
MathematicS

In Action

Mike Ludkovski
Regression Monte Carlo for Impulse Control
Volume 11 (2022), p. 73-90.
https://doi.org/10.5802/msia.18

© Les auteurs, 2022.
Cet article est mis à disposition selon les termes

de la licence Creative Commons attribution 4.0.
http://creativecommons.org/licenses/by/4.0/

C EN T R E
MER S ENN E

MathematicS In Action est membre du
Centre Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/
e-ISSN : 2102-5754

https://doi.org/10.5802/msia.18
http://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/


MathematicS In Action
Vol. 11, 73-90 (2022)

Regression Monte Carlo for Impulse Control

Mike Ludkovski ∗

∗ Department of Statistics and Applied Probability, University of California, Santa Barbara
CA 93106-3110, USA
E-mail address: ludkovski@pstat.ucsb.edu.

Abstract

I develop a numerical algorithm for stochastic impulse control in the spirit of Regression Monte Carlo for
optimal stopping. The approach consists in generating statistical surrogates (aka functional approximators)
for the continuation function. The surrogates are recursively trained by empirical regression over simulated
state trajectories. In parallel, the same surrogates are used to learn the intervention function characterizing
the optimal impulse amounts. I discuss appropriate surrogate types for this task, as well as the choice of
training sets. Case studies from forest rotation and irreversible investment illustrate the numerical scheme
and highlight its flexibility and extensibility. Implementation in R is provided as a publicly available package
posted on GitHub.

1. Introduction

Stochastic impulse control is concerned with systems where the state process (Xt) is subject to
stochastic dynamics as well as repeated lumpy interventions or shocks by the controller. Such im-
pulses make an instantaneous, rather than sustained, impact on (Xt) and carry an instantaneous
cost/reward. The goal of the controller is to maximize total expected (discounted) profit that
is driven by the impulses and the continuous revenue function π(Xt). Impulse control problems
have a long history with manifold applications over the past 40+ years, see below. In particular,
impulsive controls are common in commodities applications to describe management of natural
resources or industrial capacity planning. Nevertheless, numerical methods for stochastic im-
pulse control are surprisingly thinly studied, especially in comparison to the vast literature on
numerical optimal stopping, and the emergent literature on numerical continuous control via
Neural Networks.

In this article I propose to leverage Monte Carlo based methods that have been developed
for optimal stopping in order to create a related approach to stochastic impulse control. To
do so, I rely on the interpretation of impulse control as a two-stage decision making; at each
time instant, the controller must first decide whether to act or to wait; conditional on acting,
in the second stage the controller picks the optimal action. This perspective reduces impulse
control to repeated optimal stopping with an implicit payoff function specified via the so-called
intervention operatorM. In turn, it permits to import algorithms for multiple stopping problems
after incorporating the computation of the intervention operator. Through this lens, solvers for
impulse control can be built on top of related code for optimal stopping.

The proposed algorithm extends the realm of Regression Monte Carlo (RMC) methods to
the setting of impulse control. It employs the main features of RMC (statistical surrogates for
a functional approximation of the continuation value and simulation for empirical training of
these surrogates) in the context of multiple impulsing actions. Additionally, I propose direct op-
timization of the surrogate over the action set to obtain optimal impulses. Methodologically, this
strategy highlights the advantageous modularity of RMC which makes the paradigm applicable

Work partially supported by NSF DMS-1736439 and DMS-1821240.
Keywords: Impulse Control, Statistical Surrogates, Irreversible Investment.
2020 Mathematics Subject Classification: 93E25, 65C05, 49N25.

73

mailto:ludkovski@pstat.ucsb.edu


Mike Ludkovski

beyond classical stop/continue decisions. On the implementation side, the algorithm is coded in
R and is integrated into the existing mlOSP “Machine Learning for Optimal Stopping Problems”
package developed by the author over the past few years [29]. Thus, mlOSP effectively subsumes
numerical resolution of impulse control into the existing framework of RMC. The package is
publicly available via GitHub at github.com/mludkov/mlOSP and offers reproducible vignettes.
Thus, all the underlying code and case studies can be fully examined by the readers or other
researchers, facilitating reproducibility and future extensions.

1.1. Literature Review

Relative to other types of stochastic control impulse control problems are rarely solvable explic-
itly, with only a few exceptions, see [2, 17, 19]. In part, this is because there are many problem
ingredients to solve for: impulse thresholds, impulse targets, intervention function, value func-
tion, etc. Thus, typically only very special cases, such as time-stationary models with linear
intervention costs and linear dynamics, have been studied in detail.

The most well known sub-case is when the state (Xt) is one dimensional and is expected to be
a renewal process when optimally controlled. The so-called (s, S) strategies focus on determining
an impulse threshold s and a target level S and reduce computation of optimal strategy to a
two-dimensional optimization over the two constants s, S. (s, S) strategies have been studied in
Operations Research for over 20 years, formulations similar to the one I discuss have appeared
in optimal inventory [11, 14, 26] and dividend payout problems [7, 10, 18].

Another major application of stochastic impulse control has been in real options, in the context
of (ir)reversible investment [1, 3, 23]. Alternatively called the capacity expansion problem, this
class of models considers gradual addition of capacity, e.g. power generation capacity in the
context of owning a fleet of electricity power plants. More sophisticated models[13, 24] treat
separately the commodity price and the current capacity, leading to a two-dimensional impulse
control formulation, with one exogenous and one endogenous component, see Section 4.2. A
kind of a conceptual opposite to investment are harvesting problems, especially the Faustmann
problem of forest management [4, 5, 12]. The state variable represents the current forest stand
value; actions correspond to cutting trees down for sale, known as a “rotation”. Thus impulses
are down and are viewed as revenue rather than cost. I discuss the Faustmann problem further
in Section 4.1. Other applied domains include control of foreign exchange rates by a central
bank [15] and management of energy retail prices [9].

The standard approach to numerical solution of impulse control is via quasi-variational in-
equalities, that reduce to a HJB-type partial differential equation. However, the non-local term
in the equation that corresponds to the impulses makes numerical schemes quite challenging.
So far there is limited literature available to handle it, [8]. Indeed, eliminating this limitation
of the HJB approach is one of the gaps I aim to address in the present publication that takes a
completely probabilistic/statistical perspective and does not depend on the smoothness of the
value function. Similarly, due to the associated analytic difficulties, the vast majority of works
consider time-stationary one-dimensional impulse control on infinite horizon, see [12] and [21, 22]
for recent results on finite-horizon SIC. Multivariate SIC is treated in [7, 16] among others.

The rest of the paper is organized as follows. Section 2 introduces the problem and the new
RMC-based algorithm. Section 3 discusses implementation, including how to evaluate optimal
impulses. That Section concludes with a concrete example, illustrated with R code snippets.
Section 4 contain two case studies, about forest rotation (Section 4.1) and two-dimensional
capacity expansion (Section 4.2).

74

github.com/mludkov/mlOSP


Regression Monte Carlo for Impulse Control

2. Problem Formulation

To set the stage, we focus on diffusion models where the system state (Xt) in the absence of any
impulses is assumed to satisfy a Stochastic Differential Equation of Îto type,

dXt = µ(Xt) dt+ σ(Xt) dWt, (2.1)
where (Wt) is a (multi-dimensional) Brownian motion and the drift µ( · ) and volatility σ( · ) are
smooth enough to yield a unique strong solution to (2.1). The state space of (Xt) is X ⊂ R and
we assume the standard probabilistic structure of (Ω,F , (Ft),P), where Xt is adapted to the
filtration F = (Ft). Generalization to multiple dimensions is straightforward.

The above is the uncontrolled dynamics, which are subject to control shocks. To describe the
latter, let A be the set of all admissible controls. An admissible control A = {τn, zn} is a double
sequence such that

• τn is an increasing sequence of F-stopping times, such that τn < τn+1 P-a.s. and
limn→∞ τn = T P-a.s.

• zn is a sequence of random variables taking values in Z ⊂ R such that zn is Fτn-
measurable for every n ≥ 1

• Integrability condition is satisfied
∑
n E[e−rτn(1 + zn)] < ∞ which ensures finiteness of

the discounted interventions.
A controlled process Xt,x,A is indexed by its initial condition Xt = x and the associated

admissible impulse strategy and satisfies for s > t

Xt,X,A
s = x+

∫ s

t
µ(Xt,x,A

r )dr +
∫ s

t
σ(Xt,x,A

r )dWr +
∑

n:t<τn≤r
zn. (2.2)

The corresponding expectation conditional on Xt = x is denoted by Et,x[ · ].
The dynamics in (2.1) then correspond to the case of no control: A = ∅, and one may view (2.2)

as the concatenation of the uncontrolled (2.1) on each [τn, τn+1) plus the instantaneous jumps
Xt,x,A
τn = Xt,x,A

τn− + zn.
Let π : x 7→ R be the running reward function, and κ : (x, z) 7→ R be the impulse cost

function, representing the net revenue of applying impulse of size z ∈ R at time t and state x.
Typically κ(x, z) < 0, capturing the cost of moving Xt from x ∈ X to x + z ∈ X . We assume
a finite horizon T with a respective terminal condition φ(XT ). The controller aims to maximize
discounted expected reward

E

∫ T

0
e−rtπ(X0,x,A

t )dt+
∑

n:τn<T
e−rτnκ(X0,x,A

τn− , zn) + e−r(T−t)φ(X0,x,A
T )

→ max! (2.3)

on the horizon T <∞, where r ≥ 0 is the discount factor. Above we assume that π, φ are such
that E0,x

[∫ T
0 e−rt|π(X∅t )|dt+ |φ(X∅T )|

]
<∞.

For an admissible strategy A, denote by

Jt,T (x;A) :=
∫ T

t
e−r(s−t)π(Xt,x,A

s )ds+
∑

n:τn<T
e−r(τn−t)κ(Xt,x,A

τn− , zn) + e−rTφ(Xt,x,A
T ). (2.4)

the reward from applying the strategy A on the interval [t, T ] and starting with Xt = x. Then
our goal is to evaluate the value function V : [0, T ]×X → R,

V (t, x) := sup
A∈At

Et,x

[∫ T

t
e−rsπ(Xs)ds+

∑
n

e−r(τn−t)κ(Xτn−, zn) + e−r(T−t)φ(XT )
]

(2.5)

= sup
A∈At

E [Jt,T (x;A)] .

75



Mike Ludkovski

The infinitesimal generator of the uncontrolled X∅ is

Lu(t, x) := ru(t, x)− µ(x)∂u(t, x)
∂x

− 1
2σ

2(x)∂
2u

∂x2 (t, x)− ∂u(t, x)
∂t

.

Also define the intervention operator
Mu(t, x) := sup

z∈Ξ
{u(t, x+ z)− κ(x, z)}.

Optimality for the controller’s actions implies that V (t, x) ≥ MV (t, x) for all (t, x). At the
same time, Ito’s lemma implies that LV (t, x) ≥ π(x). Putting the two together yields the quasi-
variational inequality (QVI)

min (LV (t, x)− π(x), V (t, x)−MV (t, x)) = 0 (2.6)
with the boundary condition V (T, x) = φ(x). The analytic approach then characterizes V as
the viscosity solution of the QVI (2.6), see e.g. Chapter 6 in Oksendal and Sulem [30]. HJB-
driven methods either attempt to find a classical smooth solution to the QVI, or consider finite-
difference schemes for (2.6); the challenge being the non-local operatorM.

2.1. Dynamic Programming Equation

For the remainder of the article I adopt the discrete-time paradigm, where decisions are made
at K pre-specified instances t0 = 0 < t1 < · · · < tk < tk+1 < · · · < tK = T , where typically we
have tk = k∆t for a given discretization step ∆t. Henceforth, with a slight abuse of notation
I index everything by k and work with T = (tk)Kk=0. In particular this implies that we restrict
τn ∈ T and rule out multiple instantaneous actions, so that A consists of at most K impulses.

The dynamic programming Bellman equation for impulse control on [t, t+ ∆t] is:

V (t, x) = max
(
Et,x

[
e−r∆tV (t+ ∆t,Xt+∆t) +

∫ t+∆t

t
e−r(s−t)π(Xs)ds

]
,

sup
z∈Ξ

Et,x+z

[
e−r∆tV (t+ ∆t,Xt+∆) +

∫ t+∆t

t
e−r(s−t)π(Xs)ds

]
+ κ(x, z)

)
. (2.7)

Discretizing in time and writing V (k, x) ≡ V (tk, x), etc. we substitute

Et,x[
∫ t+∆t

t
e−r(s−t)π(Xs)ds] ' π(x)∆t

and end up with
V (k, x) = π(x)∆t+ max(Q(k, x),M(k, x)),

where Q(k, x) = Et,x
[
e−r∆tV (k + 1, Xk+1)

]
is the so-called Q-value and

M(k, x) = sup
z∈Ξ
{Q(k, x+ z) + κ(x, z)}.

The latter intervention operator captures the value of making the best possible impulse. In line
with above, we view optimal impulse control as a two-stage sequential decision making. At each
time period k, the controller must decide whether to continue (0) or act ( 6= 0). In the latter
case, she must further select the best action z∗. This matches the appearance of max in V (t, x).
One should continue if the Q-value dominates the intervention value, and one should impulse
otherwise. Within the Markovian structure of (2.2) the impulse strategy can be encoded as
mapping each input x according to the respective feedback action map Zk(x) ∈ {0} ∪ Ξ:

Zk(x) = arg max
z
{Q(k, x+ z) + κ(x, z)} · 1{M(k,x)>Q(k,x)}. (2.8)

The action map Zk gives rise to the action region
Sk := {x : Zk(x) 6= 0} ⊆ X ,

76



Regression Monte Carlo for Impulse Control

where the optimal choice is to act.
Regression Monte Carlo proceeds by recursively constructing surrogates Q̂(k, · ) that are used

to induce the respective Ẑk according to (2.8). The inductive logical loop is achieved by employing
Ẑk to define the forward Jk,K(x; Ẑ). To do so, given any set of (admissible) action maps Zk:K( · )
we define the corresponding discrete-time controlled state process Xx,Z according to the Euler
scheme: Xk = x and

Xx,Z
k+1 = Xx,Z

k + µ(Xx,Z
k )∆t+ σ(Xx,Z

k )∆Wk + Zk where Zk ≡ Zk(Xx,Z). (2.9)
Note that the action is only applied at the end of the period. The respective total revenue along
the path Xx,Z is then (setting κ(x, 0) ≡ 0)

Jk,K(x;Zk:K) =
K−1∑
`=k

e−r(t`−tk)
{
π(Xx,Z

` ) · (t`+1− t`)+κ(Xx,Z
` ,Z`)

}
+e−r(T−tk)φ(Xx,Z

K ). (2.10)

On a given path, we can also record the pathwise realized impulse times τn and respective
impulses zn:

τn = min{k > τn−1 : Ẑk(Xx,Ẑ
k ) > 0} (2.11)

zn = Ẑk(Xx,Ẑ
τn ). (2.12)

Denoting by Z∗ the optimal action map, we have that the true Q-value satisfies
Q(k, x) = Ek,x [Jk,K(x;Z∗k:K)] . (2.13)

In RMC, Q(k, · )’s are replaced with Q̂(k, · ); the latter induce Ẑk. Finally, Ẑk:K is used via (2.13)
to characterize and fit Q̂(k − 1, · ). The resulting loop is initialized with V̂ (K,x) = φ(x) and
proceeds as follows:

For k = K − 1, . . . , 1 repeat:

(1) Learn the Q-value Q̂(k, · ) ' E
[
e−r∆tV̂ (k + 1, Xk+1)

∣∣Xk = ·
]
;

(2) Evaluate the intervention function M̂(k, · ) = supz∈Ξ{Q̂(k, ·+ z) + κ( · , z)}

(3) Set

Ẑk(x) :=
{

0 if Q̂(k, x) > M̂(k, x)
arg maxz{Q̂(k, x+ z) + κ(x, z)} otherwise.

(2.14)

(4) Record V̂ (k, x) := max
(
Q̂(k, x), M̂(k, x)

)
+ π(x)∆t.

Note that in principle the entire V̂ is superfluous. Indeed, we have generically that for any w

Q(k, x) = E
[
Jk,k+w(x;Z∗) + e−r∆twV (k + w,Xk,Z∗

k+w )
]
.

The look-ahead horizon w ∈ {1, . . . ,K − k} allows to combines pathwise rewards based on
Ẑ and the approximate value function V̂ w-steps into the future [20]. We focus on the cases
w = 1, w = K − k and w fixed that correspond to learning

w = 1 : Q̃(1)(k, x) = Ek,x
[
π(x)∆t+ e−r∆tV̂ (k + 1, Xk,∅

k+1)
]

w fixed : Q̃(w)(k, x) = Ek,x
[
Jk,k+w(x; Ẑk:k+w) + e−rw∆tV̂ (k + w,Xk,Ẑ

k+w)
]

w = K − k : Q̃(LS)(k, x) = Ek,x
[
Jk,K(x; Ẑk:K) + e−r(K−k)∆tφ(Xk,Ẑ

K )
]

77



Mike Ludkovski

The choice w = 1 is analogous to the Tsitsiklis-van Roy [31] scheme for optimal stopping: simulate
one-step-ahead paths and regress π(Xk)∆t+ V̂ (k+ 1, Xk+1) against Xk. The choice w = K − k
is analogous to the Longstaff–Schwartz [28] scheme, where we regress the full future rewards
to go on the interval {k, k + 1, . . . ,K} against Xk. These choices are not numerically identical,
because Q̂(k + 1, x) 6= E

[
Jk+1,`(x; Ẑk:`)|Xk+1 = x

]
for different `’s due to the approximation

error. In all examples below, we utilize the Longstaff–Schwartz version with w = K − k, so that
V̂ is never computed until the very end.

2.2. Algorithm

The proposed RMC approach reduces optimal impulse control to a double sequence of proba-
bilistic function approximation tasks. The primary task entails fitting a functional approximator
Q̂ based on empirical simulations and then utilizing a statistical model to capture the observed
input-output relationship. To do so, we define a regression model and the training set used as
input to the regression model. The three ingredients are the inputs x1:N ∈ X , the outputs y1:N

and the approximation class Hk. The inputs are the sampled states at step k. The outputs
are viewed as a random realization Y (x) of the pathwise reward starting at (k, x) such that
Ek,x[Y (x)] = Q(k, x). Specifically, they are the realizations of Jk,K(x; Ẑk:K) along a set of inde-
pendent paths x(k),n that start with x(k),n

k = xn. Statistically these y1:N are linked to the inputs
by the observation model

Y (x) = E[Y (x)] + ε(x), E[ε(x)] = 0, Var(ε(x)) = σ2
ε (x). (2.15)

Given a training collection D = x1:N henceforth called the simulation design, we collect the
simulation outputs y1:N = Y (x1:N ) and then obtain the approximate continuation value Q̂(k, · )
(viewed as a statistical object, rather than say a vector of numbers) as the empirical L2 minimizer
in the given function space H. Namely we minimize the penalized mean squared error from the
observations,

Q̂(k, · ) = arg min
f∈H

N∑
n=1

(f(xn)− yn)2 + λ‖f‖H. (2.16)

The summation in (2.16) is a measure of closeness of f to data, while the right-most term
penalizes the fluctuations of f to avoid over-fitting.

Indexing everything by the time steps k = 1, . . . ,K and allowing for time dependence we
summarize the following notation:

• Nk: number of training inputs at step k;

• Dk: simulation design, i.e. the collection of training inputs x1:Nk , |Dk| = Nk

• Hk: functional approximation space where Q̂(k, · ) is searched within;

• y1:Nk
k pathwise samples of reward-to-go used as the responses in the regression model.

Equipped with above, Algorithm 1 presents the overall scheme that abstracts from the regres-
sion module for fitting Q̂(k, · ) and subsequently M̂(k, · ). The algorithm matches the mlOSP
template from [29] as implemented in the eponymous R package.

The output of Algorithm 1 is the approximate action maps Ẑk( · ). Once computed, they
induce the expected reward E

[
J0,K(x; Ẑ0:K)

∣∣X0 = x
]
. which can be evaluated over an out-of-

sample set of test scenarios. Thus, we compute the sample average reward across a fresh set of

78



Regression Monte Carlo for Impulse Control

Algorithm 1 Regression Monte Carlo for Impulse Control based on mlOSP template.
Require: K = T/∆t (time steps), (Nk) (simulation budget per step), w (path lookahead)
1: for k = K − 1, . . . , 0 do
2: Generate training design Dk := (x(k),1:Nk

k ) of size Nk

3: Set y1:Nk
k+1 ← 0 // pathwise rewards

4: for ` = k + 1, . . . , k + w ∧K do
5: Sample x(k),n

`−1 7→ x
(k),n
` // pathwise controlled trajectories

6: Set ynk+1 ← ynk+1 + π(x(k),n
`−1 )∆t

7: Evaluate m(k),n
` = M̂(`, x(k),n

` ) and q(k),n
` = Q̂(`, x(k),n

` )
8: Set x(k),n

` ← x
(k),n
` + Ẑ`(x

(k),n
` ) for n where m(k),n

` > q
(k),n
` // impulse

9: Set ynk+1 ← ynk+1 + κ(x(k),n
` , Ẑ`(x

(k),n
` )) for n where m(k),n

` > q
(k),n
`

10: end for
11: Set ynk+1 ← ynk+1 + e−rw∆t max(Q̂

(
k + w, x

(k),n
k+w

)
, M̂

(
k + w, x

(k),n
k+w

)
).

12: Fit Q̂(k, · ) by regressing {y1:Nk
k+1 } on {x

(k),Nk
k }

13: end for
14: Return fitted objects {Q̂(k, · )}K−1

k=0

(x1:N ′,Ẑ
k , k = 1, . . . ,K, xn′0 = x),

V̌ (0, x) = 1
N ′

N ′∑
n′=1


K−1∑
k=0

e−rtkπ(xn
′,Ẑ
k )(tk+1 − tk)−

∑
m:τn′m <T

e−rτ
n′
m κ(xn

′,Ẑ
τn′m

, zn
′

m )

 (2.17)

where (τm, zm) are the pathwise impulse times and impulse amounts, see (2.11)–(2.12). Note that
V̌ (0, x) is an unbiased estimator of E

[
J0,K(x; Ẑ0:K)

∣∣X0 = x
]
and the latter is a lower bound on

the true optimal expected reward, so that
E[V̌ (0, x)] < V (0, x).

2.3. Relation to Stationary Impulse Control

The cited analytical works consider the infinite horizon case of solving for

v(x) = Ex

[∫ ∞
0

e−rsπ(Xs)ds+
∑
n

e−rτnκ(Xτn−, zn)
]
.

Assuming time-stationary dynamics forX∅, the optimal strategy is also time-stationary, meaning
that there is a feedback action map Z∗(x) that is independent of t and fully characterizes the
impulses.

In contrast, the solution constructed above is explicitly time-dependent, as it is specified by
Q̂k that are intrinsically distinct for different k. Nevertheless, when far from the horizon K, the
time-dependence should be intuitively weak, and we expect to recover the time-stationary Z∗(x)
Indeed, informally if we parameterize in terms of time-to-maturity Ṽ K−k( · ) := V (k, · ;K) we
observe that by induction, V̂ (k, · ;K) = V̂ (k+1, · ;K+1) since they both correspond to running
the backward RMC algorithm for K + 1− (k + 1) = K − k rounds. Thus, Ṽ `( · ) is well defined
and the regime ` → ∞ corresponds to being far from the terminal condition so that we expect
Ṽ ` → v( · ) as `→∞.

The above perspective suggests that for k small, we can validate our Q̂(k, · ) by comparing
with v( · ). Conversely, we may approximate v( · ) by Q̂(k, · ;K) for k small and K large. To speed
up that convergence, we recall model predictive control where during forward scenario generation

79



Mike Ludkovski

one uses Zk (rather than Z`, ` = k+ 1, . . . , k+w for all time-steps. In other words, we compute
expected reward based on a time-stationary control that is derived from the latest (in the sense
of backward induction) surrogate Q̂(k, · ). The resulting Jk,K(x; Ẑk) captures the reward over
K−k steps and its expectation would be a good approximation of v(x) for K large. Using model
predictive control in Algorithm 1 is analogous to a policy iteration search for infinite-horizon
problems; it reinterprets K as the receding horizon depth.

3. Implementation

In general, there is a huge range of potential statistical models for empirically fitting a Q̂(k, · ).
Thus, any statistical learning framework could be applied; see the mlOSP package that allows the
use of more than a dozen different regression modules, linking to the vast library of R regression
packages, from random forests to support vector machines. However, the fact that Q̂ is necessary
to evaluate M̂ imposes requirements on what would be good surrogates. For example, piecewise
models (like a random forest, multivariate adaptive regression splines (MARS), or a hierarchical
linear model) would tend to be inappropriate, as they would lead to discontinuities in defining
Ẑk(x) and hence unstable schemes due to error backpropagation. Similarly, polynomial bases
might be problematic since their gradient tends to be highly oscillatory and therefore lead to
unstable behavior in Ẑk(x). Overall, we seek smooth regression models with an interpretable
gradient.

Our two main proposals are smoothing splines (SS) and Gaussian processes (GP). Splines
intrinsically target C2 fits, and tend to be highly robust to noisy data. Their main limitation
is poor scalability, but otherwise they are a great default choice in 1 or 2 dimensions. Gaussian
Processes yield smooth functional interpolators that work well with non-uniform training designs.
Moreover, despite being non-parametric, GPs yield analytic gradients.

Both SS and GPs consider (2.16) for a certain smoothing parameter λ ≥ 0 and a Reproducing
Kernel Hilbert Space (RKHS) H. The representer theorem implies that the minimizer of (2.16)
therefore has an expansion in terms of the RKHS eigen-functions

Q̂(k, · ) =
N∑
n=1

αnC( · , xn). (3.1)

Note that this is a non-parametric fit since it involves the sum over the data-driven C( · , xn), n =
1, . . . , N .

Smoothing splines. Thin-plate splines take the RKHS HTPS as the set of all twice contin-
uously-differentiable functions with ‖f‖2HTPS =

∫
R{f ′′(x)}2dx. As λ → ∞, the optimization

in (2.16) penalizes any convexity and ultimately reduces to the linear fit Q̂(x) = β0 + β1x.
A common parametrization for the smoothing parameter λ is through the effective degrees
of freedom statistic dfλ; one may also select λ adaptively via cross-validation or MLE [25,
Chapter 5]. The respective eigenfuctions are CTPS(x, x′) = |x−x′|2 log |x−x′|, and optimization
of (2.16) gives a smooth C2 surrogate has the explicit form

Q̂TPS(x) = β0 + β1x+
N∑
n=1

αn|x− xn|2 log |x− xn|. (3.2)

See [27] for implementation of RMC via splines.

Gaussian Processes. GPs start with a positive definite kernel c(x, x′) which defines the
function spaceHC and take λ = 1/2. The corresponding norm ‖ · ‖H has a spectral decomposition
in terms of differential operators [32, Chapter 6.2]. An intuitive interpretation is that GPs find

80



Regression Monte Carlo for Impulse Control

Q̂(k, · ) through applying Gaussian conditioning equations to the training data (x1:N , y1:N ). To
do so, a GPR model specifies the covariance function c(x, x′) and a mean functionm(x), assumed
for simplicity to be constant m(x) ≡ β0. The GP estimate is then

Q̂GP (x) = β0 + CT (C + σ2
ε I)−1(y− β1) (3.3)

where I is the N ×N identity matrix, 1 is the N vector of 1’s,
wherey = [y1, . . . , yN ]T , CT = [c(x∗, x1;ϑ), . . . , c(x∗, xN ;ϑ)], (3.4)

and C is N × N covariance matrix described through the kernel function Ci,j = c(xi, xj ;ϑ).
Henceforth we think of f̂ as a (smooth) function, even though it is only defined pointwise
via (3.3). The role of σ2

ε is to smooth out observation noise in (2.15), interpreted as being
i.i.d. Gaussian with the respective variance.

A GPR is implementing by fitting the hyper-parameters ϑ governing the covariance kernel,
the mean function and the observation noise. The user first specifies a parametric family and
then optimizes, typically through the nonlinear MLE procedure. The GP kernel c(x, x′) controls
the smoothness (in the sense of differentiability) of P̂ and hence the roughness of its gradient.
A popular choice for c( · , · ) is the (anisotropic) squared exponential (SE) family, parametrized
by the lengthscale `len and the process variance σ2

p :

cSE(x, x′) := σ2
p exp

(
−(x− x′)2

2`2len

)
. (3.5)

The SE kernel (3.5) yields infinitely differentiable fits Q̂(k, · ) and has hyperparameters ϑ :=
(`len, σ

2
p, σ

2
ε ). Other popular kernels include those from the Matérn family.

Remark. Artificial Neural Networks with smooth activation functions could be another appro-
priate framework, facilitating training via back-propagation.

3.1. Approximating the Intervention Function

The computation of Ẑk(x) is embedded deep in Algorithm 1 and drives the outputs y1:N
k+1 used

to fit Q̂. In this section I discuss how that piece of the solver should be implemented. The base
implementation is to directly solve (2.14) by calling an optimization sub-routine. The objec-
tive function is given implicitly in terms of the object Q̂(k, · ) so ostensibly a general-purpose,
gradient-free optimizer may be needed. Given that M̂(k, · ) has to be evaluated repeatedly on
each forward path emanating from each training input x(k),n this is the major computational
bottleneck. To overcome it, several efficiencies could be exploited.

First, one may speed up the computation by using a gradient-based optimizer. This requires
to specify not just Q̂(k, · ) but also ∂xQ̂(k, · ) in an explicit functional way. The latter is available
for several types of surrogates, including splines and GPs. For the latter, we recall that given a
fitted GP model Q̂(k, · ), its gradient forms another GP with the respective mean at input x∗
being

g∗(x∗) := ∂Q̂

∂x
(x∗) = ∂c

∂x
(x∗,x)(C + σ2

ε I)−1(y− β01), (3.6)

Thus, the gradient of the surrogate is g∗(x∗) in (3.6) which can be interpreted as formally
differentiating the expression in (3.3) with respect to x. For example, for the SE kernel (3.5) we
have:

∂cSE
∂x

(x, x′) = x′ − x
`2len

cSE(x, x′).

Second, one may exploit specific features of the problem setting. As a foremost example, I now
discuss the common case where κ(x, z) is linear in z, namely κ(x, z) = c0z+c1 for some constants

81



Mike Ludkovski

c0, c1. In this situation, the optimization defining M̂(k, x) simplifies considerably. Indeed, the
first order conditions reduce to searching for the “global” impulse target S∗k :

S∗k := arg supz{Q̂(k, x+ z) + κ(x, z)} = arg supy{Q̂(k, y) + c0(y − x) + c1}

⇐⇒ ∂xQ̂(k, S∗k) = −c0. (3.7)
In particular, the target level S∗k is independent of the current state x, and moreover can be de-
termined by a single root search on the gradient of the value function. This drastically simplifies
and stabilizes the numerics, since we just need to determine S∗k once, and can then immediately
compute M̂(k, x) = Q̂(k, S∗k) + c0S

∗
k − c0x + c1 for any x. Consequently, the action region is

Ŝk = {x : Q̂(k, S∗k)− Q̂(k, x) > c0(x− S∗k)− c1}.
Third, when computing M̂(k, x1:Nk) for each training input x1:Nk , one can record and save

the resulting optimal impulse amount z1:Nk
k . Then in subsequent calls, instead of again solving

for M̂(k, x′) at some new x′ by re-rerunning the optimizer, one may instead train a separate
independent functional representation Ẑ(k, · ) based on the dataset (x1:Nk

k , z1:Nk
k ). Thus, we could

build an auxiliary surrogate Ẑ(k, · ) (e.g. through another GP surrogate) and then use Ẑ(k, x′)
instead of arg maxz{Q̂(k, x′ + z) + κ(x′, z)}. This substitutes the prediction Ẑ(k, · ), which is
typically much faster to compute, instead of calling the optimizer.

3.2. Training Designs

To train the regression surrogate, the user must supply the simulation design(s) Dk. See [29] for
a detailed description of various options for training optimal stopping emulators within mlOSP.
With impulse control, the major difference is that (Xk) is no longer autonomous. Thus, it no
longer makes sense to construct Dk ∼ p (Xk) as a sample from the uncontrolled dynamics.
Instead, I propose to directly specify Dk, building on the idea that the quality of Q̂ reflects the
geometry of Dk. One learns best in regions where the training samples lie. Since the optimally
controlled (X∗k) typically has a stationary distribution (modulo time-dependence imposed by
the finite horizon), one may select a training region based on a prior guess of the latter. For
example, one may choose a hyper-rectangle D and then set Dk as a finite, space-filling sample
from D, yielding Dk that looks like a sample from a uniform density on D. Some of the ways
to achieve this are This can be achieved either through a deterministic lattice, or i.i.d. Uniform
(stratified) sampling, or a low-discrepancy (Quasi Monte Carlo) sequence. All these choices will

• Direct specification of Dk, e.g. as a fixed lattice seq(a,b,by=∆x);

• Probabilistic sampling of Dk, either using i.i.d. Uniforms, or a variance reduced variant
of the former (e.g. stratified sampling) or a Latin Hypercube sampling method (package
lhs in R);

• Generation of Dk from a (scrambled) low-discrepancy sequence (LDS), such as Sobol
(package randtoolbox in R). Note that in this case Dk is deterministic. This is specified
by the qmc.method field that supports LHS (default) and various LDS.

Beyond targeting a uniform density of training samples on a given region, one may also take
non-uniform Dk that preferentially place more training inputs in some parts of X . For example,
we may put more xk’s in the region where we expect the impulse target to be, in order to improve
the quality of Q̂ there, and hence the quality of M̂ . The underlying intuition is that learning is
achieved through exploration (sampling a diverse collection of xk’s) and exploitation (sampling
xk’s that are likely to be encountered on forward controlled paths).

A further training option that I highlight is replication. A replicated design is akin to a Monte
Carlo forest, in the sense that some training inputs appear multiple times. In a most common

82



Regression Monte Carlo for Impulse Control

batched design, we have Nunique distinct sites, the so-called macro-design, and each unique xn is
then repeated Nrep times, so that

D = {x1, x1, . . . , x1︸ ︷︷ ︸
Nrep times

, x2, . . .︸ ︷︷ ︸
Nrep times

, x3, . . . , . . . , xNunique}, (3.8)

where the superscripts now index unique inputs and the total training budget for Q̂(k, · ) is
|D| = Nunique×Nrep The corresponding simulator outputs are denoted as y1,1, y1,2, . . . , yn,i, . . . ,
yNunique,Nrep .

A replicated design allows to pre-average the corresponding y-values, yn := 1
Nrep

∑Nrep
i=1 yn,i,

and then calling the regression module on the reduced dataset (x1:Nunique , y1:Nunique). Replication
with pre-averaging offers a simple way of reducing the variance of observations. This is often
desirable because the pathwise rewards tend to be highly volatile especially over longer periods
of time, and many functional approximators struggle under low signal-to-noise settings. With
high degree of replication, one can view yn as almost deterministic, so that regression effectively
reduces to interpolation.

3.3. Illustration

To illustrate the overall workflow of solving an optimal impulse problem, I present a few brief
code snippets. These utilize the mlOSP constructs and can be directly reproduced by any reader
who installs the package. Consider impulsing a 1-D Geometric Brownian Motion (GBM) process
with uncontrolled dynamics

dX∅t = µX∅t dt+ σX∅t dWt, X∅0 = x0,

with scalar parameters µ, σ, x0. Thus, (X∅t ) can be simulated exactly by sampling from the
respective log-normal distribution. The running payoff is of concave power-type π(x) = xγ/γ,
0 < γ < 1, and the intervention costs are linear κ(x, z) = c0 · z + c1. This setup is motivated
by Federico et al. [23] who considered irreversible investment with fixed adjustment costs. The
state process (Xt) represents an economic indicator, such as the production capacity of a firm
which drives the revenue rate π(Xt).

As discussed above, linear impulse costs yield an optimal strategy of (s, S) type: intervene as
soon as (Xt) goes below s and bring it back up to S > s. Thanks to the linearity of GBM and
κ(x, · ), and the power-form of π(x) the infinite-horizon problem is known to have an explicit
solution

ṽ(x) = Bxm + Cxγ/γ, s =
(
c0(m− 1)
C(m− γ)

) 1
γ−1

, (3.9)

m =
(1

2 −
µ

σ2

)
−

√(1
2 −

µ

σ2

)2
+ 2r
σ2 ,

C = 1
r − µγ + 0.5γ(1− γ)σ2 , B = C(1− γ)

m(m− 1)s
γ−m. (3.10)

Thus, with infinite horizon the controlled (Xt) will be a time-stationary renewal process and
undergo a cyclical behavior with renewal times τn+1 = τn + inf{t > 0 : Xτn,S

t ≤ s} and
zn+1 = S − s.

To implement the above instance, one starts by defining the model, which is a list of
(a) parameters that determine the dynamics of (X∅t ) in (2.1); (b) the running payoff function
π(x); (c) the impulse function κ(x, z) and (d) the tuning parameters determining the regression
surrogate specification. In the example I take r = 0.08, µ = −0.07, σ = 0.25, c0 = −1, c1 = −10
and square-root running reward γ = 0.5 which yields the time-stationary solution thresholds
s = 8.749, S = 56.99. I use a finite horizon of T = 10 with ∆t = 0.1, i.e. K = 100 time-steps.

83



Mike Ludkovski

modelFRT <- list(dim=1,
sim.func=sim.gbm,
r=0.08, # discount factor
div=0.15, # drift is mu=-0.07
sigma=0.25, # volatility
x0=50, # initial state
impulse.fixed.cost = 10, # fixed
impulse.cost.linear = 1, # linear
impulse.func = lin.impulse,
imp.type = "exchrate",
gamma = 0.5,
running.func = function(x)(2*sqrt(x)), # cont profit rate pi
T=10, # horizon
dt=0.1, # time step; 100 steps total
pilot.nsims=0,
batch.nrep = 10, # replicates for each unique input
nk = 20, # number of spline knots
N = 541,
)
input.dom = c(seq(1,10,by=0.05), seq(10.25,100,by=0.25))

Next, we must choose a solver scheme, namely specifying the surrogate type and the training
sets. In mlOSP, the solver implementing Algorithm 1 is named osp.impulse.control and comes
with a method field that controls the surrogate, and input.domain that controls the simulation
designs. The code below utilizes a spline surrogate that requires specifying the number of knots,
already set via nk field in modelFRT above. For the input.domain I utilize a non-uniform lattice
that is dense for x ∈ [1, 10] (region of the action set) and less so for x ∈ [10, 100]. I also employ
replication, with each input replicated batch.nrep=10 times.

For the terminal condition I take the expected value of future running rewards given the
current state and no more impulses, i.e. Q̂(K,x) = φ(x) = Ex

[∫∞
0 e−rtπ(X∅t ) dt

]
= Cxγ/γ where

C is from (3.10). This is interpreted as T being the horizon for actions, thereafter X evolves
endogenously without any further controls.

spl.solver <- osp.impulse.control(modelFRT,
input.domain = input.dom,method="spline")

Note that no output is printed: the produced object spl.solver contains an array of 99 (one
for each time step, except at maturity) fitted smoothing spline surrogates for Q̂(k, · ). Technically,
spl.solver is a list that has a few other diagnostics beyond the collection of the smooth.spline
objects.

Figure 3.1 visualizes the fitted Q̂ from three time-steps. To do so, we simply predict the
Q-value object over a collection of test locations. In the Figure, this is done for k = 1, 30, 60.
The middle panel shows the gradient ∂xQ̂(k, · ), obtained by finite-differencing, at the same time
steps k.

To better understand the resulting strategy Ẑ0:K we build an independent database of forward
controlled paths. This is done via the forward.impulse.policy command that evaluates (2.17)
and also records all the associated actions (impulse amounts and times). The right panel of
Figure 3.1 shows two different controlled forward paths based on the computed Ẑ0:K . On the
blue path there are 3 impulse times τn; on the purple one only two. One can clearly see the
(s, S) policy where (XẐt ) is impulsed whenever it gets too low and is then brought up to about
S∗k ' 60 which is the target level.

84



Regression Monte Carlo for Impulse Control

Figure 3.1. A 1D capacity expansion instance. Left: Q-value based on a
Smoothing Spline emulator at k ∈ {1, 30, 60}. Middle: corresponding gradient
∂xQ̂(k, x). The target level S∗k is the threshold where ∂xQ̂(k, S∗k) = 1. Right: two
resulting controlled paths of XẐ . Dots indicate the times τn′k of impulses.

Below we also show code to plot the impulse strategy, namely the impulse boundary s∗k and
the impulse target levels S∗k , displayed in Figure 3.2. Note that the shown s∗k is based on the
forward paths, so at some times k there is no recorded s∗k since none of the forward paths were
impulsed at that specific k (impulses are not so frequent). The Figure shows the time-stationary
s, S values that confirm the good approximation by the present solver. One can also observe the
time-dependence which manifests itself through the agent being impatient as problem horizon is
approached. As a result, impulses are applied sooner (lower timing value, i.e. lower opportunity
cost of acting) and we see a “boundary layer” as k → K. The slight fluctuations observed in
s∗k, S

∗
k are due to Monte Carlo-driven approximation errors and can be decreased with larger

training sets.

S.target <- rep(0,100)

for (j in 1:99)
S.target[j] <- lin.impulse(seq(1,10,by=1),modelFRT,

spl.solver$fit[[j]],ext=TRUE)$imp.target[1]

# forward paths
fi <- forward.impulse.policy(array(10,dim=c(10000,1)), 100, spl.solver$fit,modelFRT)
# these are the s-values
plot(fi$bnd, xlab=’Time Step k’, ylab=’State x’, pch=19,cex=1.2, col="red", ylim=c(0,65))
points(S.target[1:99], cex=1.2, col="blue",pch=19)
abline(h=c(56.99,8.749),lty=2,col=c("blue","red")) # solution of the inf-horizon

4. Case Studies

In this section I present two more case studies that showcase other problem settings and further
features available in mlOSP.

4.1. Faustmann Problem of Forest Rotation

For the next example of an impulse control problem amenable to Algorithm 1, I take up the
problem of forest management as nicely summarized and analyzed by Alvarez and co-authors [4,
6]. Let Xt represent the value of forest stand, i.e. the economic value of existing timber. Forest
growth is modeled as a stochastic process: timber increase is uncertain and fluctuates due to
weather, precipitation and other environmental effects. Droughts or insect infestations might
reduce forest stand, justifying the use of stochastic differential equations for modeling (Xt).

85



Mike Ludkovski

Figure 3.2. Threshold boundary s∗k (dots towards the bottom) and threshold
target levels S∗k (line towards the top) for the irreversible investment case study.

The controller aims to maximize total profit from cutting down and selling timber on a given
time horizon T . This is achieved through carrying out a sequence of so-called forest rotations. At
each rotation, the forest stand is cut down and sold. The number of rotations is stochastic and
up to the forest manager. The horizon T represents the lease term for the timberland, measured
in years. The objective functional is then

E

 ∑
n:τn<T

e−rτnκ(Xτn−, zn)

 , (4.1)

where the payoff function κ captures the value of selling zn timber, subject to the cutting costs,
and r is the intertemporal discount rate. Above we assume zero salvage value at T , φ(XT ) ≡ 0.
As might be expected, the timber will be cut at some time-dependent threshold S∗k.

In the classic formulation, the problem is stated on infinite horizon, the dynamics of Xt are
linear and time-homogeneous, and the post-rotation level Xτk ≡ x is pre-specified. This offers
an explicit solution, see [4], who showed that the action region is Sk = {x > S∗} where S∗ is
the maximizer of a certain nonlinear equation. The finite-horizon version is analyzed in [12] and
I reproduce their example where (X∅t ) is a standard arithmetic Brownian Motion, r = 0.1, and
there is a fixed cost for each rotation, κ(x, z) = (z − 1)+. Thus, the forest is always cut down
to nominal level zero x = 0. This means that zn = Xτn−. The reference impulse boundary is
S∗ = 1.84.

I take a horizon of T = 5 years and time steps of ∆t = 0.1, yielding K = 50 periods. For
the regression, I utilize a Gaussian Process emulator with the squared-exponential kernel (3.5)
and hyperparameters fitted via Maximum Likelihood Estimation, as done in the DiceKriging
package. I then use the exact surrogate gradient based on (3.6) to efficiently find S∗k in (2.8).
For the training simulation design, the particular structure of this formulation implies that it is
important to obtain an accurate estimate of Q̂(k, 0). To this end, I consider training in a Monte
Carlo forest like fashion, employing a high degree of replication so that each unique input will
have multiple forward paths emanating from it. Namely, I take 100 unique inputs on a lattice
between [−0.25, 2.5], each replicated 100 times, for a total of 10,000 forward training paths.

The left panel of Figure 4.1 effectively reproduces Figure 1 in Belak et al. [12]; in contrast to
that paper where the impulse boundary is obtained from a solution of an integral equation and
requires specific assumptions on the impulse cost function and dynamics of (Xt), my method
is completely generic and can be trivially re-solved if any of the ingredients were to change. In

86



Regression Monte Carlo for Impulse Control

Figure 4.1. Left: estimated impulse boundary Ŝ∗k as a function of time step k,
infinite horizon threshold S∗ is shown as a dashed line. To smooth out minor
numerical artifacts we also display a smoothed estimate of S∗ as a blue curve.
Right: value function V̂ (k, 0) at zero.

Figure 4.1 we can clearly observe the effect of the terminal condition, where the manager will cut
down even a bit of forest ahead of the deadline T that would give him no profit whatsoever. One
also notes that the estimated impulse boundary is below that of the infinite-horizon problem.
This arises due to (i) restricting actions to take place in Tk, here with separation ∆t = 0.2, this
is known to induce the manager to act sooner; (ii) the finite horizon that remains non-negligible
with T = 5, manifested by the impulse boundary slowly moving up as k decreases. The right
panel of Figure 4.1 shows the estimated value V̂ (k, 0) which also displays time-dependence and
indicates convergence (i.e. approaching time-stationary) with about 5 years until maturity.

4.2. Two Dimensional Capacity Expansion

In the 2-dimensional version of capacity expansion, the state processes are the production price
(Pt) and the current capacity Ct. The price is exogenous and stochastic, while the capacity is
fully endogenous and deterministic. We refer to [13] and [24] who provided explicit solutions (up
to solving an integral equation) in some special cases.

The price follows Geometric Brownian motion
dPt = µPtdt+ σPt dWt

and the capacity undergoes deterministic exponential decay/aging with rate δ:

Ct = e−δtC0 +
∑
k

zke
−δ(t−τk)

with profit function π(Pt, Ct) = PtC
α
t for α < 1, representing decreasing efficiency of adding more

capacity. We identify above with a two dimensional state Xt ∈ R2
+ where the impulses z ∈ R+

only affect the second coordinate: an impulse of size z leads to Pτn = Pτn− and Cτn = Cτn−+ z.
Obvious generalizations to handle the two coordinates are straightforward to handle in code and
are effectively abstracted away by the package as far as the user is concerned.

Following [24] I consider concave investment costs κ((p, c), z) = zβ with β < 1 and β > α.
The concavity of κ encourages making large investments. The quantity Yt := PtC

α−β
t can be

interpreted as the firm’s return on assets (ROA) and affords dimension reduction in the case
of log-linear dynamics as above. Indeed [24] shows that with these choices and infinite horizon,

87



Mike Ludkovski

Figure 4.2. Two dimensional finite horizon impulse control problem inspired
by [24]. Left: 4 controlled trajectories of Xt = (Pt, Ct). Capacity Ct decays ex-
ponentially without impulses. Right: impulse target (p, c) 7→ c + Ẑk(p, c) for a
representative time step k.

V (p, c) = cβv(cα−βp) where v(y) = B0y + B1y
γ for some explicit constants B0, B1, γ and the

optimal impulses are of (s, S)-type in Yt, rather than Pt, Ct separately.
Guthrie [24] considers the parameter values r = 0.04, µ = 0, σ = 0.08, δ = 0.1, β = 0.95, α =

0.5 which gives ROA threshold y0 = 0.224. Moreover, the respective optimal impulse is to
increase capacity by 178; this happens on average once every 11 years. In this setup, the problem
is strongly non-stationary: (Pt) is autonomous and can grow without bound (since µ > 0) while
Ct is impulsed upwards. Consequently, one must select time-dependent simulation designs Dk
lest the forward paths end up extrapolating, rather than interpolating Q̂.

For the terminal condition we set φ(x) = E[
∫∞
0 e−rsπ(Xs) ds |X0 = (p, c)] = pcα 1

r−µ . There is
no simple way to summarize the resulting solution; Figure 4.2 displays a few optimally controlled
paths, as well as the impulse target map (namely the arg max of M̂(k, · )) on the training set Dk,
here chosen to be a Sobol low-discrepancy sequence. We note that with the nonlinear impulse
costs, the impulse target depends nontrivially on both coordinates, increasing both in price p
and in current capacity c.

Acknowledgements

I thank the anonymous referees for useful feedback on earlier versions of this manuscript, as well
as Zhuoli Jin (UCSB) for research assistance.

References

[1] René Aid, Salvatore Federico, Huyên Pham, and Bertrand Villeneuve. Explicit investment rules with
time-to-build and uncertainty. J. Econ. Dyn. Control, 51:240–256, 2015.

[2] Luis H. R. Alvarez. A class of solvable impulse control problems. Appl. Math. Optim., 49(3):265–295,
2004.

88



Regression Monte Carlo for Impulse Control

[3] Luis H. R. Alvarez. Optimal capital accumulation under price uncertainty and costly reversibility.
J. Econ. Dyn. Control, 35(10):1769–1788, 2011.

[4] Luis H. R. Alvarez and Erkki Koskela. Optimal harvesting under resource stock and price uncertainty.
J. Econ. Dyn. Control, 31(7):2461–2485, 2007.

[5] Luis H. R. Alvarez and Erkki Koskela. Taxation and rotation age under stochastic forest stand value.
J. Environ. Econ. Manage., 54(1):113–127, 2007.

[6] Luis H. R. Alvarez and Jukka Lempa. On the optimal stochastic impulse control of linear diffusions.
SIAM J. Control Optim., 47(2):703–732, 2008.

[7] Pablo Azcue, Nora Muler, and Zbigniew Palmowski. Optimal dividend payments for a two-
dimensional insurance risk process. Eur. Actuar. J., 9(1):241–272, 2019.

[8] Parsiad Azimzadeh, Erhan Bayraktar, and George Labahn. Convergence of implicit schemes for
Hamilton–Jacobi–Bellman quasi-Variational inequalities. SIAM J. Control Optim., 56(6):3994–4016,
2018.

[9] Matteo Basei. Optimal price management in retail energy markets: an impulse control problem with
asymptotic estimates. Math. Methods Oper. Res., 89(3):355–383, 2019.

[10] Erhan Bayraktar, Andreas E. Kyprianou, and Kazutoshi Yamazaki. Optimal dividends in the dual
model under transaction costs. Insur. Math. Econ., 54:133–143, 2014.

[11] Erhan Bayraktar and Michael Ludkovski. Inventory management with partially observed nonsta-
tionary demand. Ann. Oper. Res., 176(1):7–39, 2010.

[12] Christoph Belak, Sören Christensen, and Frank Thomas Seifried. A general verification result for
stochastic impulse control problems. SIAM J. Control Optim., 55(2):627–649, 2017.

[13] Alain Bensoussan and Benoît Chevalier-Roignant. Sequential capacity expansion options. Oper. Res.,
67(1):33–57, 2019.

[14] Alain Bensoussan, R. H. Liu, and Suresh P. Sethi. Optimality of an (s, S) policy with compound
Poisson and diffusion demands: A quasi-variational inequalities approach. SIAM J. Control Optim.,
44(5):1650–1676, 2005.

[15] Abel Cadenillas and Fernando Zapatero. Classical and impulse stochastic control of the exchange
rate using interest rates and reserves. Math. Finance, 10(2):141–156, 2000.

[16] Yann-Shin Aaron Chen and Xin Guo. Impulse control of multidimensional jump diffusions in finite
time horizon. SIAM J. Control Optim., 51(3):2638–2663, 2013.

[17] Sören Christensen. On the solution of general impulse control problems using superharmonic func-
tions. Stochastic Processes Appl., 124(1):709–729, 2014.

[18] Irmina Czarna and Zbigniew Palmowski. De Finetti’s dividend problem and impulse control for a
two-dimensional insurance risk process. Stoch. Models, 27(2):220–250, 2011.

[19] Masahiko Egami. A direct solution method for stochastic impulse control problems of one-
dimensional diffusions. SIAM J. Control Optim., 47(3):1191–1218, 2008.

[20] Daniel Egloff, Michael Kohler, and Nebojsa Todorovic. A dynamic look-ahead Monte Carlo algorithm
for pricing Bermudan options. Ann. Appl. Probab., 17(4):1138–1171, 2007.

[21] Brahim El Asri and Sehail Mazid. Stochastic impulse control Problem with state and time dependent
cost functions. Math. Control Relat. Fields, 10(4):855, 2020.

[22] Brahim El Asri and Sehail Mazid. Zero-sum stochastic differential game in finite horizon involving
impulse controls. Appl. Math. Optim., 81(3):1055–1087, 2020.

[23] Salvatore Federico, Mauro Rosestolato, and Elisa Tacconi. Irreversible investment with fixed adjust-
ment costs: a stochastic impulse control approach. Math. Financ. Econ., 13(4):579–616, 2019.

[24] Graeme Guthrie. Uncertainty and the trade-off between scale and flexibility in investment. J. Econ.
Dyn. Control, 36(11):1718–1728, 2012.

89



Mike Ludkovski

[25] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data
mining, inference and prediction. Springer Series in Statistics. Springer, 2009.

[26] Jianqiang Hu, Cheng Zhang, and Chenbo Zhu. (s, S) inventory systems with correlated demands.
INFORMS J. Comput., 28(4):603–611, 2016.

[27] Michael Kohler. A regression-based smoothing spline Monte Carlo algorithm for pricing American
options in discrete time. AStA, Adv. Stat. Anal., 92(2):153–178, 2008.

[28] Francis A. Longstaff and Eduardo S. Schwartz. Valuing American options by simulations: a simple
least squares approach. Rev. Financ. Stud., 14:113–148, 2001.

[29] Mike Ludkovski. mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms.
https://arxiv.org/abs/2012.00729, 2020.

[30] Bernt Karsten Øksendal and Agnes Sulem. Applied stochastic control of jump diffusions, volume 498.
Springer, 2007.

[31] John Tsitsiklis and Benjamin Van Roy. Regression Methods for Pricing Complex American-Style
Options. IEEE Trans. Neural Netw., 12(4):694–703, 2001.

[32] Christopher K. I. Williams and Carl Edward Rasmussen. Gaussian processes for machine learning.
MIT Press, 2006.

90

https://arxiv.org/abs/2012.00729

	1. Introduction
	1.1. Literature Review

	2. Problem Formulation
	2.1. Dynamic Programming Equation
	2.2. Algorithm
	2.3. Relation to Stationary Impulse Control

	3. Implementation
	3.1. Approximating the Intervention Function
	3.2. Training Designs
	3.3. Illustration

	4. Case Studies
	4.1. Faustmann Problem of Forest Rotation
	4.2. Two Dimensional Capacity Expansion
	Acknowledgements

	References

