=M∑
k=1

4πκkBk
g (Ta). But

−
l∫

0

ψ(T̃ (x, t))(T̃ (x, t)− Ta)−dx =
k=M∑
k=1

4πκk
l∫

0

Bk
g (T̃ (x, t))(T̃ (x, t)− Ta)−dx

≤
k=M∑
k=1

4πκk
l∫

0

Bk
g (Ta)(T̃ (x, t)− Ta)−dx ≤

l∫
0

hT (x, t)(T̃ (x, t)− Ta)−dx

because if (T̃ (x, t)− Ta)− 6= 0, then T̃ (x, t) < Ta which implies Bk
g (T̃ (x, t)) < Bk

g (Ta). Thus

−
l∫

0

ψ(T̃ (x, t))(T̃ (x, t)− Ta)−dx−
l∫

0

hT (x, t)(T̃ (x, t)− Ta)−dx ≤ 0. (3.20)

Obviously: hc
(
T̃ (l, t)− Ta

)
(T̃ (l, t)− Ta)− ≤ 0. Also[
Θ(T̃ (l, t))−Θ(TS(t))

]
· (T̃ (l, t)− Ta)−

is negative because if (T̃ (l, t)−Ta)− 6= 0, then T̃ (l, t) < Ta implies Θ(T̃ (l, t)) ≤ Θ(Ta) ≤ Θ(TS(t))
as TS(t) ≥ Ta by hypothesis, and thus Θ(T̃ (l, t))−Θ(TS(t)) ≤ 0. Thus

−
l∫

0

ψ(T̃ (x, t))(T̃ (x, t)− Ta)−dx−
l∫

0

hT (x, t)(T̃ (x, t)− Ta)−dx

+hc
(
T̃ (l, t)− Ta

)
(T̃ (l, t)− Ta)− +

[
Θ(T̃ (l, t))−Θ(TS(t))

]
· (T̃ (l, t)− Ta)−

(3.21)
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is negative. From equation (3.19) follows that dϕ̃
dt (t) ≤ 0, ∀′t ∈]0, tf [. ϕ̃ being an absolutely

continuous and positive function, null at t = 0 due to our hypothesis T0(·) ≥ Ta on the initial
condition, it follows that ϕ̃(t) = 0, ∀t ∈ [0, tf [. Thus ∀t ∈ [0, tf ]: T̃ (x, t) ≥ Ta, ∀x ∈ [0, l] as
T̃ ∈ C([0, l]× [0, tf ]). �

Now, we want also to prove under certain hypotheses that the solution T̃ of the initial bound-
ary value problem (3.9) is upper bounded. The proof is more or less similar to the proof of the
lower bound (3.13). Still, we use Stampacchia’s truncation method.

Proposition 3.14. We keep the hypotheses of theorem 3.9. Moreover, we assume that T̄ denotes
any positive real number such that T̄ ≥ Ta > 0, T̄ ≥ TS(t) > 0, ∀′t ∈]0, tf [ and T̄ ≥ T0(x) > 0,
∀x ∈ [0, l]. We suppose that T (·, ·) ≤ T̄ a.e. on ]0, l[×]0, tf [. Then the weak solution T̃ of the
initial boundary value problem (3.9) satisfies the upper bound T̃ (·, ·) ≤ T̄ on ]0, l[×]0, tf [.

Proof. The proof is very similar to the previous one. We introduce this time the function

Ȟ : R→ R : y 7→
{

y2

2 if y > 0,
0 if y ≤ 0,

and we set

ϕ̃(t) := cpmg

l∫
0

Ȟ(T̃ (x, t)− T̄ )dx = cpmg

〈
Ȟ(T̃ (·, t)− T̄ ),1]0,l[

〉
, ∀t ∈ [0, tf ].

As in the proof of the previous proposition, we prove that dϕ̃
dt (t) ≤ 0, ∀′t ∈]0, tf [. ϕ̃ being an

absolutely continuous and positive function null for t = 0, it follows that ϕ̃(t) = 0, ∀t ∈ [0, tf ]
i.e. that ∀t ∈ [0, tf ]: T̃ (x, t) ≤ T̄ , ∀x ∈ [0, l] as T̃ ∈ C([0, l]× [0, tf ]). �

In the following, we will assume at almost every time t ∈]0, tf [, that the absolute temperature
TS(t) of the black source S satisfies

Ta ≤ TS(t) ≤ T̄ . (3.22)
To prove that the initial boundary value problem (3.3) possesses a solution, we will apply
Schauder’s fixed point theorem to prove that the initial boundary value problem (3.9) possesses
a fixed point. We will apply the version of Schauder’s fixed point theorem stated in A.Friedman’s
book ([8], p.171):

Theorem 3.15. Let S be a closed convex set in a Banach space Y and let Φ be a continuous
operator from S into Y such that Φ(S) is contained in S and such that the closure of Φ(S) is
compact. Then Φ has a fixed point.

This version of Schauder’s fixed point theorem follows from the classical statement of Schauder’s
theorem ([7], p.502) applied to the closed convex hull of Φ(S): co(Φ(S)) = co(Φ(S)) which is
compact by Mazur’s theorem, and to Φ|co(Φ(S)).
As a Banach space Y , we choose L2(0, tf ;C([0, l])). We consider two positive real numbers
0 < Ta < T̄ such that

∀x ∈ [0, l] : Ta ≤ T0(x) ≤ T̄ and ∀′t ∈]0, tf [: Ta ≤ TS(t) ≤ T̄ .
Now, for S we consider:

S := {T ∈ L2(0, tf ;C([0, l])); ∀′t ∈]0, tf [: Ta ≤ T (., t) ≤ T̄}, (3.23)

and for Φ, the mapping which sends T ∈ S onto T̃ solution of the initial boundary value problem
(3.9) which still belongs to S due to proposition 3.13 and proposition 3.14. That S is closed,
results from the fact every convergent sequence in the space L2(0, tf ;C([0, l])) possesses an
almost everywhere convergent subsequence (see e.g. [18], p.192 for L2 spaces of square integrable
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functions with values in a Banach space). Firstly, we are going to prove that the mapping Φ is
continuous in several steps. To shorten the notations, we set Q :=]0, l[×]0, tf [.
Proposition 3.16. The mapping from L2(Q) into L2(Q) which associates T to Bk

g (T ) is lips-
chitzian and thus a fortiori continuous.
Proof. This is an immediate consequence of Corollary 3.7. �

Similarly:
Proposition 3.17. The mapping from L2(]0, tf [) into L2(]0, tf [) which associates ξ ∈ L2(]0, tf [)
to

]0, tf [→ R : t 7→
+∞∫
λ0

ελB(ξ(t), λ) dλ

is lipschitzian and thus a fortiori continuous.
Proof. This follows from inequality (3.13). �

We want now to deduce using in particular Proposition 3.16, that the mapping L2(Q) →
L2(Q) : T 7→ hT is lipschitzian and thus a fortiori continuous. This amounts to prove by (3.1),
that for every k ∈ {1, . . . ,M}, that the mapping

L2(Q)→ L2(Q) : T 7→
+1∫
−1

IkT (·, ·, µ) dµ

is lipschitzian. In view of the explicit formula (2.18) for
+1∫
−1

IkT (·, ·, µ) dµ, we are reduced to the

following lemmas. The first one is a variant of a classical result about integral operator of the
Hilbert-Schmidt type ([29], pp.197-198):
Lemma 3.18. Let (x, x′) 7→ K(x, x′) be an almost everywhere defined real-valued measurable

function on the square ]0, l[2such that
l∫

0

l∫
0

K(x, x′)2dx⊗ dx′ < +∞. For every ϕ ∈ L2(Q), let us

set:

Kϕ(x, t) =
l∫

0

K(x, x′)ϕ(x′, t)dx′, ∀′(x, t) ∈ Q. (3.24)

Then, K so defined, is a linear continuous operator in L2(Q) whose operator norm satisfies the
inequality:

‖K‖ ≤ ‖K‖L2(]0,l[2) =

 l∫
0

l∫
0

K(x, x′)2dx⊗ dx′


1
2

. (3.25)

Proof. By Cauchy-Schwarz inequality and Fubini theorem:
tf∫

0

l∫
0

(Kϕ(x, t))2dx⊗ dt =
tf∫

0

l∫
0

(
l∫

0

K(x, x′)ϕ(x′, t)dx′)2dx⊗ dt

≤
tf∫

0

l∫
0

 l∫
0

K(x, x′)2dx′ ·
l∫

0

ϕ(x′, t)2dx′

 dx⊗ dt
≤

l∫
0

l∫
0

K(x, x′)2dx⊗ dx′
tf∫

0

l∫
0

ϕ(x′, t)2dx′ ⊗ dt = ‖K‖2L2(]0,l[2) ‖ϕ‖
2
L2(Q) .
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Thus ‖Kϕ‖L2(Q) ≤ ‖K‖L2(]0,l[2) ‖ϕ‖L2(Q), ∀ϕ ∈ L2(Q), so that:

‖K‖ := sup
‖ϕ‖L2(Q)≤1

‖Kϕ‖L2(Q) ≤ ‖K‖L2(]0,l[2) .

�

Corollary 3.19. Let K(x, x′) := Gk(x, x′) := κkE1(κk |x− x′|) (cfr.(2.11)). For every ϕ ∈
L2(Q), let us set:

Gkϕ(x, t) =
l∫

0

Gk(x, x′)ϕ(x′, t)dx′, ∀′(x, t) ∈ Q. (3.26)

Then, Gk so defined, is a linear continuous operator in L2(Q) whose operator norm satisfies the
inequality:

‖Gk‖ ≤
√

2 κk

l2 +
l∫

0

l∫
0

ln(κk
∣∣x− x′∣∣)2dx⊗ dx′


1
2

. (3.27)

Proof. In view of lemma 3.18, it suffices to verify that
l∫

0

l∫
0

Gk(x, x′)2dx⊗ dx′ < +∞ i.e. that

l∫
0

l∫
0

E1(κk
∣∣x− x′∣∣)2dx⊗ dx′ < +∞. (3.28)

But E1(y)2 ≤ 2 + 2 (ln y)2 and thus E1(κk |x− x′|)2 ≤ 2
[
1 + ln(κk |x− x′|)2], so that (3.28) is

trivial. (3.27) follows from (3.25) and the bound Gk(x, x′)2 ≤ 2κ2
k

[
1 + ln(κk |x− x′|)2]. �

Corollary 3.20. Let K(x, x′) := Φ1(κk(2l − x− x′)). For every ϕ ∈ L2(Q), let us set:

Ukϕ(x, t) =
l∫

0

Φ1(κk(2l − x− x′)) ϕ(x′, t)dx′, ∀′(x, t) ∈ Q. (3.29)

Then, Uk so defined, is a linear continuous operator in L2(Q) whose operator norm

‖Uk‖ ≤
√

2

l2 +
l∫

0

l∫
0

[
ln(κk(x+ x′))

]2
dx⊗ dx′


1
2

. (3.30)

Proof. In view of lemma 3.18, it suffices to verify that
l∫

0

l∫
0

K(x, x′)2dx⊗ dx′ < +∞ i.e. that

l∫
0

l∫
0

Φ1(κk(2l − x− x′))2dx⊗ dx′ < +∞.

But by the definition of Φ1 (see 2.16) and due to 0 ≤ ρg(·) ≤ 1: Φ1(κk(2l−x−x′)) ≤ E1(κk(2l−
x− x′)). Thus

l∫
0

l∫
0

Φ1(κk(2l − x− x′))2dx⊗ dx′ ≤
l∫

0

l∫
0

[E1(κk((l − x) + (l − x′)))]2 dx⊗ dx′

=
l∫

0

l∫
0

[E1(κk (y + y′))]2 dy ⊗ dy′ ≤ 2l2 + 2
l∫

0

l∫
0

[ln(κk (y + y′))]2 dy ⊗ dy′ < +∞.

�
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Proposition 3.21. The nonlinear mapping L2(Q) → L2(Q) : T 7→ hT is lipschitzian and thus
a fortiori continuous.

Proof. This follows from formulas (2.18), (3.1), Proposition 3.16, Corollary 3.19 and Corollary
3.20. �

We are now in a position to prove the continuity of the mapping Φ:

Theorem 3.22. The mapping Φ which sends T ∈ S defined by (3.23) onto T̃ ∈ S, the unique
weak solution of the initial boundary value problem (3.9), i.e. the unique T̃ ∈ L2(0, tf ;H1(]0, l[))
such that dT̃

dt ∈ L
2(0, tf ;

[
H1
L(]0, l[)

]∗) verifying equation (3.10), is continuous.

Proof. So, let us consider a sequence of functions (Tn)n∈N belonging to S converging to some
T ∈ S in the sense of the norm of L2(0, tf ;C([0, l]). Let T̃n := Φ(Tn), ∀n ∈ N and (T̃n)n∈N
the corresponding sequence. By the estimate (3.14) of Theorem 3.9, the sequence (T̃n)n∈N is
bounded in L2(0, tf ;H1(]0, l[)) and (dT̃ndt )n∈N is bounded in L2(0, tf ;H1

L(]0, l[)∗). Thus some
subsequence (T̃nk)k∈N is weakly convergent in L2(0, tf ;H1(]0, l[)) and (dT̃nkdt )k∈N is weakly con-
vergent in L2(0, tf ;H1

L(]0, l[)∗). Let us call T̃ the weak-limit of the subsequence (T̃nk)k∈N in the
space L2(0, tf ;H1(]0, l[)). Using the definition of the weak time derivative ([9], p.39-40), it is
easy to see that the weak-limit of the subsequence (dT̃nkdt )k∈N in the space L2(0, tf ;H1(]0, l[)∗)
is dT̃

dt . The injection from the space H1(]0, l[) ↪→ C([0, l]) being compact [2] and C([0, l]) ↪→
H1
L(]0, l[)∗, by the compactness Theorem 5.1 p.58 of [16], the continuous embedding from the

space {Ť ∈ L2(0, tf ;H1(]0, l[)); dŤdt ∈ L
2(0, tf ;H1(]0, l[)∗)} endowed with its natural norm into

L2(0, tf ;C([0, l])), is also compact. Thus the subsequence (T̃nk)k∈N is also strongly convergent
in the space L2(0, tf ;C([0, l])) ([24], p. 199) to T̃ . We have to prove that T̃ = Φ(T ). For every
k ∈ N: T̃nk(x = 0, t) = Ta, ∀′t ∈]0, tf [. Thus we have also T̃ (x = 0, t) = Ta, ∀′t ∈]0, tf [ by the
strong convergence of (T̃nk)k∈N to T̃ in L2(0, tf ;C([0, l])). Also by Theorem 1.32 p.40 of [9], we
have a continuous imbedding from the space

{Ť ∈ L2(0, tf ;H1
L(]0, l[)); dŤ

dt
∈ L2(0, tf ;H1

L(]0, l[)∗)} into C([0, tf ];L2(]0, l[)).

Thus the subsequence (T̃nk −Ta)k∈N and consequently (T̃nk)k∈N is also weakly convergent in the
space C([0, tf ]; L2(]0, l[)). For every k ∈ N: T̃nk(·, t = 0) = T0(·). Let ψ be an arbitrary function
in L2(]0, l[). The mapping

ϕ∗ : C([0, tf ];L2(]0, l[))→ R : v 7→
l∫

0

v(x, t = 0)ψ(x)dx

is a continuous linear form on the space C([0, tf ];L2(]0, l[)). Thus
〈
ϕ∗, T̃nk

〉
=

l∫
0

T0(x)ψ(x)dx→

l∫
0

T̃ (x, 0)ψ(x)dx, ∀ψ ∈ L2(]0, l[). Thus T̃ (·, 0) = T0(·) in L2(]0, l[). Therefore, we know already

that T̃ verifies the adequate initial condition and the adequate boundary condition on the face
{xg = 0} of the glass plate. Now, taking an arbitrary fonction ξ (·) ∈ L2(]0, tf [), multiplying
both sides of equation (3.10) by the function ξ and integrating with respect to time from 0 to
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tf , we obtain:

cpmg

tf∫
0

〈
∂T̃nk
∂t (·, t), ϕ

〉
H1
L(]0,l[)∗,H1

L(]0,l[)
ξ (t) dt =

−kh

tf∫
0

l∫
0

∂T̃nk
∂x (x, t)ϕ′(x)ξ (t) dx⊗ dt+

tf∫
0

l∫
0

ψ(T̃nk(x, t))ϕ(x)ξ (t) dx⊗ dt

−
tf∫

0

Θ(T̃nk(l, t))ξ (t) dt · ϕ(l) +
tf∫

0

l∫
0

hTnk (x, t)ϕ(x)ξ (t) dx⊗ dt

+
tf∫

0

Θ(TS(t))ξ (t) dt · ϕ(l) +
tf∫

0

hc
(
Ta − T̃nk(l, t)

)
ξ (t) dt · ϕ(l),

∀ϕ ∈ H1(]0, l[) such that ϕ(0) = 0, ∀ξ ∈ L2(]0, tf [).

(3.31)

We have seen a few lines above that the subsequence (T̃nk)k∈N is also strongly convergent to
T̃ in the space L2(0, tf ;C([0, l])), thus a fortiori in the space L2(Q) (Q denotes ]0, l[×]0, tf [).
Thus by (3.1) and proposition 3.16, ψ ◦ T̃nk converges to ψ ◦ T̃ in L2(Q). T̃nk(l, ·) → T̃ (l, ·) in
L2(]0, tf [) and thus by proposition 3.17:

Θ(T̃nk(l, ·))→ Θ(T̃ (l, ·)) in L2(]0, tf [).

Using Proposition 3.21 and all the previous convergence properties to pass to the limit in (3.31)
as k → +∞, we obtain:

cpmg

tf∫
0

〈
∂T̃
∂t (·, t), ϕ

〉
H1(]0,l[)∗,H1(]0,l[)

ξ (t) dt =

−kh

tf∫
0

l∫
0

∂T̃
∂x (x, t)ϕ′(x)ξ (t) dx⊗ dt+

tf∫
0

l∫
0

ψ(T̃ (x, t))ϕ(x)ξ (t) dx⊗ dt

−
tf∫

0

Θ(T̃ (l, t))ξ (t) dt · ϕ(l) +
tf∫

0

l∫
0

hT (x, t)ϕ(x)ξ (t) dx⊗ dt

+
tf∫

0

Θ(TS(t))ξ (t) dt · ϕ(l) +
tf∫

0

hc
(
Ta − T̃ (l, t)

)
ξ (t) dt · ϕ(l),

∀ϕ ∈ H1(]0, l[) such that ϕ(0) = 0, ∀ξ ∈ L2(]0, tf [).

(3.32)

(3.32) being true ∀ξ ∈ L2(]0, tf [), we have that T̃ ∈ {Ť ∈ L2(0, tf ;H1(]0, l[)); dŤdt ∈ L
2(0, tf ;H1

L(]0, l[)∗)}
verifies ∀′t ∈]0, tf [:

cpmg

〈
∂T̃
∂t (·, t), ϕ

〉
H1(]0,l[)∗,H1(]0,l[)

= −kh
l∫

0

∂T̃
∂x (x, t)ϕ′(x)dx

+
l∫

0

ψ(T̃ (x, t))ϕ(x)dx+
l∫

0

hT (x, t)ϕ(x)dx

+
{
hc(Ta − T̃ (l, t)) +

[
Θ(TS(t))−Θ(T̃ (l, t))

]}
ϕ(l),

∀ϕ ∈ H1(]0, l[) such that ϕ(0) = 0.
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In conclusion, T̃ ∈ {Ť ∈ L2(0, tf ;H1(]0, l[)); dŤdt ∈ L
2(0, tf ;H1

L(]0, l[)∗)} verifies (3.10). By propo-
sition 3.13 and proposition 3.14, T̃ ∈ S. In conclusion T̃ = Φ(T ). We have seen that the sub-
sequence (T̃nk)k∈N is strongly convergent to Φ(T ) in the space L2(0, tf ;C([0, l])). A standard
argument of general topology allows now to conclude that the sequence (T̃n := Φ(Tn))n∈N itself
is strongly convergent to Φ(T ) in the space L2(0, tf ;C([0, l])). Thus Φ is continuous from S into
S. �

It remains to prove that Φ(S) is relatively compact in the space L2(0, tf ; C([0, l])) to be
allowed to apply Schauder’s Theorem 3.15.

Proposition 3.23. Φ(S) is relatively compact in the space L2(0, tf ;C([0, l])).

Proof. ‖T‖L2(Q) for T running over the closed convex subset S of the space L2(0, tf ;C([0, l])) is
bounded by a constant depending only on the upper bound T̄ ∈ R∗+ appearing in the definition
of S. Thus by the estimate (3.14) of Theorem 3.9, the set {Φ(T );T ∈ S} is bounded in the space

{Ť ∈ L2(0, tf ;H1(]0, l[)); dŤ
dt
∈ L2(0, tf ;H1

L(]0, l[)∗)}

endowed with its natural norm. But, by the compactness Theorem 5.1 p.58 of [16], the continuous
embedding from the space {Ť ∈ L2(0, tf ;H1(]0, l[)); dŤdt ∈ L2(0, tf ;H1

L(]0, l[)∗)} endowed with
its natural norm, into L2(0, tf ;C([0, l])) is compact. Thus, the set {Φ(T );T ∈ S} is relatively
compact in the space L2(0, tf ;C([0, l])). �

We are now in a position to apply Schauder theorem 3.15 to the mapping Φ : S → S : T 7→ T̃ .
This mapping has thus at least one fixed point, which gives us the existence of a solution to the
initial boundary value problem (3.3). This proves also that the solution of the initial boundary
value problem (3.3) which we know to be unique by Proposition 3.8 is lower bounded by Ta and
upper bounded by T̄ . From these bounds on the temperature follows by Lemma 3.12:

2Bk
g (Ta) ≤

+1∫
−1

IkT (x, t, µ) dµ ≤ 2Bk
g (T̄ ), ∀k = 1, . . . ,M.

Remark 3.24. In the preceding proof of our existence result, we have supposed that T0(·) > Ta
and that TS(·) > Ta. Although, these assumptions are natural in our physical context, these
assumptions are not necessary. It suffices to replace in the definition of our closed convex subset
S of L2(0, tf ;C([0, l])) (cf. 3.23), Ta by Tinf ∈ [0, Ta] such that T0(·) > Tinf and TS(·) > Tinf a. e.
on ]0, tf [. In particular, Proposition 3.13 remains true with Ta replaced by Tinf in its statement.

4. Numerical results

In this section, we present some numerical results made to test the heating of a glass plate, with
different constant temperatures of the black radiative source i.e. the black steel-metal S situated
above it. The aim of these tests is to see for what temperature of the black radiative source, one
is able to attain a temperature in the glass plate suitable for manufacturing applications such
as glass forming. In our case, we consider that the thickness of our glass plate is equal to 6 mm.
We have choosen four different values for the temperature TS of the black radiative source S:
1500◦C, 1750◦C, 2000◦C and 2250◦C, and we have ploted the evolution of the temperature on
the upper face of the glass plate and in mid thickness with respect to time. The results are shown
in the figure below: The graphs of the temperature on the upper face of the glass plate (resp.
at half thickness) have the same behaviour and show that stationary temperatures are attained
very quickly in the glass plate, let us say approximately after one minute. These stationary
temperatures e.g. on the upper face of the glass plate, are approximatively respectively 350◦C,
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525◦C, 675◦C, 825◦C showing a nonlinear dependence with respect to the temperature TS of
the black radiative source.

Figure 4.1. Radiative heating of the glass plate: Evolution of the temperature
on the surface and on the middle of the glass plate.

To our knowledge, glass forming is usually made at a temperature between 675 and 725
degree Celsius in the glass plate. As one can see from the figure below, to attain this range of
temperature in the glass plate, our numerical results suggest that the temperature of the black
radiative source should be bigger than 2000 degree Celsius. To conclude, let us pay attention to
the fact that in our one-dimensional problem, the distance between the upper face of the glass
plate and the radiating black steel-metal S above it, is irrelevant, owing to the fact that a point
on the upper face of the glass plate always views the radiating black steel-metal above it on a
solid angle equal to 2π, whatever is that distance. This is due to the infinite dimensions in the
horizontal directions of the radiating black steel-metal.

27



Luc Paquet, Raouf El Cheikh, et al.

Appendix

Lemma 4.1. If u, v ∈ L2(]0, l[), then ‖u− − v−‖L2(]0,l[) ≤ ‖u− v‖L2(]0,l[).

Proof. ∀x ∈]0, l[: u−(x) = |u(x)|−u(x)
2 and v−(x) = |v(x)|−v(x)

2 . Thus:

|u−(x)− v−(x)| =
∣∣∣ |u(x)|−u(x)−|v(x)|+v(x)

2

∣∣∣
≤ 1

2 | |u(x)| − |v(x)| |+ 1
2 |v(x)− u(x)| ≤ |u(x)− v(x)| , ∀x ∈]0, l[.

Therefore:

‖u− − v−‖L2(]0,l[) =

√√√√√ l∫
0

|u−(x)− v−(x)|2 dx

≤

√√√√√ l∫
0

|u(x)− v(x)|2 dx = ‖u− v‖L2(]0,l[) .

�

The following result can be deduced from proposition 4 of [1]; we give only here a direct proof
based on Vitali’s theorem and lemma A.4 p.53 of [11].

Proposition 4.2. The nonlinear mapping H1(]0, l[) → H1(]0, l[) : ψ 7→ ψ− is continuous.
Similarly, the nonlinear mapping H1(]0, l[)→ H1(]0, l[) : ψ 7→ ψ+ is also continuous.

Proof. Let ψ ∈ H1(]0, l[) and (ψn)n∈N ⊂ H1(]0, l[) a sequence tending to ψ in the norm of
H1(]0, l[). A fortiori, ψn → ψ in L2(]0, l[). Consequently, by the preceding lemma: ψ−n → ψ− in
L2(]0, l[) (to alleviate the notation, we have denoted the negative part of ψn, ψ−n ). To conclude
that ψ−n → ψ− in H1(]0, l[), it remains to prove that dψ

−
n

dx →
dψ−
dx in L2(]0, l[). By ([11], pp.50-54):

dψ−n
dx

= −dψn
dx

1{ψn<0} and
dψ−
dx

= −dψ
dx

1{ψ<0}. (4.1)

As H1(]0, l[) ↪→ C([0, l]), we have also that ψn → ψ in C([0, l]). The sequence
(
dψn
dx

)
n∈N

tends

to dψ
dx in L2(]0, l[), and therefore there exists a subsequence

(
dψnk
dx

)
k∈N

which converges a.e. on

]0, l[ to dψ
dx . Let us show that the sequence

(
dψ−nk
dx

)
k∈N

converges a.e. to
dψ−
dx .

First case: x ∈ [0, l] and ψ(x) > 0. For almost every such x, dψnkdx (x)→ dψ
dx (x) and let us consider

such an x. We have also that ψnk(x)→ ψ(x) as k → +∞, and therefore for k sufficiently large, we

will have also ψnk(x) > 0. Therefore by formula (4.1), we have evidently that dψ
−
nk
dx (x)→

dψ−
dx (x).

Second case: x ∈ [0, l] such that ψ(x) < 0. For almost every such x, dψnkdx (x)→ dψ
dx (x) and let us

consider such an x. We have also that ψnk(x)→ ψ(x) as k → +∞, and therefore for k sufficiently

large, we will have also ψnk(x) < 0. Therefore by formula (4.1), we have that dψ−nk
dx (x)→

dψ−
dx (x).

Third case: x ∈ [0, l] such that ψ(x) = 0. Fortunately as ψ ∈ H1(]0, l[) by lemma A.4 p.53 of
[11], for almost such x, dψ

dx (x) = 0. Thus let us consider x ∈ [0, l] such that ψ(x) = 0 and
dψ
dx (x) = 0. For almost every such x, dψnk

dx (x) → dψ
dx (x). By formula (4.1):

dψ−
dx (x) = 0 and∣∣∣∣dψ−nkdx (x)

∣∣∣∣ ≤ ∣∣∣dψnkdx (x)
∣∣∣→ 0. Thus still dψ

−
nk
dx (x)→

dψ−
dx (x).

We have thus proved that the sequence
(
dψ−nk
dx

)
k∈N

converges a.e. to
dψ−
dx . To prove that the

sequence
(
dψ−nk
dx

)
k∈N

converges also to
dψ−
dx in L2(]0, l[), we apply Vitali’s theorem ([21], p.16). As
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dψnk
dx →

dψ
dx a.e. and in L2(]0, l[), by the necessary part of Vitali’s theorem

∫
A

∣∣∣dψnkdx (x)
∣∣∣2 dx→ 0

uniformly in k asmeas(A)→ 0, A arbitrary measurable subset of [0, l]. But
∣∣∣∣dψ−nkdx (x)

∣∣∣∣ ≤ ∣∣∣dψnkdx (x)
∣∣∣

and thus also
∫
A

∣∣∣∣dψ−nkdx (x)
∣∣∣∣2 dx → 0 uniformly in k as meas(A) → 0, A arbitrary measurable

subset of [0, l]. As we have shown that
(
dψ−nk
dx

)
k∈N

converges a.e. to
dψ−
dx , by the sufficient part of

Vitali’s theorem,
(
dψ−nk
dx

)
k∈N

converges also to
dψ−
dx in L2(]0, l[). A standard argument of general

topology allows now to conclude that the sequence
(
dψ−n
dx

)
n∈N

itself is strongly convergent to
dψ−
dx in the space L2(]0, l[). In conclusion, ψ−n → ψ− in H1(]0, l[). �

Proposition 4.3. Let (un)n∈N be a sequence in L2(0, tf ;H1(]0, l[)) converging to u ∈ L2(0, tf ;H1(]0, l[)).
Let us set

u− :]0, tf [→ H1(]0, l[) : t 7→ (u(t))−
and

u+ :]0, tf [→ H1(]0, l[) : t 7→ (u(t))+.
Let us define similarly u−n and u+

n , ∀n ∈ N. Then the sequence (u−n )n∈N (resp.
(
u+
n

)
n∈N) converges

to u− (resp. u+) in L2(0, tf ;H1(]0, l[)).

Proof. We give the proof for (u−n )n∈N, the proof for the sequence
(
u+
n

)
n∈N being similar. By

the necessary part of Vitali’s theorem ([21], p.16)
∫
A

‖un(t)‖2H1(]0,l[) dt → 0 uniformly in n ∈ N

as meas(A) → 0, A arbitrary measurable subset of ]0, tf [. Also there exists a subsequence
(unk)k∈N which converges a.e. on ]0, tf [ to u, as vectorvalued functions with values in H1(]0, l[).
By the previous proposition, the subsequence

(
u−nk

)
k∈N

converges to u− a.e. on ]0, tf [ .As∥∥∥u−nk(t)
∥∥∥
H1(]0,l[)

≤ ‖unk(t)‖H1(]0,l[), it follows that a fortiori
∫
A

∥∥∥u−nk(t)
∥∥∥2

H1(]0,l[)
dt → 0 uniformly

in k as meas(A) → 0, A arbitrary measurable subset of ]0, tf [. Applying the sufficient part of
Vitali’s theorem ([21], p.16) to the subsequence

(
u−nk

)
k∈N

, implies that
(
u−nk

)
k∈N

converges to
u− in L2(0, tf ;H1(]0, l[)). A standard argument of general topology shows that the sequence
(u−n )n∈N itself, converges to u− in L2(0, tf ;H1(]0, l[)). �

Remark 4.4. Propositions 4.2 and 4.3 remain valid if H1(]0, l[) is replaced by H1
L(]0, l[) in their

respective statements.
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