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Abstract

This contribution is devoted to a new model of HIV multiplication motivated by the patent of one of the
authors. We take into account the antigenic diversity through what we define “antigenicity”, whether of the
virus or of the adapted lymphocytes. We model the interaction of the immune system and the viral strains by
two processes. On the one hand, the presence of a given viral quasi-species generates antigenically adapted
lymphocytes. On the other hand, the lymphocytes kill only viruses for which they have been designed. We
consider also the mutation and multiplication of the virus. An original infection term is derived.

So as to compare our system of differential equations with well-known models, we study some of them
and compare their predictions to ours in the reduced case of only one antigenicity. In this particular case,
our model does not yield any major qualitative difference. We prove mathematically that, in this case, our
model is biologically consistent (positive fields) and has a unique continuous solution for long time evolution.
In conclusion, this model improves the ability to simulate more advanced phases of the disease.

1. Introduction

Virus multiplication is at the basis of viral infection. Although the viral replication cycle involved
makes heavy use of the infected cell’s resources [18, 43], the enzyme(s) in charge of viral genome
replication is(are) frequently encoded in the latter [7]. Compared to cellular polymerases, viral
polymerases are usually more error-prone [24]. It follows that the viral mutation rate, defined as
the average number of base changes at a given position of the genome per replication cycle, may
be large compared to that observed in our own cells, which is about one in a billion [35]. For
certain viruses, in particular retroviruses like HIV-1, it could be up to 1,000,000 times greater.
By the end of 2007, the Los Alamos HIV data base listed over 230,000 different viral sequences
(see www.hiv.lanl.gov). Given the small genome size of these viruses, chances are then that
each member of a viral progeny carries mutations. A single point mutation may be enough to
simultaneously affect two genes encoded in different, but overlapping reading frames, whilst
silent mutations, which do not change amino acid coding, may nevertheless have important
biological consequences [26].

Keywords: HIV modeling, antigenic variation, mutation, immune response.
Math. classification: 34-99, 65-05, 65Z05, 92B99, 92C50.
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A virus is mainly characterized by its ability to infect target cells (infectivity) and by its
antigenic signature (antigenicity), defined as both the capacity to induce an immune response
and also its strength and type. Immunogenicity is the ability of antigens to elicit a response from
cells of the immune system. Mutations during virus replication may therefore release infective or
non-infective viruses, of the same or of different antigenicity. For HIV-1, the ratio of infectious
to non-infectious particles is estimated to range from 1:1 to 1:60,000, depending on the type of
cell infected and the viral strain [40]. Whether the virus is infective or not, over 800 mutations
affecting HIV-1 antigenicity were identified in its envelop gene (env) alone [25].

By encoding its own replication enzymes, the virus has control over its replication fidelity
and thereby challenges heavily the immune system, due to the huge burden imposed by the
number of infective virions produced and their antigenic diversity. This burden is even worse
when the virus targets part of the immune system (CD4 displaying cells), as is the case for
HIV-1. In addition, the immune cell proliferation induced by the viral attack will provide HIV-1
virions with new targets, engaging the cell-virus dynamics in an exponentially soaring extension
regime.

Kinetic modeling is therefore of high interest for understanding the course of infection. It is a
prerequisite for designing and optimizing treatment strategies based on antiviral drugs. A large
number of deterministic and stochastic inter- and intra-cellular models of HIV dynamics have
already been proposed ([16, 30, 31, 32, 33, 39, 41] among others), but none enable the prediction
of the course of the disease in all its phases. For instance, even if, following antiviral treatment,
the plasma load of the virus becomes undetectable, unscheduled bursts occur, probably fed by
viral sanctuaries disseminated in various tissues and organs (lymph or neuronal tissues, gastro-
intestinal or uro-genital tracts etc. See [36]). One may assume that, despite tissue-specific kinetic
diversities, the course of infection in all sanctuaries (including plasma) obeys a common, complex
host-predator relation, differing only by sanctuary-specific parameters. The course of the global
infection would then be the result of all local processes. This result would however not be a
simple addition or superposition, as it is likely that each local process would provide viruses
having locally-specified antigenicities and infectivities which may challenge the immune cells in
the same or other sanctuaries.

What is the infection phenomenology ? As far as our study is concerned, the process involves
four major participants or “fields”: uninfected T lymphocytes (denoted T ), infected ones (U),
infectious viruses (V ) and non-infectious viruses (W ). For each participant, a characteristic
antigenicity is recognized by a lymphocyte, or displayed by a virus. In the following, we call
antigenicity the variable associated to this biomolecular characteristic and denote it by the index
j. Modeling this antigenicity can also be found in [1, 17, 29, 30, 31]. Such models are microscopic
since they take into account a microscopic quantity that may not be easily measured biologicaly.
Macroscopic models only use the sum of all the Tj and Vj . This modeling is necessary, since
viruses devoid of antigenic diversity would be eliminated by the immune system. Actually, viral
clearance is not observed and furthermore, it is the immune system that will ultimately collapse.
So as to quantify this biological reality, we extend the classical biological definition by assuming
we characterize the biomolecular viruses. Mainly our antigenicity is not linked to any virulence
since we consider only infectious or non-infectious viruses and no intermediate state.

The evolution with time of Tj depends on three phenomena: regression of the Tj population
due to the viral attack (whatever the antigenic pedigree of the infecting virus), which trans-
forms Tj ’s into Uj ’s; the stimulation of the immune system by both infectious and noninfectious
viruses of antigenicity j; the natural fate of Tj independently of the viral presence, i.e. sponta-
neous generation and death of Tj species. The Tj population may include cross-reacting species,
which are active also against a (limited) number of targets with different antigenicities. The
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lymphocytes Uj are derived only from the Tj population following viral attack. It is assumed
also, that the switch from the Tj to the Uj state occurs only upon viral infection. Like the Tj ,
the Uj are subject to natural death. Viruses Vj and Wj are generated through infection of any
susceptible T cell, whatever its antigenicity. The parent virus of Vj and Wj may be a Vj (no
viral antigenicity modification) or a Vk of different antigenicity (viral antigenicity mutation).
Viruses Vj and Wj will be the target of lymphocytes Tj exclusively. Both viral species have a
natural death rate. Viruses Vj and Wj differ by mutations in genes involved in infectivity, but
not affecting antigenicity j.

This modelling assumes that viral genome parts responsible for infectivity may differ from
those responsible for antigenicity. Since the viral strategy is to escape the immune response
whilst minimizing loss of infectivity, excess mutations in the antigenicity-specifying part of the
viral genome would be more favorable. The immune system senses mainly the viral surface,
hence mutations in the viral envelop genes would be most beneficial, but they should not, or
marginally only, affect viral genome parts responsible for infectivity. HIV-1 handles in part
this dilemma by introducing mutational hot-spots in its genome ([23] and the website http:
//www.hiv.lanl.gov), mainly in the envelop genes, where the mutation rate is much higher
due to local sequence and structural particularities of the genome [4, 25].

What is the therapeutic motivation ?
Approved drugs for AIDS treatment are of three kinds mainly. Two of them inhibit reverse

transcription (using nucleotide and non-nucleotide analogs) and the third inhibits a viral enzyme
in charge of cleaving reverse transcriptase from a precursor protein. Because of its high mutation
rate, HIV rapidly develops resistance to any one of these drugs taken individually. Resistance
can be considerably delayed by using various combinations of these drugs (multitherapies). So
far however, no combination has been found that could clear the virus. Therefore therapies are
life-long and unfortunately have considerable side-effects.

Obviously, the high mutation rate of reverse transcriptase is central to the successful viral
strategy. It allows the virus to escape the circulating immune cells (antigenic mutations) and to
develop drug resistance, although over 90% of its progeny lacks infectivity and will therefore be
rapidly cleared. The natural viral mutation rate is at the limit of the “error threshold” [5], as
a slight increase would produce 100% non-infectious viruses. Conversely, reducing the mutation
rate would reduce the antigenic diversity and allow the immune system to eliminate the stabilized
viral strains, and drug resistance would vanish.

New AIDS therapy at stake?
A promising therapeutic approach would then be to take control of the viral mutation rate.

This was shown to be feasible in [13] with a CNRS-filed patent based on this work USPTO
6,727,059, but also in [14, 20, 27], by supplying the reverse transcriptase with nucleotide analogs.
Some of them relax while others reinforce the replication fidelity, without blocking reverse tran-
scription. For a review see [2].

Both therapeutic strategies would give rise to specific viral dynamics. These need to be
understood and assessed in detail. The medical decision to choose one particular strategy and
setting up the adapted drug regimen for a patient, given his viral load and lymphocyte count
(dose and extent of treatment, time expected to reach viral clearance etc) needs careful analysis.
Simulation of viral dynamics with a drug regimen could help in reaching this decision. To this
end, the present work is to build a realistic mathematical model of viral dynamics.

In the following we review some well-known models by giving an analysis of the stationary
solutions (fixed points) and their stability in Section 2. In Section 3, we derive our new model
precisely and Section 4 is devoted to a full study of its mathematical properties in a reduced
case (only one antigenicity). We discuss this new model in Section 5 and conclude in Section 6.
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2. Some popular models

Throughout this section, we review some well-known models. Some of them take specific biolog-
ical reality into account. So as to come to a common description with our model presented later,
we reduced them in a preliminary step when needed. When used, the fields T,U, V,W have the
same meaning as above. When the model has a term identical to ours, we denote the parameter
of the term as ours. When it is different, we denote it the same way as the authors and add a
subscript depending on the authors. Also, we use the very same values of common parameters
to have comparable results. We take most values from Snedecor [39] and check these values with
other articles ([22, 28, 34], ...).

All the fields of the models are non-dimensionnalized by using the value of the non-infected
lymphocytes at health (no virus and long time) as a characteristic value both for the lymphocytes
(infected or not) and the virus.

For every model, we look for fixed points and study their stability. A fixed point of the
model is supposed to represent a biological state lasting. In most articles, a fixed point is even
considered as the state during the second phase where the viremia increases slowly but is not
constant yet. The time scales are not made precise and so it is not so contradictory.

Throughout the article, we call health the state where there is no virus and only uninfected
lymphocytes. In addition, we call seropositivity the state where viruses coexist with lymphocytes
(V 6= 0). Notice that the link of our denomination with what is usually called “seropositivity”
is not straightforward. We also define a seropositivity fixed point to be admissible if the fields
are positive.

We gather here some mathematical study of well-known models. These results are already
known thoughout the literature. Indeed one may find in the article of de Leenheer and Smith [11],
and an extension of Wang and Li [42], a very elegant way to study some of these models. In these
articles, the authors use an abstract characterization of the 3D systems of ordinary differential
equations that enable to have in a very elegant way the nature of the fixed points, limit cycles
and stability thanks to general results on ordinary differential equations. They crucially use the
decoupling in their 3D analysis that a priori cannot apply to any fully 4D system.

A thorough study of numerous models is also done in [8]. In this article, the authors point
out that the fixed point viremia (V ∗) is too dependent on the drug efficacy and that intermediate
levels of virus are too low to be realistic (10−10 and so). They try numerous modifications, most
of which do not improve the behavior. But they provide some compartiment-like models that
do not support those two critics.

2.1. Perelson’s model

In the review [32] (and numerous other papers with various coauthors), A. Perelson proposes a
dynamical system to describe the interaction of HIV virus with CD4 lymphocytes. The model
uses four fields that we will denote with our notations to ease comparisons: uninfected lympho-
cytes (T ), infected lymphocytes (U), infectious free viruses (V ) and uninfectious free viruses
(W ). After non-dimensionnalizing with respect to the amount of lymphocytes in a safe body
(and a given volume), the system reads:
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

dT
dt = β(1− T )− δPV T
dU
dt = δPV T − αU
dV
dt = aθU − σPV

dW
dt = a(1− θ)U − σPW

(2.1)

In this system, when the parameters used by Perelson appear in terms that do not appear in
our model, they are denoted with his notation with an index P . This model is already studied
for instance in an article of Nowak and Bangham of 1996 [29].

2.1.1. Fixed points

One may state the following theorem concerning the fixed points of (2.1).

Theorem 2.1. There exists only two fixed points to system (2.1). The first one is “health”:
(T ∗, U∗, V ∗,W ∗) = (1, 0, 0, 0). The second one (seropositivity) reads:

T ∗ = ασP
aδP θ

, V ∗ = β

δP

( 1
T ∗
− 1

)
, W ∗ = 1− θ

θ
V ∗, U∗ = σP

aθ
V ∗. (2.2)

The seropositivity is admissible (V ≥ 0) under the condition that
aδP θ − ασP > 0. (2.3)

The proof of this theorem is easy and left to the reader.

2.1.2. Stability of fixed points

So as to evaluate the local stability of fixed points, one must compute the Jacobian matrix dF
of the right hand side:

dF (T ∗, U∗, V ∗,W ∗) =


−β − δPV ∗ 0 −δPT ∗ 0

δPV
∗ −α δPT

∗ 0
0 aθ −σP 0
0 a(1− θ) 0 −σP

 . (2.4)

In the case of “health”, (T ∗, U∗, V ∗,W ∗) = (1, 0, 0, 0) it looks:

dF (1, 0, 0, 0) =


−β 0 −δP 0
0 −α δP 0
0 aθ −σP 0
0 a(1− θ) 0 −σP

 . (2.5)

It enables to state a theorem of conditional stability for "health".

Theorem 2.2. Health as a fixed point is stable if and only if
aδP θ − ασP < 0. (2.6)

The proof is very simple and left to the reader. The eigenvalues are real and take the values
−β,−σP , 1/2(−α−σP ±

√
(α− σP )2 + 4aδP θ)). The admissibility of the unstable direction can

also be checked.

In the case seropositivity may occur, one may state the following theorem.
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Theorem 2.3. Under the admissibility assumption (2.3), the seropositivity fixed point (2.2) is
stable.

Proof of Theorem 2.3.
Apart from λ = −σP , the eigenvalues satisfy:∣∣∣∣∣∣

λ+ β + δPV
∗ 0 δPT

∗

−δPV ∗ λ+ α −δPT ∗
0 −aθ λ+ σP

∣∣∣∣∣∣ = 0,

or λ3 + b1λ
2 + b2λ+ b3 = 0 with

b1 = 1
ασP

(βaδP θ + ασP (α+ σP )), b2 = βaδP θ

ασP
(α+ σP ), b3 = β(aδP θ − ασP ). (2.7)

We need to use the Routh-Hurwitz Criterion ([21] p. 490) that gives necessary and sufficient
conditions ensuring that the roots of the cubic polynomial have positive real parts. In our case,
this criterion reads:

∆1 = b1 > 0, ∆2 =
∣∣∣∣ b1 1
b3 b2

∣∣∣∣ > 0, ∆3 =

∣∣∣∣∣∣
b1 1 0
b3 b2 b1
0 0 b3

∣∣∣∣∣∣ > 0.

The first condition is obviously satisfied. Thanks to condition (2.3), the third condition is
equivalent to the second one. It happens that ∆2 can be computed:

∆2 = 1
α2σ2
P

(βaδP θ + ασP (α+ σP ))(aβδP θ(α+ σP ) + α2σ2
P )− β(aδP θ − ασP ), (2.8)

and this term is obviously positive because the only negative term is compensated by one of the
expanded terms.

2.1.3. Some numerical simulations

So as to have simulations comparable with the other models studied in the present article, we
use the same values of parameters as previously:

β = 0.01 day−1 , α = 0.7 day−1 , a = 250 day−1.

Moreover, some other parameters were the same as in the Snedecor’s model and we used the
same values:

δP = 0.0125 day−1 , σP = 2 day−1.

So as to be in the regime of health stable, we used θ = 0.1. As can be checked on Figure 1, health
is stable, although it needs numerous days to come back to health. The qualitative evolution
of the lymphocytes and viruses is comparable to the one of Snedecor’s Model in Figure 4. The
uninfected lymphocytes decrease to their minimum value (0.999625) in about six days. Then
some hundreds of days are needed to get sufficiently close to 1.
So as to have a stable seropositive state, we only change θ for θ = 0.6. Results can be seen on
Figure 2. The global dynamics converges to the seropositivity with oscillations that could be
a model of the ‘blips’. The maximum value of the free virus (about 2.2) is reached at day 39.
Then the uninfected lymphocytes decrease until 0.599 at day 58. The minimum value of virus
(0.019525) happens on the 116th day and the cycle goes on as shown in Figure 2 right. Such
oscillation are sometimes interpreted as the “blips” (sudden bursts of viremia).
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Figure 1. Numerical results for Perelson’s model with four equations. Case
where the health is stable. Short time evolution on the left (3 days) and phase
plane for lymphocytes and viruses on the right for a 600 days evolution.

Notice that A.S. Perelson has discussed this model by proposing other terms for the infection
(equation (10) in [10]), the immune system generation of T cells and of effectors, with and without
saturation [10].
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Figure 2. Numerical results for Perelson model with four equations. Case where
the seropositive state is stable. Relatively short time evolution on the left (200
days) and phase plane for lymphocytes and viruses on the right for a 600 days
evolution.

2.2. A reduced Snedecor’s model

In [39], the author gives three models of the multiplication of virus HIV-1. Her goal is to model
both drug resistance, the different behaviors in the lymphatic tissue and the peripheral blood,
but also the immune system. Distinguishing the blood and lymphatic tissues drives the author to
have numerous constants that model the fluxes between these body parts and enriches her model.
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In order to have a common basis with other models, we need to reduce the above men-
tionned models to make their main features comparable with the features of other models.
After non-dimensionnalizing the three fields with respect to the health value of lymphocytes
(T ∗ = 2.5 1011), we are lead to only one model in which the uninfected lymphocytes are denoted
by T , the infected ones by U and the virus by V . We take the values of the parameters in the
same body part (lymphatic tissue). The reduced Snedecor’s model is written:

dT
dt = β(1− T ) + rS

γS+V (T − 1)− (1− αS)βSV T
dU
dt = +(1− αS)βSV T − αU
dV
dt = aU − σSV − βSV T.

(2.9)

In this system, when the parameters used by S. Snedecor appear in terms that do not appear
in other models, they are denoted with her notation with an index S. For instance, the division
rate of T cells is rS = 0.004 day−1, the treatment efficacy is αS ∈ [0, 1], and the viral clearance
is σS = 2 day−1. After non-dimensionalizing, the other parameters become

βS = 0.0125 day−1, γS = 4× 10−5, β = 0.01 day−1, α = 0.7 day−1, and a = 250 day−1.

2.2.1. Fixed points

In the present subsection, we prove the following proposition:

Proposition 2.4. There exists a threshold

αS4 = 1− α(βS + σS)
aβS

(2.10)

such that if the efficacy parameter αS is above αS4 then health is the only fixed point. If αS < αS4
there are two fixed points: health and a seropositivity.

Proof.
The search for fixed points gives two possibilities.

The first one is health: T ∗ = 1, U∗ = 0, V ∗ = 0.
The existence of the second one depends on the therapy’s efficacy parameter αS . Different

critical values of αS will appear in the discussion. The solution for T is

T ∗ = σS/βS
a(1−αS)
α − 1

,

and is drawn in Figure 3 (left) with an infinite value for αS = αS3 = 1 − α/a = 0.9972. So,
should a drug be very efficient (αS > αS3), then T ∗ < 0 and health would be the only solution.
Then the solution V ∗ is a non-negative solution of the second order equation:

V 2(1− αS)βST ∗ − V ((rS − β)(T ∗ − 1)− (1− αS)βSγST ∗) + βγS(T ∗ − 1) = 0. (2.11)
Numerically, it seems that the discriminant is non-negative (see Figure 3 right) but indeed,

it is negative between αS1 ' 0.54920378 and αS2 ' 0.5492747378 and the minimum is about
−2× 10−13 ! Notice that when perturbing the parameters this behavior remains. Except for αS
not too close to 1, the discriminant is small (see Figure 3 right). We have drawn in Figure 3
(center) the only admissible solution V ∗ as a function of αS . It is then simple to have U∗ =
(1− αS)βSV ∗T ∗/α.

If we take care of retaining only admissible solutions ((T ∗, U∗, V ∗) ≥ 0), we must force
T ∗ ≥ 0 or αS ≤ αS3. Moreover, if T ∗ crosses 1 (for αS = αS4 = 0.5492 exactly see (2.10)),

8
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Figure 3. The fixed points T ∗ (lymphocytes), V ∗ (virus) and the discriminant
of (2.11) as a function of the treatment efficacy αS .

the sign of the constant term in (2.11) changes and so does one solution V of (2.11). One may
then summarize the discussion for T ∗, and the two solutions V ∗1 and V ∗2 of (2.11) in Table 1.
Indeed, there exists a non-health solution only for αS ≤ αS4. Such a fixed point can be named
seropositive solution.

α 0 αS4 αS1 αS2 αS3 1
T ∗ + + + + −

T ∗ − 1 − + + + −
V ∗1 − − V ∗1 ∈ C − +
V ∗2 + − V ∗2 ∈ C − +

solution (T ∗, V ∗2 ) Ø Ø Ø Ø

Table 1. Second fixed point existence for reduced Snedecor’s model.

2.2.2. Stability

Since the domain of admissible fixed points is not regular, the study of stability through the
eigenvectors and eigenvalues at a corner (such as health) needs to be more precise. We define
admissible directions to prohibit directions that do not enter the domain:

Definition 2.5. Let X 7→ f(X) a smooth function and the associated dynamical system X ′(t) =
f(X). Let us denote B the biologically admissible domain (all biological fields non-negative).
Let X∗ be a fixed point of a dynamical system (f(X∗) = 0) at the boundary ∂B, and (λ, u) one
of its eigenvalue/ eigenvector.

The eigenvector u is defined as admissible only if λ > 0 and either X∗ + εu or X∗ − εu for
positive ε enters the domain.

The following proposition investigates the fixed points stability:
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Proposition 2.6. Let αS4 as defined in (2.10). When health is the only fixed point (αS > αS4)
it is stable. When there are two fixed points (αS < αS4), health is unstable in one admissible
direction.

Proof.
The Jacobian matrix of the second member of (2.9) enables us to study the local behavior of
the solutions. It is:


rSV

∗

γS + V ∗
− β − (1− αS)βSV ∗ 0 −(1− αS)βST ∗ + rSγS(T ∗ − 1)

(γS + V ∗)2

(1− αS)βSV ∗ −α (1− αS)βST ∗
−βSV ∗ a −σS − βST ∗

 . (2.12)

In the case of the first fixed point (health (T ∗, U∗, V ∗) = (1, 0, 0)), the characteristic poly-
nomial is −(β + λ)(λ2 + λ(α+ σS + βS) + α(σS + βS)− (1− αS)aβS). The discriminant of the
second order polynomial is (α − σS − βS)2 + 4(1 − αS)aβS > 0. So the roots are real and it is
possible to discuss the sign of the roots. The already met threshold value αS4 = 0.5492 (exactly
see (2.10)) is stil the key value for discussing on αS . If αS > αS4, health is alone (cf. Theorem
2.4) and the roots are negative, so it is locally stable. If αS < αS4, there are two stable and one
unstable eigenvector. We easily check that the unstable eigenvector at this fixed point (health),
located at a corner of the domain, enters the domain in the sense that one direction along this
eigenvector (among the two) lets all the fields be non-negative. So this direction of instability is
admissible.

We checked numerically that the locally stable fixed point (αS > αS4: health alone) remains
stable even under non-small perturbations. In Figure 4, we draw the dynamics of stable health.
In this computation, we take the same parameters as Snedecor:

rS = 4× 10−3 day−1, σS = 2 day−1, βS = 1.25× 10−2 day−1, γS = 4× 10−5,
β = 0.01 day−1, α = 0.7 day−1, a = 250 day−1,

and for the specific case of health stable, we take αS = 0.6 > αS4 for the treatment efficacy.
The qualitative evolution of the pair lymphocytes-virus is comparable to the one of Perelson’s
model presented on Figure 1. The number of virus loses a factor 5 in 3 days typically.

In the case where there exists also a second fixed point (seropositivity: αS < αS4), even
odd initial conditions like (T0, U0, V0) = (1, 1, 1) lead to the second fixed point available. This
second fixed point happens to be numerically locally stable as can be seen on Figure 5 where the
parameters are the same as Snedecor’s, as recalled above, except the therapy efficacy αS = 0.3.
In this figure, one may check that health is locally unstable as the solution evades health to get
closer to a seropositivity. Notice that this second fixed point can be interpreted as seropositivity.
But as it is stable, the model predicts no death ... The oscillations around the fixed point could
be seen as the observed ‘blips’ (sudden and brief bursts of viremia). But the time scale at which
the system is sufficiently close to the fixed point is more than one year while in reality, the first
phase of the infection takes some weeks.

2.2.3. Some comments

The disappearance of the second fixed point (seropositivity) when αS increases could be mean-
ingful. Yet in real life, even for very efficient drugs, the virus kills. Despite highly active multi-
therapies, over ten percent of AIDS patients face therapeutic escape due to viruses which were
indetectable for years while developing resistance against all approved drugs. So, to what extent
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Figure 4. Numerical results for Snedecor model with three equations. Case
where the health is stable. Short time evolution on the left (3 days) and phase
plane for lymphocytes and viruses on the right for a 600 days evolution.
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Figure 5. Numerical results for Snedecor model with three equations. Case
where the seropositive state is stable. Relatively short time evolution on the left
(260 days) and phase plane for lymphocytes and viruses on the right for a 900
days evolution.

can any stable fixed point be meaningful ? This criticism is valid for all the models analyzed in
this article.

The original model makes a distinction between the drug-resistant and drug-sensitive viruses
which is meaningful. But it makes no difference between infectious and non-infectious viruses.

In a sense, the Snedecor’s model takes into account the immune system. But it was proved
that “the growth fraction of CD4+ (...) was correlated (...) with viral load” [37]. No such corre-
lation appears in her model. Indeed, the immune system is modeled only through its exhaustion
when V is too large. The susceptibility to produce T in the presence of virus is not modeled as
it is done in [17] with a term Σ(V/T )T .

If αS = 0 (no treatment), the coefficient before the terms of disappearance of T , of V and
appearance of U is the same. The identity of the V and T terms indicates that in this model,
each time a virus infects a T , it disappears. So viruses are assumed to be free viruses. Indeed, the
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author defines her field V as “free virus”. Similarly, the term −βSV T in the evolution of V is by
no means a model of the immune system response. Moreover, the author defines parameter βS
as “infection rate of ... T cells by ... virus”. We emphasize here the coherence of Snedecor’s model
which takes into account “free virus”: a free virus disappears each time it infects a lymphocyte.
This property is not satisfied by most other models as it is stressed in [11] which emits the same
critic (p. 1314) but argues that this neglection does not change the main features of the models.

In this model, viruses disappear only through natural death or infection of a T . So there
is no immune system effect. Indeed, σS is called “viral clearance (death) rate”, but it does not
depend on T . This is frequent in HIV modelling, but not realistic unless the immune system
is neglected ! This is discussed in [32] (pp. 31-32) where the author acknowledges his trouble:
“The fact that models with constant [σS ] can account for the kinetics of acute HIV infection is
surprising”.

2.3. A Nowak and May model

In [30], the authors also propose some models taking the antigenicity into account. In Chapter
12 of their book, they propose various models, suggesting that “antigenic variation generates the
long-term dynamics that give rise to the overall pattern of disease progression in HIV infection”
(p. 124). Their “general idea was that the rapid genetic variation of the virus generates over
time viral populations (quasispecies) which are more and more adapted to grow well in the
microenvironment of a given patient” (p. 124).

According to their best model, “The immune system and the virus population are in a defined
steady-state only if the antigenic diversity of the virus population is below a certain threshold
value. If the antigenic diversity exceeds this threshold [then] the virus population can no longer
be controlled by the immune system.” ([30] p. 125). Such a behavior seems meaningful. With
our notations their model writes:

dVj
dt

= Vj(rNM − pNMTj − qNMZ), ∀i = 1, ...N

dTj
dt

= cNMVj − bNMTj − U V Tj , ∀i = 1, ...N

dZ
dt

= kNMV − bNMZ − uNM V Z.

where V =
∑
j Vj and Z denotes the “cross-reactive immune response directed against all dif-

ferent virus strains” ([30] p. 130).
In the models they study, they set various parameters to values assumed to be constant. More

precisely, they assume the parameters do not depend on N . Why is it impossible ? Assume there
were only linear and non-linear terms like:

dVj
dt

= rNM Vj − pNM Tj Vj ∀j.

What is the integrated (in j) equation ? If we assume all the populations Tj and Vj are inde-
pendent on j, then Tj =

∑
k Tk/N = T/N and Vj = V/N . Then the integrated (in j) equation

is:
dV
dt

= rNM V − pNM
N

T V if Tj = T

N
, Vj = V

N
.

Since it is the only equation biologically measurable, the measured parameter in an experiment
will be pNM/N and not pNM . In other words pNM = O(N). This should modify the mathematical
study.
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The conclusion of their study is that in their models “the cross-reactive immune responses
provide a selection pressure against antigenic variation, while strain-specific responses select for
antigenic variation” [30].

3. A new model with antigenic variable

The biological diversity of antigenicities is already modeled in [1, 17, 30, 31]. Yet, in these
references, the authors use a finite number of possibilities, most of the time in “flat” spaces of
antigenicities. Since the antigenicity is a “microscopic” and unmeasurable quantity, these models
(including ours) still need to prove they provide a significant insight.

So as to build up our model, we will follow the biological description of the various phenomena
concerning the various fields: we denote Ti(t) the uninfected lymphocytes of antigenicity i ∈ A,
Ui(t) the infected lymphocytes of antigenicity i, Vi(t) the infectious viruses of antigenicity i and
Wi(t) the non-infectious viruses of antigenicity i. The space A is still undetermined. The best
set is not known, but when trying to get a macroscopic model (by integration of antigenicity i),
we will need to investigate the various possibilities to get a limiting operator for (t, i) ∈ R+×A.
This is the issue of a forthcoming paper. We will also need the sum of each field:

T =
∑
j

Tj , U =
∑
j

Uj , V =
∑
j

Vj and W =
∑
j

Wj .

3.1. Lymphocytes evolution

The variation in time of Tj(t) (dTj/dt) must take into account various phenomena:
• a natural death and generation modeled by a term like:(dTj

dt

)
natural

= −βjTj + γj (3.1)

It has also been proposed a logistic term (for instance in [10]), but it prohibits high levels of T
cells.
• when a virus (Vj or Wj) of antigenicity j is detected, the immune system generates lym-
phocytes of the same antigenicity to fight them. This can be modeled by an exponential mul-
tiplication whose time constant is roughly proportional to the inverse of the number of viruses
Vj + Wj . This is a “Lotka-Volterra” type term that we met also in [29, 31, 10] for the cross-
antigenic immune action (CTLs or effectors):(dTj

dt

)
growth

= +Cj(Vj +Wj)Tj (3.2)

The generation of lymphocytes by the immune system is studied in [44]. The authors model
it as a logistic growth +CV T (1 − T/Tmax) (also discussed critically in [8]) to represent the
“autocatalytic cell division”. But surprisingly the effect of the immune system against virus or
infected lymphocytes is neglected. They conclude that the “initial number of the HIV-specific
CD4-T cells” is crucial. Yet, it depends on the definition of the initial time. At the very first
time, it is necessarily small (for 5 liters of blood). Such a logistic term (whatever the infection
term and whever it models the natural growth or the immune system reactivity) would force
the immune system not to have any overshoot of T cells (T > Tmax). This is not realistic.

In their article [10], de Boer and Perelson investigate the immune system production of T
and infection modeling. In this central article, but on macroscopic models, they propose a term
like ours and even saturate it (their (13)). As they conclude “one may model disease progression
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by allowing the virus to evolve immune-escape variants increasing the diversity of the quasi-
species [references proposed]. Since this requires high-dimensional models, this form of disease
progression is not considered any further here” (p. 208). Such a study is the goal of the present
article.

In [17], the authors model “antigenicity” through a real variable. At first glance, one may
believe that their term Σ( (η+V )/T )T (with our notations), where η is the resource, is like our’s
for infection. Although the Σ function has the same properties as our J (see later), our term
models infection, while their’s models the reactivity of the immune system. So they even have
opposite sign. Their term should be compared to our Cj(Vj+Wj)Tj except that they bound the
importance of V for production of T , so modeling a kind of exhaustion of the immune system
very interesting.
• the viruses attack lymphocytes independently of the antigenicity. More precisely, there are
two regimes:

+ If V/T ≤ 1 as a virus may attack only one lymphocyte Tk [12], the ratio of attacked
lymphocytes is V/T . If we introduce a time constant, it gives a term like:(dTj

dt

)
infection

' − 1
τj

(
V

T

)
Tj , if V

T
≤ 1.

+ If V/T ≥ 1, as a virus may infect only one lymphocyte [12] only part of the viruses may
infect the lymphocytes. More precisely, no more than T viruses may infect. In other words, the
ratio of attacked lymphocytes may not be superior to 1. There is a kind of saturation of the
efficacy of predators Vj while the number of lymphocytes decreases with time. Up to a time
constant, we saturate the infection ratio:(dTj

dt

)
infection

' − 1
τ̃j
Tj , if V

T
≥ 1.

+ If V/T ∼ 1, the two terms must match by continuity, and so τj = τ̃j . This complex
behavior may be compiled due to a non-linear function J of the “min-mod” type:

J(ξ) =
{
ξ if ξ � 1
1 if ξ � 1 . (3.3)

The effect discussed here can be modeled by(dTj
dt

)
infection

= − 1
τj
J

(
V

T

)
Tj . (3.4)

In order to justify our essentially linear term in (3.4) in an other way, we make hereafter
various assumptions and wonder how our term should behave upon these assumptions, seen how
reality behaves.

Firstly we assume that we double Vj (and only it) without changing V or to a noticeable
extent, while V/T remains small. Then the effect does not change and so the term must not
change. This prohibits a simple term like −Vj/τj .

Secondly we assume that all the Vi are doubled (including Vj) and so V is doubled too for
a still small V/T . Obviously the effect is doubled. So the modeling term should depend on Vi
(whatever i) only through V .

Thirdly we assume that we double Tj , and only it (not the more general Ti), without changing
T (or to a noticeable extent) nor V (and still V/T � 1). Then the effect doubles. It proves that
the term should depend linearly on Tj .
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At this stage, we have a linear dependance both in V and Tj . If we do not take care, we
might deduce a −V Tj/τj term that leads to −V T/τ when integrated over j. We still need to
explain why our term may not depend linearly on T although it depends on Tj .

To that end, we make the assumption that we double all the Ti (including Tj). Since a virus
may infect only one lymphocyte at a time, the effect should not be modified as the limiting
parameter is not the amount of lymphocytes but the amount of viruses. Indeed, assume a
patient has caught any disease that makes his immune system produce lymphocytes, it should
not make the HIV infection more virulent, in the first stage where V/T � 1. This is satisfied by
our term and not by −V Tj/τj .

Notice that by summing over j and assuming τj constant, we find dT/dt = −V/τ in the first
regime (V ≤ T ) and dT/dt = −T/τ in the second regime (V ≥ T ). Moreover, if V � T the effect
does not depend on V as the limiting factor is the presence of lymphocytes. These are expected
as they seem natural. Most authors have considered that the infection term should be quadratic
like −V T/τ (mass-action). This conclusion may not be drawn from our considerations. It is even
denied as the regimes exclude one another. It must be recalled that all the models are designed
to be tested with the only biologically meaningful fields T +U and V +W . Yet the phenomenon
we model is modeled by two terms of opposite signs that simplify in the evolution equation of
T +U . So it should never be measured in macroscopic fields. Yet, it translates into the model a
crucial biological reality. So this term would deserve to be tested and such a test is postponed
to a forthcoming research.

A term very similar to ours can be found in the article of de Boer [9] who uses a Michaelis-
Menten kinetic: −βTV/(h + T + V ) for the infection (and parameters h and β). Such a term
saturates the infection when there are numerous T + V . But for moderate or low T + V , the
term is essentially quadratic (mass-action). The authors critic models “for acute HIV infection
[that] tend to ignore saturations effects and have simple “mass-action” terms ”. They also give
a toy model

dV
dt

= (r − kT )V,

for which the infection would get cleared as soon as T > r/k “which is independent of the size
of the pathogen population ... which is entirely unrealistic ”. Their model is extended in [1]
to take into account “specific parts of the viral proteins, i.e., epitopes” that are the same as
our antigenicities. But no real mutation is modeled. Their equations do not model the immune
system effect against the virus.

An explicit discussion of such a term is also done in [8] (p. 37) where the authors discuss
the classical mass-action term for infection. As they say, this notion “is valid when the system
is well mixed [...] and there are significant quantities of each reactant.”. They propose various
terms which have the same behavior as ours. When they try a Michaelis-Menten like term (such
as kV T/(α+V +T ) or our term), it does not prohibit their two main critics for admissibility of
models: it reachs too low viremia that should mean extinction and still has a strong dependence
of the fixed point V ∗ on the drug efficacy. So they reject such an infection term. Why this critic
does not apply to our model ? First their definition of V is for free virus. So vanishing viremia
does not prove there is no more virus in the body. Second the immune system is indeed sufficiently
strong to eradicate any given antigenicity. Only the endless mutation and sanctuaries kill the
patient. So “macroscopic” models, such as the ones they consider, should not be able to model
the race between the immune system and the virus whose differences of velocities may explain
the slow eradication of lymphocytes. This is more likely to be contained in “microscopic” models
taking antigenicity and mutation into account. Notice that the authors exhibit some models that
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do not have the two main drawbacks. They are compartment-like models where the drug is not
efficient in a compartment. So, in a sense they are rather similar to full our model with N > 1.

In [17], the authors model “antigenicity” through a real variable. Their infection term is of
the shape V T/(1 + V ) which does not depend on antigenicity, models a saturation effect on V
but not on T .

The consolidated evolution equation for the lymphocytes is the sum
dTj
dt

=
(dTj

dt

)
natural

+
(dTj

dt

)
growth

+
(dTj

dt

)
infection

dTj
dt

= −βj Tj + γj + Cj(Vj +Wj)Tj −
1
τj
J

(
V

T

)
Tj . (3.5)

3.2. Infected lymphocytes evolution

The evolution of infected lymphocytes depends on various effects:
• the infection of a lymphocyte by a virus (same term as for Tj (3.4) with a plus sign) generates
an infected lymphocyte Uj : (dUj

dt

)
generation

= + 1
τj
J

(
V

T

)
Tj ;

• and a natural death: (dUj
dt

)
natural

= −αj Uj .

Notice, that the death rate of infected lymphocytes is about 70 times greater than that of
uninfected lymphocytes. Indeed, in [39], the author proposes various articles among which [16]
for the death rate of infected lymphocytes and [37] for the death rate of uninfected lymphocytes.
The ratio of these rates is about 70.
To summarize, we have:

dUj
dt

=
(dUj

dt

)
generation

+
(dUj

dt

)
natural

= + 1
τj
J

(
V

T

)
Tj − αj Uj . (3.6)

3.3. Infectious and non-infectious virus evolution

The multiplication of viruses is the main phenomenon and occurs in the infected lymphocytes.
So the sum in j growth term of V +W must be∑

j

(d(Vj +Wj)
dt

)
growth

=
(d(V +W )

dt

)
growth

= aU, (3.7)

as taken into account by [30], [39] and [32] (whether they distinguish infectious and non-infectious
virus or not).

We do not distinguish infecting and free viruses as the other authors do. This would have led
us to three identical terms (up to the sign). Two terms for the infection of T lymphocytes in the
evolution equations of T (sign -) and of U (sign +). One more term for the disappearance of a
virus in the evolution equation of V (sign -). The latter is almost always omitted. One potential
justification for this omission is offered by the authors of [33] (p. 10) who argue that the term
kiTiV is small in comparison with cV . In [29], the authors say (note 20) that “if a large number
of virus particles is produced, only a few of which will end up in host cells, then a constant death
term is a reasonable approximation”.
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The evolution of virus depends also on mutations. Some of them modify the ability to
infect and others the antigenicity. Here, those two properties are considered as independent, as
mentioned in the introduction where references are given.

Only one parameter θ measures the probability to mutate to an infectious offspring (neces-
sarily from an infectious virus). So 1−θ is the probability to mutate to a non-infectious offspring.
Since we assume antigenicity and ability to infect are independent, we may assume θ does not
depend on j (nor k).

Let us denote Skj the probability to mutate from an antigenicity k (only Vk as Wk does not
even infect and so does not mutate) to an antigenicity j (either Vj or Wj) per unit of time. So
we have:

Skj ≥ 0,
∑
j

Skj = 1, (3.8)

and Skj depends a priori on the number of antigenicities. The offspring of a virus Vk will mutate
to Vj with the probability θSkj (the case k = j where there is no mutation is included). So it
will mutate to Wj with the probability (1− θ)Skj .

As a consequence of the assumption that antigenicity and ability to infect are independent,
equation (3.7) can be split into two parts :(dV

dt

)
growth

= aθU,

(dW
dt

)
growth

= a(1− θ)U. (3.9)

Notice that the value of θ suggested by [40] ranges from 1 to 1/60,000. But [25] found in one
experiment a ratio θ close to 1/8. To fix the ideas, we suggest in the following to set θ = 1/10.
The value of Skk is considered as relatively low by the biological community but we have not
found any precise and trust-worthy proposition in the literature.
The distribution k 7→ Skj for j 6= k needs to be non-uniform for a biological reason. As is well
known ([4], [23]), there exist mutationnal hot spots in the HIV virus. We may guess these hot
spots will elicit non-uniform distribution of the antigenicity during multiplication/mutation. The
precise value of the probability k 7→ Skj is of course an open problem.

3.3.1. Infectious virus

The infectious virus variation (dVj/dt) depends on various effects.
• The first and most complex is multiplication and mutation. By wondering what takes place
in the biology, we are going to determine the fields present in the modeling term.

As multiplication takes place in the infected lymphocytes, if there were no such lymphocytes
(U = 0), whatever might be the number of (free) viruses, there would be no multiplication and
the term would be zero. This would almost occur in the end of the disease. More precisely, as
once a virus has infected a lymphocyte, no more viruses may infect it [12], U is a good measure
of the total number of infectious viruses. Note that in our model V is the number of free and
infecting viruses. So there must be a dependance on U (or Uj at this stage).

As the antigenicity of an infected lymphocyte has no link with the antigenicity of the mul-
tiplicating virus, the involved field must be U (and not Uj).

As there are mutations from any antigenicity k, the Vk mutate and their offspring is made
of either Vj or Wj with probability θSkj or (1− θ)Skj respectively. So there must be

∑
k SkjθVk

in the modeling term.
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What can be the modeling term ? Up to now, we have U(
∑
k SkjθVk) times an unknown

term A(t). Once summing over the antigenicity, we must find aθU . So because of (3.9), A(t) is
such that: ∑

j

(dVj
dt

)
growth

=
∑
j

A(t)U
(∑
k

SkjθVk

)
= aθU ⇒ A(t) = a

V
,

because
∑
j Skj = 1. So our modeling term for multiplication with mutation to Vj (Vk → Vj) is:(dVj

dt

)
growth

= a
U

V

∑
k

SkjθVk. (3.10)

• attack of the viruses by the lymphocytes of the same antigenicity produced by the immune
system: (dVj

dt

)
lymphocyte

= −ξjVjTj . (3.11)

Once compiled, the evolution equation is:

dVj
dt

=
(dVj

dt

)
growth

+
(dVj

dt

)
lymphocyte

= aU

V

∑
k

SkjθVk − ξjVjTj . (3.12)

3.3.2. Non-infectious viruses

The variation of non-infectious viruses (dWj/dt) may be modeled by various effects and trans-
lated into various terms similar to infectious ones:
• mutation from an antigeniticy k (Vk with Vj included) to Wj :(dWj

dt

)
growth

= aU

V

∑
k

Skj(1− θ)Vk;

• attack of the virus by the lymphocytes of the very same antigenicity. Notice that as the
immune system may not detect whether a virus is infectious or not the ξj must be the same as
for Vj : (dWj

dt

)
lymphocyte

= −ξjWj Tj .

Once compiled the evolution equation reads:

dWj
dt

=
(dWj

dt

)
growth

+
(dWj

dt

)
lymphocyte

= aU

V

∑
k

Skj(1− θ)Vk − ξjWj Tj . (3.13)

As for Vj , the lymphocytes do attack only the virus of the same antigenicity. Moreover, they
cannot make a distinction between infectious or non-infectious viruses.

3.4. The dynamical system

When we collect equations (3.5), (3.6), (3.12) and (3.13), our model reads finally as said in [15]:
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dTj
dt

= −βjTj + γj + Cj(Vj +Wj)Tj −
1
τj
J

(
V

T

)
Tj , (3.14)

dUj
dt

= + 1
τj
J

(
V

T

)
Tj − αj Uj , (3.15)

dVj
dt

= aθU

V

∑
k

SkjVk − ξj Vj Tj , (3.16)

dWj
dt

= a(1− θ)U
V

∑
k

SkjVk − ξjWj Tj . (3.17)

Very simple manipulation enable macroscopic laws to be proven:

d(V +W )
dt

= aU −
∑
j

ξj(Vj +Wj)Tj ;

d(T + U +
∑
j(
Cj
ξj

(Vj +Wj)))
dt

= −
∑
j

βjTj +
∑
j

γj −
∑
j

αjUj + aU
∑
j

Cj
ξj
. (3.18)

Since we see no reason why ξj or Cj should depend on j, the equation (3.18) could be
considered as a simple linear combination of the integrated versions of (3.14-3.17). Such a law
could be experimentally checked.

There remains the problem of initial conditions and the way they enter into the evolution
model with mutations. Indeed, in most ordinary differential systems, as soon as a function is
identically zero in a subdomain, it remains so (Cauchy-Picard Theorem). Moreover, 10−20 or
10−40 are numerically very different while they both mean “zero”. In simulations of mutation,
we will need a quantic jump. All this is postponed to a forthcoming article.

The dynamical system (3.14-3.17) depends on several parameters (αj , βj , ...). The meaning
of some of them is clear and can be easily found either in the literature of from simple biological
data. In the latter case, parameter identification based on a good methodology enables the
numerical resoution of an inverse problem. Such studies can be found in [6, 19, 38].

4. Mathematical properties

Starting from (3.14-3.17), we make the various fields dimensionless by using the value of Tequil =
γj/βj at equilibrium as a characteristic value. Then we let N = 1:

T = Tj
Tequil

, U = Uj
Tequil

, V = Vj
Tequil

, W = Wj
Tequil

.

We also define dimensionless parameters:

ω = Cj Tequil, ζ = ξj Tequil.

With these notations, the system reads:
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dT
dt

= β(1− T (t))− T (t)
τ

J

(
V (t)
T (t)

)
+ ω

(
V (t) +W (t)

)
T (t), (4.1)

dU
dt

= T (t)
τ

J

(
V (t)
T (t)

)
− αU(t), (4.2)

dV
dt

= a θ U(t)− ζ V (t)T (t), (4.3)

dW
dt

= a (1− θ)U(t)− ζ W (t)T (t). (4.4)

The unknown fields for (4.1-4.4) are dimensionless whereas the time variable remains dimen-
sioned (by days). Since we assume there is only one antigenicity (N = 1), mutation disappears.
Hereafter, we prove the solution remains admissible and exists globally. Then we look for the
fixed points and study their stability.

The very elegant method of [11] cannot apply to our system since it is 4D fully coupled even
in its simplified form (4.1-4.4). Moreover their results (even for their system (8)) do not apply
to our system since our infection term is not the mass-action. In addition, they do not study
models where the immune system produces T because of infection (our C(V +W )T ) and their
system (8) is not really coupled for W like ours.

4.1. The solution remains admissible

We intend to prove that the system (4.1-4.4) is mathematically well posed and biologically
meaningful: it does not exhibit negative values of the fields for admissible initial conditions. To
that purpose, we make various assumptions on the parameters:

β, τ, ω, α, ζ are real positive and 0 < θ < 1,
J(•) is a real function concave over [0,∞[, J(0) = 0, J ′(0) = 1,
J(x)→ 1 when x→ +∞ and J is bounded on R−.

(4.5)

From the biological meaning of the system, we define the set of admissible fields:

B = {(T,U, V,W ), T > 0, U ≥ 0, V ≥ 0, W ≥ 0}, (4.6)

and its interior:

B̊ = {(T,U, V,W ), T > 0, U > 0, V > 0, W > 0}. (4.7)

Due to the Cauchy-Picard theorem, we know that there exists a local in time solution. The
question is then whether this local solution is admissible. Our main result is the following
Theorem.

Theorem 4.1 (Biological consistance). The solution (T (t), U(t), V (t),W (t)) of system (4.1-4.4)
with an initial condition in B remains in B.

To prove Theorem 4.1, we will need various lemmas. The first one states that the number of
lymphocytes does not vanish in finite time.

Lemma 4.2. If the initial condition (T0, U0, V0,W0) is in B, then T (t) > 0 for all time for
which the fields T,U, V,W are defined.
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Proof.
Thanks to the Cauchy-Picard theorem [3], we know that for t sufficiently small, T (t) is positive.
So if there exists at least one time t̃ such that T (t̃) = 0, then we define t∗ to be the smallest and
we have t∗ > 0. Since J(•) is bounded (whatever V and T ), (4.1) writes at that time

dT
dt

(t∗) = β > 0.

As a consequence, for t below and sufficiently close to t∗, T (t) < 0. But as T0 > 0, from the
intermediate value theorem, there exists a t′ smaller than t∗ for which T (t′) = 0. This contradicts
the assumption that t∗ is the smallest and completes the proof.

We need now to study the various cases where the initial conditions are either in B̊ or on the
boundary of B. This will be discussed through some lemmas where the initial condition has either
zero, three, two or one initial vanishing fields. In the case of initial condition in the interior of
B, one may state the following Lemma.
Lemma 4.3 (Zero vanishing initial condition). If the initial condition of system (4.1-4.4) is in
B̊, then the solution remains in B̊ for any t ≥ 0 provided it exists.
Proof.
We will discuss the cases where one, two or three fields vanish simultaneously.
• Let us assume W vanishes first and alone (before the other fields) and then let us denote t∗
the smallest time for which W vanishes. On [0, t∗], one has:

V (t) > 0, U(t) > 0, W (t) ≥ 0, W (t∗) = 0, (4.8)
in addition to the fact that T (t) > 0 (see Lemma 4.2). The equation (4.4) writes dW

dt = a (1 −
θ)U(t∗) > 0 because 0 < θ < 1 (see the assumption (4.5)). So, there exists a time t̃ smaller than
t∗ at which W (t̃) < 0. From the intermediate value theorem, one may conclude that there exists
a time smaller than t∗ (and than t̃) at which W vanishes. This contradicts the definition of t∗
and so W may not vanish first.

Identical arguments enable to prove that V may not vanish first. To prove that U may not
vanish first neither, we assume that t∗ is the first vanishing time of U . So, on [0, t∗]:

U(t) ≥ 0, U(t∗) = 0, V (t) > 0, W (t) > 0. (4.9)
Thanks to Lemma 4.2, one has T (t∗) > 0 and so dU

dt (t
∗) = J(VT ) T (t∗)

τ > 0. In a similar way
to the two previous cases, one gets a time t̃ smaller than t∗ for which U(t̃) < 0. Thanks to
the intermediate value theorem, one gets also a time smaller than t∗ where U vanishes. This
contradicts the definition of t∗. So U may not vanish first neither.
• Let us discuss now the case where two fields vanish simultaneously. The case where V and
W vanish simultaneously and alone is impossible for the same arguments as the case where W
vanishes first. The case where U and W vanish simultaneously and alone may be treated in
the same way as the case of U vanishing first. The only remaining case is if U and V vanish
simultaneously (and not W ). Let us then define t∗ the smallest such vanishing time. The Cauchy-
Picard theorem, applied to the system (4.1-4.4) with reversed time, enables us to claim that the
(unique) solution is also such that

dT
dt

= β(1− T (t)) + ωW (t)T (t), dW
dt

= −ζW (t)T (t), U(t) = V (t) = 0,

for all time t in [t∗ − ε, t∗] for some ε > 0. This contradicts the definition of t∗ as the smallest
vanishing time.
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• In the case where U, V and W vanish at the same time, the proof is the same as for Lemma
4.4.

The following Lemma solves the case of three vanishing initial fields.

Lemma 4.4 (Three vanishing initial conditions). If the initial condition is T0 > 0, U0 = V0 =
W0 = 0, then the solution is unique and is health.

Proof.
The proof relies only on the Cauchy-Picard theorem which states that

T (t) = 1− (1− T0) exp (−βt),

and the other fields identically zero.

The next Lemma deals with the case where two initial fields vanish.

Lemma 4.5 (Two vanishing initial conditions). If the initial condition is among

T0 > 0, U0 = V0 = 0, W0 > 0, (4.10)
T0 > 0, U0 > 0, V0 = W0 = 0, (4.11)
T0 > 0, U0 = 0, V0 > 0, W0 = 0, (4.12)

the solution of system (4.1-4.4) remains in B.

Proof of Lemma 4.5.
The proof distinguishes various cases.
• In the case (4.10), the Cauchy-Picard theorem enables us to claim that there exists a solution
of (4.1-4.4) for which U(t) = V (t) = 0, and the fields T (t),W (t) satisfy

dT
dt

= β(1− T (t)) + ωW (t)T (t) (4.13)

dW
dt

= −ζ W (t)T (t). (4.14)

Let us assume W vanishes at some times. Among these times, we chose t∗ to be the smallest.
On the compact set [0, t∗], T is continue and so bounded by γ > 0. So (4.14) enables to claim

dW
dt
≥ −γζW then W (t) ≥W0 exp (−ζγt) for t ≥ 0

which contradicts the assumption that W (t∗) = 0. So W may not vanish in finite time and so
in the case (4.10), W (t) > 0 for any positive time and U = V = 0.
• In the case (4.11), dV

dt > 0 and so V (t) > 0 for t small enough. Similarly, for t small enough,
W (t) > 0. So for t small enough, the solution enters the interior of B. Such a new initial condition
has been adressed in Lemma 4.3. So the solution remains in B.
• In the case (4.12), dU

dt > 0 thanks to (4.2), and so U(t) > 0 for t sufficiently small. Indeed,
dW
dt = 0 but d2W

dt2 = a (1 − θ) dU
dt > 0. This is enough to assess that W (t) > 0 for t sufficiently

small. Using the new “initial” condition at this time, we are driven back to the case treated by
Lemma 4.3. This completes the proof.

Lemma 4.6 (One vanishing initial condition). If one and only one initial field vanishes, the
solution remains in B.
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Proof of Lemma 4.6.
If U0 = 0 (and V0W0 > 0), then dU

dt (0) = 1
τ T J(VT ) > 0. One may conclude in a similar way

to the case (4.12) treated in Lemma 4.5. If V0 = 0 (and U0W0 > 0), then dV
dt (0) = a θ U0 > 0.

So in finite time, one is driven back to the case treated in Lemma 4.3 (zero vanishing intitial
condition). If W0 = 0 (and U0 V0 > 0), the argument is very similar.

Proof of Theorem 4.1.
Up to now, we have proved that if the initial condition does not vanish (Lemma 4.3), vanishes
three times (Lemma 4.4), two times (Lemma 4.5), or once (Lemma 4.6), the solution remains
in B. This completes the proof of Theorem 4.1.

4.2. Global existence

The following Theorem states that the solution remains finite and so is global in t.

Theorem 4.7. Let
η = aω − α ζ, (4.15)

and
γ =

∣∣∣η
ζ

∣∣∣ . (4.16)

If the initial condition (T0, U0, V0, W0) is in B, then the solution of (4.1-4.4) satisfies:

T (t) + U(t) + ω

ζ
(V (t) +W (t)) ≤ T0 + U0 + ω

ζ
(V0 +W0) + β t if η ≤ 0, (4.17)

and

T (t) + U(t) + ω

ζ
(V (t) +W (t)) ≤

(
T0 + U0 + ω

ζ
(V0 +W0)

)
eγt + β

γ

(
eγt − 1

)
if η > 0. (4.18)

As a consequence, the solution is finite for all time t ∈ [0,+∞[ and so is global.

Proof.
By adding (4.1-4.2) and ωζ times the sum of (4.3) and (4.4), all the non-linear terms disappear
and one has:

dT
dt

+ βT + dU
dt
− η

ζ
U + ω

ζ

d
dt

(V +W ) = β. (4.19)

Thanks to Theorem 4.1, the solution remains in B and so U ≥ 0. Moreover if η ≤ 0, we can
minorate the fourth term of (4.19) by 0 because ζ > 0. As a consequence,

d
dt

(
T + U + ω

ζ
(V +W )

)
≤ β,

and the relation (4.17) is a simple consequence of the integration in time of the previous in-
equality.

If η > 0, we integrate between 0 and t the equation (4.19), and owing to the positivity of T ,
one has

T + U + ω

ζ
(V +W ) ≤ T0 + U0 + ω

ζ
(V0 +W0) + βt+ γ

∫ t
0
U(t′) dt′. (4.20)

Let us denote
δ0 ≡ T0 + U0 + ω

ζ
(V0 +W0) and φ(t) ≡

∫ t
0
U(t′) dt′.
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Due to Theorem 4.1 we know that the solution remains in B (T > 0, V ≥ 0,W ≥ 0), the equation
(4.20) enables to write:

dφ
dt
≤ δ0 + βt+ γφ(t),

d
dt

(exp (−γt)φ) ≤ exp (−γt) (δ0 + βt). (4.21)

The inequality (4.21) can be integrated (φ(0) = 0):

exp (−γt)φ(t) ≤
[
−β
γ
t− 1

γ

(
δ0 + β

γ

)]
exp (−γt) + 1

γ

(
δ0 + β

γ

)
,

or

γφ(t) ≤ −
(
βt+ δ0 + β

γ

)
+
(
δ0 + β

γ

)
exp (+γt).

With such a bound for φ, one may take back the right hand side of (4.20):

T + U + ω

ζ
(V +W ) ≤ δ0 + βt+ γφ ≤ δ0 exp (γt) + β

γ
(exp (γt)− 1),

which is the inequality (4.18). This completes the proof.

4.3. Fixed points

Looking for fixed points of (4.1-4.4), we must find solutions of the associated stationary system:

0 = β(1− T )− T
τ J

(
V
T

)
+ ω

(
V +W

)
T,

T
τ J

(
V
T

)
= αU,

a θ U = ζ V T,
a (1− θ)U = ζ W T.

(4.22)

We will prove the following Theorem:

Proposition 4.8. Let η defined in (4.15) and

ρ = αζτ
aθ ,

V = βaθ
aω − αζ .

(4.23)

The fixed points of (4.1-4.4) depend on the sign of η. Three cases must be distinguished.
• If η > 0, the fixed points are either health and seropositivity (if ρ < 1), or only health (if
ρ ≥ 1).
• If η = 0, there is no fixed point else than health.
• If η < 0, health is always a solution. Moreover, there appears a non-explicit threshold value
L and three sub-cases depending on L:

+ When ρ < 1 there is one seropositivity fixed point.
+ When 1 < ρ < L, there are two seropositivity fixed points.
+ When ρ > L there is no seropositivity solution.
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Proof.
One finds easily that

(1− θ)V = θW,

U = ζ
a (V +W )T = ζ

aθ V T.
(4.24)

Then, the system (4.22) reduces to

0 = β(1− T )− αζ

aθ
V T + ω

θ
V T, (4.25)

T

τ
J

(
V

T

)
= αζ

aθ
V T. (4.26)

Since T = 0 is not a solution, one may simplify T in (4.26). Equation (4.25) gives T :

T = β

β − (ωa−αζ)
aθ V

= 1
1− V/V

. (4.27)

Thanks to the value of T given by (4.27), we are driven to solve (4.26) in the form:

J

(
V

(V − V )
V

)
= αζτ

aθ
V = ρV. (4.28)

Three cases appear to solve this equation.
• If η > 0, we must find the solution V of (4.28) where V > 0. To guarantee T ≥ 0, we must
have V < V . Since the function V 7→ J(V (V −V )/V ) is symmetric with respect to V /2 and the
right hand side ρV is a linear function of V , only two subcases must be distinguished according
to the Figure 6.

>1

<1

V0

0

Figure 6. Two characteristic shapes of the curves V 7→ ρV and V 7→ J(V (V −
V )/V ) (dotted) for η > 0.

This discussion is summarized in the following:
1. If ρ < 1 there are two solutions:

(i) V1 = 0⇒ T1 = 1, U1 = 0 = W1 ;
(ii) V2 > 0⇒ T2 > 1.

The first one will be denoted health and the second one seropositivity. We notice that V2 < V
and in the end, the condition on V to ensure T > 0 is satisfied.
2. If ρ ≥ 1, the only solution is health.

• If η = 0, then V =∞. There is no solution.
• If η < 0, then V < 0 and there is no constraint on V to ensure that T ≥ 0. Unlike the case
η > 0, the parabola inside the function J is of the type y = +x2 instead of y = −x2. So as to
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circumvent this, we will invert the function V 7→ V (1− V/V ) on R+ where it is one-to-one. For
any V ∈ R+ (we look for non-negative V ), there is a unique X ∈ R+ such that

X = V (1− V/V )⇔ V = ψ(X) = V +
√
V

2 − 4V X
2

. (4.29)

Then equation (4.28) amounts to
J(X) = ρψ(X). (4.30)

In other words we need to intersect J(X) and the parabola ρψ(X). Only three cases must be

1

X
0

0

J(X)

L
L<

1<

1

Figure 7. Three characteristic shapes of the curves X 7→ ρψ(X) and J (dotted)
with J ≡ tanh and η < 0.

distinguished, according to Figure 7. They depend entirely on the slope of ρψ(X) at X = 0
whose value is ρ. Hereafter, we denote with a superscript the roots of (4.30).
1. If ρ ≤ 1, there are two solutions denoted X1

i :
(i) X1

1 = 0 corresponding to health ;
(ii) X1

2 > 0 corresponding to seropositivity.
2. If 1 < ρ ≤ L there are three solutions denoted by X2

i :
(i) X2

1 = 0 corresponding to health ;
(ii) X2

2 > 0 corresponding to seropositivity ;
(iii) 0 < X2

3 < X2
2 corresponding to seropositivity.

Notice that there is no explicit value of L. Yet for J ≡ tanh and V ' −0.054, we could
numerically find L ' 3.7.
3. If ρ > L, there is only one solution X3

1 = 0 (health).

4.4. Stability

The Jacobian matrix is, at every fixed point:


V
Tτ J

′
(
V
T

)
− β
T 0 ωT − J ′

(
V
T

)
/τ ωT

J
(
V
T

)
/τ − V

Tτ J
′
(
V
T

)
−α J ′

(
V
T

)
/τ 0

−ζV aθ −ζT 0
−ζW a(1− θ) 0 −ζT

 .
If we compute the characteristic polynomial through the last right column, we find:
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P (λ) = −(ζT + λ)

∣∣∣∣∣∣∣∣
V
Tτ J

′
(
V
T

)
− β
T − λ 0 ωT − J ′

(
V
T

)
/τ

J
(
V
T

)
/τ − V

Tτ J
′
(
V
T

)
−α− λ J ′

(
V
T

)
/τ

−ζV aθ −ζT − λ

∣∣∣∣∣∣∣∣
−ωT

∣∣∣∣∣∣∣
J
(
V
T

)
/τ − V

Tτ J
′
(
V
T

)
−α− λ J ′

(
V
T

)
/τ

−ζV aθ −ζT − λ
−ζW a(1− θ) 0

∣∣∣∣∣∣∣ .
(4.31)

Thanks to (4.24), we can easily simplify the second line of the second determinant of (4.31). As
a consequence one may write:

P (λ) = −(ζT + λ)

∣∣∣∣∣∣∣∣
V
Tτ J

′
(
V
T

)
− β
T − λ 0 ωT − J ′

(
V
T

)
/τ

J
(
V
T

)
/τ − V

Tτ J
′
(
V
T

)
−α− λ J ′

(
V
T

)
/τ

−ζV aθ −ζT − λ

∣∣∣∣∣∣∣∣
−ωT (ζT + λ)

∣∣∣∣∣ J
(
V
T

)
/τ − V

Tτ J
′
(
V
T

)
−α− λ

−ζW a(1− θ)

∣∣∣∣∣ .
In the general case, no more factorization could be found and the polynomial is

P (λ) = −(ζT + λ)
[(

V
Tτ J

′
(
V
T

)
− β
T − λ

)(
−aθJ ′

(
V
T

)
/τ + (α+ λ)(ζT + λ)

)
+

+
(
ωT
θ − J

′
(
V
T

)
/τ
) (
aθ
(
J
(
V
T

)
/τ − V

Tτ J
′
(
V
T

))
− (α+ λ)ζV

)]
.

(4.32)

4.4.1. Stability of the health state

In the case of health (T = 1, U = 0 = V = W ), the eigenvalues are zeros of (4.32) which can be
rewritten thanks to (4.23):

P (λ) = (ζT + λ)(β + λ)
(
aθ

τ
(−1 + ρ) + λ(α+ ζ) + λ2

)
= 0. (4.33)

We will prove the following theorem.

Theorem 4.9. If ρ > 1, health is (locally) stable.
If ρ < 1, there exists one positive eigenvalue associated to an admissible eigenvector in the sense
of Definition 2.5.

Proof.
The discriminant of the non-reduced second order polynomial in (4.33) is (α− ζ)2 + 4aθ/τ > 0.
This enables us to claim that:
• if ρ > 1, the four roots are negative and so the evolution is (locally) stable;
• if ρ < 1, there exists one (and only one) positive root and so the evolution is locally unstable
in one direction.

We still have to prove that the eigenvector ~v associated to a positive eigenvalue of (4.33) is
admissible. In other words, we need to prove that ~v is such that for ε > 0 or ε < 0 small enough,
(1, 0, 0, 0)+ε~v has its four components non-negative. To prove this, we write the system satisfied
by the eigenvector:
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
−(β + λ) 0 ω − 1/τ ω

0 −(α+ λ) 1/τ 0
0 aθ −(ζ + λ) 0
0 a(1− θ) 0 −(ζ + λ)



x1
x2
x3
x4

 =


0
0
0
0

 , (4.34)

where ρ < 1 and λ is the (unique) positive root of (4.33). More precisely, λ is the unique root of
the third term: aθ(−1+ρ)/τ+λ(α+ζ)+λ2. As this second order polynomial is the determinant
of the 2× 2 submatrix in the center of the matrix in (4.34), and because of the very particular
shape of the lines 2 and 3, we can claim these lines are bound. It suffices then to take out the
third line to be driven to the system equivalent to (4.34):

(β + λ)x1 = (ω − 1/τ)x3 + ωx4
(α+ λ)x2 = x3/τ
a(1− θ)x2 = (ζ + λ)x4.

As λ > 0, we can see that there exists solutions such that x2, x3, x4 be non-negative. So, at least
locally the solution in the direction of this eigenvector is admissible and the proof is complete.

4.4.2. Stability of seropositivity

We have no rigorous study of the stability/unstability of seropositivity. So we use numerical
simulations. In this subsection, we take

β = 0.01 day−1, α = 0.7 day−1, ω = 0.01 day−1, a = 250 day−1, θ = 0.1,
and initial values

T (0) = 1, U(0) = 0, V (0) = W (0) = 0.05.
The other parameters (τ, ζ) are taken so as to illustrate the fixed points depicted in Proposition
4.8. We provide the evolution on a short time and a phase portrait for each case. Let us remind
the fixed points:
1. If η > 0

(i) If ρ < 1: health (partially unstable) and one seropositivity numerically stable as
can be seen on Figure 8. In this simulation, η = 1.8, ρ = 0.28. The effect of the infection is to
emphasize the activity of the immune system ;

(ii) If ρ ≥ 1: only health (stable), as in Figure 9 (η = 0.4, ρ = 1.68). Minimum value for
lymphocytes is obtained for t ' 0.8 day and maximal one for t ' 16.4 days.
2. If η < 0:

(i) If ρ < 1: health (partially unstable) and one seropositivity numerically stable as can
be seen on Figure 10 (η = −4.5, ρ = 0.28). The effect of the infection is to reduce the activity of
the immune system at a very low level (' 0.015 times the level of health);

(ii) If 1 < ρ < L: health (stable) and two seropositivities. We choosed the parameters
ζ = 6, τ = 6 (η = −4.5, ρ = 1.008) for simulation. A first seropositive state (T ∗ ' 0.129, U∗ '
0.03073, V ∗ ' 0.992, W ∗ ' 8.9) was numerically found to be locally stable (not shown). A
second seropositive state (T ∗ ' 0.992, U∗ ' 0.00028, V ∗ ' 0.00117, W ∗ ' 0.01058) is very
close to health and is locally unstable since it has three negative and one positive eigenvalues.
So as to illustrate this, we have taken initial data

Xj = X∗ + εVj , 1 ≤ j ≤ 4,
where X∗ is the fixed point, Vj is one of its eigenvector and ε is sufficiently small. This experiment
is depicted in Figure 11. Note that although health is locally stable, initial conditions with a
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viral load of 5% drove the state to a seropositivity state. This proves that the basin of attraction
is small. So we provide a simulation with an initial viral load of only 1% in Figure 12 ;

(iii) If L < ρ: health is stable as one may see on Figure 13 (η = −4.5, ρ = 2.8). Minimum
value for lymphocytes is obtained for t ' 2.6 days.
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Figure 8. Numerical results for our model. Case where a seropositive state is
stable (τ = 10, ζ = 1). Relatively short time evolution on the left (25 days) and
phase plane for lymphocytes and viruses on the right for a 600 days evolution.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  1  2  3

 
d
i
m
e
n
s
i
o
n
l
e
s
s
 
d
a
t
a
 

 time (days) 

 infected lymphocytes  
 uninfectious virus  

  virus  

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.9996  1  1.0004

 
v
i
r
u
s
e
s
 

 uninfected lymphocytes 

Figure 9. Numerical results for our model. Case where the health is stable
(τ = 20, ζ = 3). Short time evolution on the left (3 days) and phase plane for
lymphocytes and viruses on the right for a 600 days evolution.

5. Discussion of the present model

Various effects are supposed to be more or less incorporated in any model and specifically ours.
They are discussed hereafter.
• If a model considers the field of free viruses, then infection makes an uninfected lymphocyte
and a free virus disappear and an infected lymphocyte appear at the same time. Three identical
terms (up to a ± sign) should be present in such a model. It is not often the case. Since Vj
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Figure 10. Numerical results for our model. Case where a seropositive state is
stable (τ = 1, ζ = 10). Relatively short time evolution on the left (25 days) and
phase plane for lymphocytes and viruses on the right for a 600 days evolution.
The effect of the infection is to reduce drastically the efficacy of the immune
system.
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Figure 11. Numerical results for our model with 4 equations (τ = 6, ζ = 6).
Simulations are initialized with states very close to the fixed point in directions
that correspond to eigenvectors. The seropositive state is unstable in one direction
among four.

includes not only free viruses but also infecting viruses, we are not forced to have the same three
terms.

• We characterize each virus by its antigenicity and by the information that it is infectious
or not. We characterize the lymphocytes by the virus antigenicity against which they have been
designed. Mutation is then only a probabilistic phenomenon and the main modeling question
is the space in which it takes place and its probabilistic law. Such a study is postponed to a
forthcoming article.

• By explicitly deriving our model, we justify our “piecewise linear” term to model infection,
although most authors use a mass-action quadratic term (for a discussion, see [8, 9]).
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Figure 12. Numerical results for our model with 4 equations. Case where health
is stable (τ = 6, ζ = 6) only for small perturbations. Relatively short time
evolution on the left (3 days) and phase plane for lymphocytes and viruses on
the right for a 1500 days evolution.
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Figure 13. Numerical results for our model. Case where the health is stable
(τ = 10, ζ = 10). Short time evolution on the left (3 days) and phase plane for
lymphocytes and viruses on the right for a 600 days evolution.

Very likely, the reason why the modeling of infection has not been much studied is that the
only biologically measured field is T +U . So the term modeling this phenomenon disappears in
any evolution equation on T + U . Yet it models a crucial reality and deserves more attention.
• We model the production of Tj by the immune system once it has detected the Vj . The
production depends on the Vj population, and so our term is quadratic. It has no counterpart in
any model we read. This term could be balanced by the quadratic term modeling the immune
system effect against each strain of virus which is present in some models ([17, 31]) including
ours.
• The multiplication/mutation of the virus is the most challenging phenomenon. Since only
one virus may infect a lymphocyte [12], we may assume U is a good measure of the total number
of infecting viruses. This assumption is very likely but would deserve to be further tested. Then,
since the antigenicity of a Uj has no link with the antigenicity of the virus infecting it, we need
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to take into account the pure multiplication of Vj phenomenon. A simple modeling of mutation
generates our term.
• We model the effect of the immune system against the viruses by a term depending quadrat-
ically on Vj and Tj since these quantities are effective in the same regime. Such a term can be
found in the models depending on antigenic variation in [30] (chapter 12 and 13) and [31] but
in these models the lymphocyte’s generation is modeled only through a linear term in Vj .
• With further assumptions, one may find a linear combination of the T + U and V + W
evolution such that this new combination is simply linear in T,U, V,W because the non-linearities
may simplify. This could be experimentally tested.
• The overall behavior of all the systems studied above (including ours if N = 1) allows the
fields to remain non-negative and be attracted by some fixed points. So all these models predict
convergence to some fixed point which is never immuno-suppresed (T = 0). We consider this to
be a major drawback for the long term modeling of HIV infection. This opinion is shared by
the authors of [31] and they propose modifications to the Nowak-Bangham models enabling the
longer term evolution modeling.
• Notice that the only physical field is T =

∑
j Tj and not T1 (with N = 1) as used in our

mathematical study. As a consequence, the widening of antigenicity support is a phenomenon
not included in the case N = 1 nor in any other well-known “macroscopic” model reviewed
above. Since the “microscopic” models use a finite domain of antigenicity, they no more include
the widening of antigenicity support. As de Boer and Perelson conclude their study of numerous
macroscopic models in [10]: “one may model disease progression by allowing the virus to evolve
immune-escape variants increasing the diversity of the quasi-species [...]. Since this requires
high-dimensional models, this form of disease progression is not considered any further here”.
It would of course be of interest to get an experimental illustration of the viral dynamics as
exposed in the present study. As described in [13], nucleotide analogs can be selected to take
control over the mutational drift of the virus, in particular abolishing (N = 1), or reducing (one
may even reach precisely N = 2) the drift. Starting with a N = 1 experiment (no drift), T , U
can be counted by flow cytometry, for instance using a dye adsorbed by life cells (T1), not by
dead ones (U1). The virus populations V1 and W1 can be counted by the capacity to infect (V1)
or not infect (W1) T1 cells. The latter will be labeled (for instance fluorescence-tagged antibody
grown against T1). The same counting would be repeated in a N = 2 experiment, in which the
fluorescent label of T1 will allow to count T2, etc... An entirely different strategy would be to
look for a macroscopic version of our model. Such a model would depend on T,U, V,W instead
of (Ti, Ui, Vi,Wi)i=1,...,N , but remains to be determined.

6. Conclusion

We have thoroughly studied previous models of HIV multiplication by systems of differential
equations. Some of them were reduced to be single-antigenic. With such a reduction, all of these
models have fixed points that prohibit modeling of the last phase of the disease where the T
count vanishes. This is also criticized in recent research [31].

Moreover, we propose a model taking into account new phenomena among which lympho-
cytes generation by the immune system according to the presence of specific viruses, and immune
effect against each virus strain. We also model infection and mutation/generation through new
algebraic terms. This model is derived due to explicit arguments. It will be tested further in
forthcoming research.
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Although the reduced version of our model has the same drawback of not enabling the
immunity exhaustion, its general version takes into account the strains’ diversity (here denoted
as antigenicity) and the specificity of the immune response. So our full model should enable to
account for the last phase of the HIV infection where the lymphocytes’ count vanishes. This will
be studied in a forthcoming article.
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