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Abstract

This study is a review of recent applications to seismic imaging of optimal transport based numerical
tools. Modern seismic imaging methods used in the industry rely on the interpretation of the full signal. The
characterization of the subsurface mechanical properties is formulated as a PDE-constrained optimization
problem, solved through local optimization strategies. The choice of the misfit function used to measure the
distance between actual seismic recordings and those synthetized by the solution of wave propagation PDE is
crucial. Indeed, the conventional least-squares distance function leads to a non-convex optimization problem
whose solution through local optimization then strongly depends on the initial guess. Using an optimal
transport distance is an interesting alternative from its convexity properties with respect to translation
and dilation. Specific strategies need however to be implemented as seismic data are oscillatory, while the
optimal transport theory has been developed for the comparison of positive measures. In this study we
review two optimal transport based misfit functions, from their mathematical formulation to their application
to field data through their numerical implementation. Advantages and drawbacks of both strategies are
discussed. Numerical experiments show that they represent two interesting and complementary alternative
to the classical least-squares misfit function, mitigating the dependency to the choice of the initial guess.

1. Introduction

This study is intended to review methodological developments done in the framework of high-
resolution seismic imaging, based on a novel use of optimal transport distances. The high-
resolution seismic imaging method considered here is called full-waveform inversion (FWI) in
the geophysics community. FWI is a data fitting method aimed at inverting for subsurface me-
chanical parameters (mainly seismic wave velocities, but also density, attenuation, or anisotropy
parameters). Unlike tomography methods, which do not exploit the full data (or waveform) pro-
vided by the seismic recordings, but rather some extracted time-arrivals information, FWI aims
to interpret the entire signal. The benefit is increased of resolution of the subsurface parameters
reconstructed from the seismic data. While FWI was introduced in the early 1980s by French
researchers in applied mathematics [40] and geophysics [86], its widespread adoption by the aca-
demic and industrial communities started in the past decade, supported by the development of
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wide-aperture/azimuth and broadband data acquisition schemes and parallel high-performance
computing platforms. FWI is now applied at various scales: global, regional, and deep crustal
scales in seismology, crustal and exploration scales in seismic imaging, and near surface scale in
geotechnical engineering and archeology.

Despite this large adoption and many successful results, FWI still suffers from severe limi-
tations. From a mathematical standpoint, FWI is a large scale PDE-constrained optimization
problem. The misfit function that is used, which measures the discrepancy between observed
seismic data and data calculated through the solution of a wave propagation problem, is non-
convex. After discretization, the size of the FWI problem (it is common to invert for millions of
parameters) requires the use of local optimization solvers, which are prone to converge towards
local minima. This problem is all the more significant because of the nature of seismic data.
Thus, the success of FWI strongly depends on the choice of the initial model to ensure the
convergence towards the global minimum of the misfit function.

This limitation, identified in the early days of FWI [29], has been the motivation for a large
variety of strategies. A short review of these strategies is proposed in Section 2.3. Among the
different methods that have been investigated, the use of optimal transport (OT) distances-
based misfit functions has been recently promoted [25]. It has generated significant interest
in the applied mathematics and geophysical communities, as the idea is elegant and the first
application results were promising. The leading idea is to benefit from the inherent convexity of
OT distances with respect to dilation and translation to render the FWI problem more convex.

However, the application of OT distances in the framework of FWI is not straightforward, as
seismic data is signed, while OT has been developed for the comparison of probability measures.

The purpose of this study is to review two methods that were developed to overcome this
difficulty. Both have been successfully applied to field data in an industrial framework. Both make
it possible to better exploit the seismic data, alleviating the sensitivity to the initial model and
to various conventional workflow steps, and reducing the uncertainty attached to the subsurface
mechanical parameters inversion. In Section 2, we introduce the formalism of the FWI problem.
We discuss its non-convexity and provide a short review of conventional techniques designed to
mitigate this non-convexity. In Section 3, we detail our two propositions for the application of
OT to seismic data. Numerical illustrations of these two methods on synthetic and field data
are given in Section 4. Conclusion and perspectives finalize this study in Section 5.

2. FWI: a non-convex PDE-constrained optimization problem

2.1. Formalism and notations

Here, we introduce the notations that will be used throughout the study. We start with the
observed seismic data. Such data is generated by the recording of mechanical waves triggered
by a seismic source. At global or regional scales, this source can be an earthquake occurring
along a given fault. At smaller scales, which will be the main focus in this study, the source is
controlled. Examples of controlled sources include an airgun in marine acquisition (offshore) or
a vibrating truck in land acquisition (onshore). In a marine context, the receivers (or sensors)
are deployed in the sea along cables towed by a boat (streamer acquisition) or at the sea bottom
(node acquisition). For land data, the receivers are deployed at the Earth surface. Depending on
the context, the receivers record the pressure variation (hydrophones) and/or the displacement
in different directions (geophones, nodes). In the following, such observed data will be denoted by

dops,s(Tr,t) € L2, x [0,T]), s=1,...,N,. (2.1)

¥, C R denotes the Earth surface coordinates on which the receivers are deployed (1 or 2-
dimensional) and 7" denotes the recording time (1-dimensional). d represents the total dimension
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of the representation (or data coordinate) space (2 or 3). Ns denotes the number of seismic
sources.

The calculated data, which are to be compared with the observed data, are obtained through
the modeling of mechanical waves within the subsurface. Such waves can usually be modeled
following the linear elasticity approximation, which considers the propagation of pressure waves
(P-waves), shear waves (S-waves), and surface waves (Rayleigh and Love waves). In specific
contexts, such as marine acquisition data, it is however possible to focus only on the propagation
of P-waves under the acoustic approximation. In the following we introduce a general wave
propagation operator A(m) such that the wave equation we consider is denoted by

A(m)us = bs, (2.2)

where m(z) € £2(Q) represents the subsurface mechanical parameters with Q C R%, the dimen-
sionality of the subsurface representation space being naturally considered to be the same as
the dimensionality of the data representation space (d = 2 or 3). us(z,t) € £L2(Q x [0,T]) is
the wavefield solution of this wave equation and bs(x,t) € £2 (Q x [0,T]) represents the seismic
source term. In the following m(z) will be referred to as the model parameter.

The calculated data deq s[m|(x,,t) € L2 (X, x [0,T]) is defined for all z,, € 3, as

deal,slm)(zr, t) = ug[m](zy, t), (2.3)

where the bracket [m] is a reminder of the dependency of d.q; s and us to the model parameter
m(z). In the following, we use a restriction operator R to denote the relationship between dgq s
and ug, such that

R: Usg —  Rus = deqi s (2.4)
L2(Qx[0,T)) — L2, x[0,T)) '
R acts as a restriction of the wavefield space to the data space.
The general formulation for FWI is
min f(m), (2.5)
with
N,
f(m) = Z F(dcal,s[m]a dobs,s)’ (26)
s=1
where F'(-,-) is a general positive function measuring the misfit between dcq s and dops s
F: (dl, d2) — F(dl,dg) (2 7)

L2 (%, x [0,T]) x L2 (2, x [0,T]) — R+

The conventional choice for F' is the least-squares misfit, such that

1 T
Fldy,da) = 5 /E /O (s (20, £) — dy (0, £) Pz, d, (2.8)

leading to the difficulties mentioned in the introduction.

In this study, we discuss how OT distances can be advantageously introduced to define the
operator F'. Before discussing why the choice of a least-squares misfit yields a non convex function
f(m), we need to first take a detour to the numerical optimization strategy used to solve the
problem (2.5).

As mentioned previously, the solution of (2.5) is performed using local optimization methods,
which can be outlined as follows. Given an initial model mg, such methods build a sequence

M1 = my + apAmy, (2.9)

where oy, € R is a scaling parameter computed by linesearch, and Amy, is a descent direction.
In practice, we rely on quasi-Newton strategies, for which we have

Amy = —QV f(my), (2.10)
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where V f(my,) is the gradient of the function f(m) at mj; and Qj is an approximation of the
inverse Hessian of f(m) at my, denoted by H(my)~*

Qi ~ H(my) ™' = (VQf(mk))_l. (2.11)

Usually, Q. is computed following the [-BFGS strategy (Brodyen-Fletcher-Goldfarb—Shanno
formula), which builds a low-rank approximation of the inverse Hessian from gradients computed
during the [-previous iterations [58]. More details on numerical optimization can be found in the
reference book of Nocedal [59].

It is important to keep in mind that implementing a FWI algorithm requires the ability
to compute f(m) and its gradient Vf(m). As a Jacobian-based computation of the gradient
is computationally too expensive in practice (especially in terms of memory), the adjoint state
strategy is usually employed [66]. Following this method, the gradient of the total misfit function
f(m) is obtained as

Ny T A
Vf(m) = ;/0 (837(7:1) us[m]> (2, )\ [m] (. )dt, (2.12)
where A\s[m] is the wavefield solution of the adjoint equation
OF
A(m)T)‘S = RTd (dcal,sa dobs,s)- (2.13)
cal,s

This well-known result is derived in several studies; see for instance [53, 56].

Equation (2.13) has a physical interpretation. The adjoint operator of the wave equation with
an initial condition is the same wave equation with a final condition. Therefore the adjoint wave-
field \s is computed by a reverse propagation in time of the source term RT%(dcahs, dops, s)-
This source term is usually referred to as the adjoint source. Two contributions appear in the
adjoint source: the first order derivative of the misfit function with respect to the calculated
data and the adjoint of the restriction operator RT. The latter operator acts as a lift from the
data space to the wavefield space, yielding a source term localized at the receiver positions.
The adjoint wavefield A is thus computed as the backpropagation of the adjoint source from
the receiver positions. The final gradient is obtained as the summation over the sources of the
zero lag correlation between the incident wavefield us[m] (scaled by %&T)) and the adjoint field
As[m].

Interestingly, we see from these formulas, and especially equation (2.13), that the only impact
from a modification of the misfit measurement F'( -,-) is on the adjoint source definition. This is
very convenient in terms of implementation, especially as the focus of this study is on introducing
OT distances-based misfits. On the other hand, this also means that for each misfit function
modification, one needs to be able to compute both the misfit measurement F'(-,-) and its first-
order partial derivative %(dcal,s, dobs,s)- How to compute these quantities for OT distances-

based misfits is an important question that will be discussed in Section 3.
Finally, one can note that for the least-squares misfit measurement, equation 2.8, the adjoint
source is simply
OF
dcal,s
which is the difference between calculated and observed data, also known as the residual. For a
more developed physical interpretation of the gradient in FWI, the reader is redirected to [61, 92].

(dcal,37 dobs,s) = dcal,s - dobs,su (214)

2.2. Non-convexity of least-squares based FWI

The least-squares based FWI problem is notoriously non-convex [29]. The most widespread inter-
pretation of this non-convexity is the following. The first-order parameters controlling the wave
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propagation within the subsurface are the seismic wave velocities. Perturbations of these param-
eters, provided that their spatial support is sufficiently large with respect to the wavelength of
the propagated seismic waves, result mostly in time delays of the seismic waves. We are talk-
ing about sufficiently large-scale perturbations, or, equivalently, of sufficiently low-wavenumber
perturbations in a Fourier domain interpretation. In other words, the main difference between
observed and calculated seismic wave packets is shifts in time, with a positive time-shift if the
velocity decreases and a negative time-shift if the velocity increases. This effect has been care-
fully analyzed in the reference geophysics paper [35]. The point is that the least-squares misfit,
which can be used to compare observed and calculated data, is not convex with respect to such
time-shifts.

This non-convexity with respect to time-shifts is often the main focus of FWI analysis and is
called the cycle-skipping issue in relation to the oscillatory nature of seismic data. However, other
seismic features may also affect the convexity of the problem: the sensitivity to the amplitude
information present in the data (can affect the number of local minimums) or the quality of the
low temporal frequency information present in the observed data (can affect the width of the
global minimum valley).

Finally, sources of non-uniqueness exist, which are related to the inability to predict the
observed data with machine precision. This inability is due to seismic noise, which always con-
taminate the data, and the inaccuracy of the seismic wave modeling. The latter is partly due
to uncertainty on the seismic source, which is difficult to estimate, in particular its coupling
with the subsurface. Another source of uncertainty relies on the linear elasticity model used
to simulate wave propagation itself, which is valid only in the small-displacement assumption.
Attenuation effects are also difficult to predict and might play an important role depending
on applications. Finally, the choice of the parameterization itself conditions the problem and
the best one is often not trivial to determine. A compromise has to be found between having
sufficient degrees of freedom to explain the data without introducing too much of a trade-off
between the parameters that are reconstructed [61].

2.3. Remedies to the non-convexity of least-squares based FWI

To overcome the non-convexity issue, a standard remedy is to rely on a hierarchical workflow.
For the non-uniqueness issue, a remedy is to include regularization, which means introducing
prior information into the problem to restrain the solution space.

A hierarchical workflow is a synonym for a multi-scale approach. The leading idea is to first
interpret the low temporal frequency part of the data from a given initial model. The subsequent
FWI result then serves as a new initial model for a new FWI step interpreting higher frequency
data [18]. This strategy is effective at reducing the cycle-skipping contribution to the non-
convexity risk, as lower frequency data contains less propagated wavelength, thus reducing the
risk of misaligning seismic travel-times. It can be complemented with time and offset windowing
to focus the inversion on specific seismic events, further reducing the risk [16, 80, 93].

Prior to the implementation of these hierarchical workflow, the initial model is designed
with great care, usually through tomography methods that interpret arrival times of specific
seismic events [60]. The development of stereotomography methods has significantly improved
the accuracy of these initial models [41].

This conventional workflow (tomography + multiscale FWI) has been successfully applied to
a large number of 2D and 3D datasets, at different scales, demonstrating the resolution power
of FWI and its intrinsic interest for seismic imaging and subsurface characterization [12, 15,
28, 30, 34, 62, 67, 78, 82, 85]. However, situations exist which prevent the application of this
workflow. The low-frequency part of the data might be too noisy to be interpreted. Picking
arrival travel-times might be difficult because of noise or the presence of low-velocity anomalies
in the shallow part of the Earth. This could cause the tomography-based initial model to be
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unreliable. In addition, even when the workflow can be applied with success, numerous steps,
quality controls and human expertise are required, which in turn might question the robustness
and the uncertainty attached to the estimated model. This has been the motivation for contin-
uous effort to improve the robustness of FWI regarding the non-convexity issue, and to provide
a better posed problem.

Reviewing such strategies goes beyond the scope of this study. Let us mention that they can
roughly be divided into two categories: extension strategies and misfit function modifications.

The leading idea behind extension strategies is to introduce artificial degrees of freedom into
the FWI problem to help fit the data in the early stage of the inversion. These degrees of freedom
iteratively converge towards physical values during the FWI process. They can be introduced
at the subsurface model level, following migration velocity analysis techniques [84], or at the
acquisition (source or receiver) level, as has been more recently proposed [1, 33, 52, 87, 88].
From an optimization standpoint, introducing additional degrees of freedom can be seen as
opening paths that connect local minima to the global minimum. These paths can be followed
without moving uphill, thus using any local optimization solver.

On the other hand, misfit function modification appears as a more straightforward strategy. In
the light of the non-convexity sources identified for the least-squares misfit function, it should be
possible to improve the convexity of the FWI problem by modifying the way the misfit between
observed and calculated data is computed. In particular, a misfit better than least-squares would
be more sensitive to time-shifts and /or less sensitive to the amplitude information, and/or would
be better able to exploit the low-frequency information. In other terms, it would put more weight
on the kinematic information present in the data to mitigate the non-convexity.

Many propositions have been made in this direction, e.g., the use of instantaneous phase and
envelope [13, 27, 95] or cross-correlation and deconvolution techniques [43, 44, 89, 94]. Despite
these attempts to design a better posed FWI problem, very few have been convincingly applied
to 3D field data, with the exception of the acclaimed normalized deconvolution technique [94].
Most of these works remain at a conceptual level, with applications on sometimes too simplistic
synthetic data examples.

More recently, the use of OT distances to compute the misfit between observed and calculated
data has been promoted [25]. The idea is to take advantage of the inherent convexity of optimal
transport distances with respect to translation and dilation. In particular, designing a misfit
function which should be convex with respect to time-shifts is a very appealing property, and a
good proxy towards convexity with respect to wave velocities. Also, OT distances should make
a global comparison of the seismic data possible, i.e., considering the data as a whole (beyond
the pixelwise comparison induced by the use of the least-squares misfit), which could produce
more convexity with respect to the amplitude information present in the data.

However, the path towards applications of OT distances to seismic data is not without difficul-
ties. In particular, the OT theory has been developed in the frame of probability distributions,
while seismic data consist in signed functions due to the oscillatory nature of the mechanical
waves propagating in the subsurface, with varying “mass” (or integral of the data, which is
especially true at low temporal frequencies).

To overcome this difficulty, different propositions have been made. The first consists of con-
verting the seismic data to a probability distribution by a nonlinear transform and a normal-
ization; for instance positive and negative part extractions [25, 26] or exponential/soft max
encoding [73, 98, 99, 100, 101]. While straightforward to apply, these methods present limita-
tions for field data applications. The nonlinear transform is not easy to control, as it emphasizes
specific parts of the data over others. This is detrimental to the inversion process and its sta-
bility. Sensitivity to noise and to the source function estimation can also be increased by such
techniques.
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To avoid these difficulties and apply OT distances to industrial field data, we have proposed
two alternative strategies. The purpose of this study is to review these two techniques, and to
illustrate their main features through applications to synthetic and field data.

The first of these two techniques relies on a specific dual form of the OT distance. This
formulation has a close connection with the Kantorovich-Rubinstein norm [11], which is a well
known tool in image processing. Its main benefits in the framework of FWI are its ability to
consider the seismic data as a whole, taking into account the lateral coherency of the data
in 2D or 3D representation spaces, to be less sensitive to the amplitude information, and to
better exploit the low-frequency information in the data. These features enhance the convexity
of the FWI problem. However, as shown later, the enhancement of the convexity with respect
to time-shifts specifically exists but remains limited when applied to signed data.

Improving even more the convexity with respect to time-shifts was the motivation for designing
the second technique, named graph-space OT. In this framework, each 1D time-signal recorded
by the receivers is considered, after time-discretization, as a point cloud in a 2D time/amplitude
space. In terms of measure theory, this amounts to interpret each time-signal as a sum of 2D
Dirac probability distributions. Standard OT distances can thus be computed and numerical
tools dedicated to the comparison of point clouds through OT, arising from linear programming
theory, can be advantageously employed. In doing so, we can greatly enhance the convexity
with respect to time-shifts. However, each 1D time-signal is interpreted in a 2D time/amplitude
space, increasing the computational cost, which for now excludes the possibility to consider
the seismic data as a whole in 2D or 3D representation spaces. Therefore, compared with the
Kantorovich-Rubinstein norm strategy, the ability to exploit the lateral coherency of the data
is lost, along with the reduced sensitivity to the amplitude information and the enhancement
of the low-frequency information in the data. The two approaches thus complement each other,
each working with different features that enhance the convexity of the problem.

In the next Section, after introducing notations and reminders about the OT theory, we
present the formalism of the Kantorovich—-Rubinstein norm and graph-space strategies.

3. Reformulating the full-waveform inversion problem using optimal transport
distances

3.1. Generalities on optimal transport theory

OT is a mathematical field originating from the work of the French mathematician Gaspard
Monge [57] in 1781. The original problem was to minimize the efforts performed by workers
to transfer sand piles to fill in holes on a bridge building site. The corresponding minimization
problem formulated by Monge is not well posed, as a solution does not always exist. A well-posed
relaxation of the problem was proposed by Kantorovich in 1942 [37]. The solution of the OT
problem, through the Kantorovich relaxation, defines a (Wasserstein) distance in the space of
probability distributions.

Thanks to its convexity property with respect to translation and dilation, the OT distance
has become widely used in image processing for applications such as image retrieval [74, 76],
histogram equalization [23], color transfer [63], and texture mapping [24, 75]. More references
on image processing applications of OT can also be found in [42].

In this section we recall the basic definition of the OT distance through the Kantorovich
problem. We refer the readers to [4, 77, 91] for a more detailed introduction to the OT theory.

We start by recalling the standard Monge formulation. We consider two probability distribu-
tions p € P(X) and v € P(Y), where X and Y are measurable (here coordinate) spaces. The
push-forward distribution of x € P(X) by the mapping T,

{ X — Y

T:z — T(z), (3.1)
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is denoted by Tizpr € P(Y'), such that for any measurable set A C Y, we have
(Tyw) (A) = 1 (T71(4)) = v(A). (3.2)

Given a cost function c(x,y) defined on data representation spaces, or ground cost,

{XXY —5 Rt
c:(ry) — c(x,y),

the optimal transport problem is defined as
mTin {/c(m,T(a;))d,u(m), Typ = 1/}. (3.4)

¢

(Note that the most general formulation is to use an “inf” instead of the “min” but both are
equivalent with the real ground costs considered here.) The constraint T4y = v indicates that the
push forward distribution T u of u by the mapping 7" is equal to the distribution v. The optimal
transport problem can therefore be interpreted as determining the mapping 7' that transports
the distribution p onto the distribution v in the sense of equation (3.2), which minimizes the
cost defined in (3.4), for a given cost function c(z,y).

The problem (3.4) is difficult to solve, in particular because of the constraint (3.2). The
Kantorovich relaxation of this problem takes the form of the following linear programming
problem

mvin {/XXY c(z,y)dy(z,y), u.c. veI(y, y)} , (3.5)

where the ensemble of transference plans II(u, v) is defined by

M, v) = {y €PX XY), (mx)pv=p (mv)yy ="} (3.6)

The operators mx and 7y are the projectors on X and Y, respectively. The problem (3.5)
generalizes (3.4) in the sense that, instead of considering a mapping T transporting each particle
of the distribution p to the distribution v, it considers all pairs (z,y) of the space X x Y and
for each pair defines how many particles of u go from z to y. In the context of the Monge
formulation (3.4), each point of the space X has only one possible destination on Y, given by
T'(x). In the context of the Kantorovich formulation (3.5), the particles at point = can have
multiple destinations in Y, given by v(x,y) for y € Y. The constraint (3.6) ensures that the
distribution u is transported onto the distribution v. The relaxed problem (3.5) admits a solution
under very mild hypothesis, unlike Monge’s problem (3.4). In addition, when (3.4) admits a
solution T', the measure v = (I, T)4p is a solution of the relaxed problem (3.5) [4, 69].

The Kantorovich problem can be used to define a distance between probability measures,
named p-Wasserstein distance, for p € N*. We assume that

X =Y CR", neN, (3.7)
and that the ground is induced by any norm || - || put to power p, i.e.
c(z,y) = [l —y|”, (3.8)
and that p and v are probability measures with finite p-moment,
[ lalPanta) < +os, [ flalPav(s) < +ox, (39)
X X
with || - || a norm on R™. The p-Wasserstein distance between p and v is then defined as
1/p
Wylww) = min [ o= o Par(aa)) (3.10)
vell(pv) J X x X

The convexity of the p-Wasserstein distance with respect to dilation and translation is a
well-known result and has been analyzed in the context of seismic imaging in [26].
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We see that the p-Wasserstein distance is defined for the comparison of probability measures.
How to extend this problem in a mathematically consistent way to the comparison of signed
measures is still an open question [5, 45].

3.2. The Kantorovich—Rubinstein norm approach

We have introduced the use of the Kantorovich-Rubinstein (KR) norm within FWI in two
main studies. The first is dedicated to an audience of geophysicists, where the main concepts
are introduced and several 2D synthetic applications are presented [55]. The second is oriented
towards an audience of applied mathematicians [56], where the formalism and connections with
image processing are made, and the numerical strategy is further refined to obtain a linear/quasi-
linear complexity solver to compute the KR norm in 2D and 3D, with a 3D synthetic application.
Then, a wider audience paper for non-research geophysicists was published in The Leading
Edge [54]. Further publications involve a convexity analysis of the KR approach [49] and an
analysis of the KR norm FWI adjoint source properties [47]. We review here the main ideas
outlined in these studies.

3.2.1. Misfit function

The KR norm approach is based on the 1-Wasserstein distance. From equation (3.10), we have

Wi(s,v) = min / |z — o'||dvy(z, 2'). (3.11)
vell(pv) JXx X
The following simplification of (3.11) (using a dual formulation) can be obtained when || - || is
lower semi-continuous
Wil) = max [ e()du@) - v(w), (3.12)
pelip; Jx
where Lip; denotes the space of 1-Lipschitz function for the norm || - ||, i.e.,
Lip ={¢:z€ X — R, V(z,2) € X x X, |p(z)— ()| <|z—-2|}. (3.13)

The dual problem 3.12 is a special instance of a more general duality result associated with the
Kantorovich problem 3.5 [77].

While the OT problem is defined for probability measures under its primal form (3.11), the
dual form (3.12) can be extended for general measures p and v provided they have the same
total mass (or integral), i.e., the mass is conserved from the mass distribution p to the mass
distribution v.

In addition, a straightforward generalization of the dual Kantorovich problem remains well
posed even when the total mass between p and v is not the same. It complements the 1-Lipschitz
constraint with a bound constraint. This yields the distance

Wirm)= | max [ o(@)a(u(e) - ) (3.14)

In the proposition made in [54, 55, 56], we focus on the particular case for which the norm
|- || on X is actually the ¢; norm on R?

d
el = fail- (3.15)
i=1

Interestingly, with this choice, the generalization (3.14) corresponds to the definition of the KR
norm [11]. This norm is defined in the space of Radon measures on X, which is the dual space
of the space of real valued continuous functions defined on X that are zero at infinity for the
|| - lloo norm, denoted by (Co (€2, R), |- |loc)). Besides the link with OT, the KR norm can also
be interpreted as a generalization of the L! norm (in a similar sense of the generalization from
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Total Variation to Total Generalized Variation norms) and shares some properties with the
Meyer’s G-norm. These similarities are studied in detail in [42], where the use of the KR norm
is proposed as an alternative to the L' norm in a Total Variation denoising problem.
More generally, a Mahalanobis-like ¢ norm,
4
]l = > —lail, (3.16)

i=1 7
must be used as soon as the dimensionality of the various axes of the space X do not have
the same physical dimensions. The o;, with co > 1/0; > 0, then denote standard-deviation-like
weights that can rescale the different physical dimensions and account for uncertainties. This is
important in seismic, where d = 2 or 3 with X = ¥, x [0,7] (1 or 2 distance coordinates and
1 time coordinate), following the notations introduced in Section 2. The benefit of adding these
weights has been studied in [47, 48].

3.2.2. Adjoint source

In the frame of seismic where X = ¥, x [0, 7], using the notations introduced in Section 2, we
propose the following KR norm-based misfit for FWI

F(dcal,sa dobs,s) = WL/\(dcal,sa dobs,s)
T
— max / / (@0, 1) (deat (@, £) — dop.s (27, 1)) dapdt.  (3.17)
@€Lipy, [lelle<A Sz, Jo

As mentioned previously, we need to access the quantity
OF oWy \

m(dcal,& dobs,s) = adcal,s (dcal,37 dobs,s)' (318)
We denote the solution of (3.14) by @, such that
T
@ = argmax / / o(xy,t) (deat,s(@r, t) — dobs,s (T, ) da,dt. (3.19)
@€Lipy, [[@lloo<A /2r /O
Using the almost-everywhere (a.e.) differentiability of concave functions, we have for a.e. dgq
OF
od . (dcal,sa dobs,s) = a.e. (320)
cal,s

This result shows that the implementation of the KR approach in the framework of FWI requires
a single numerical method to solve the problem 3.14. The maximum value of the criterion in the
definition of (3.14) provides the misfit function value F(dcq s, dobs,s). The function @ reaching
this maximum provides the adjoint source required for the gradient computation.

@ can be conceptualized as the result of a smart processing of the least-squares adjoint source
deal,s—dobs,s- The Lipschitz and bound constraints will tend to reduce the dynamics of amplitudes
and enhance the low frequency content present in deq; s —dobs s (together with producing wavelets
that will tend to become piecewise linear a.e. it matters for the FWI problem). Also, the KR
adjoint-source can enhance the lateral continuity of events in deq; s — dops,s using properly tuned
weights in (3.16). These elements are formally studied in [47].

3.2.3. Numerical computation

To keep the presentation compact, we give the technical details of the algorithm we set up
for the numerical solution of the problem (3.14) in Appendix A. Let us mention here that the
algorithm inherits a linear or quasi-linear complexity from the combination of three elements: a
reduction of the number of constraints from the use of a £1 norm as a ground cost, exploiting the
“Manhattan” property of the #1 norm; the use of the proximal splitting algorithm “Alternative
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direction method of multipliers” (ADMM) solver; the identification of the linear system to solve
at each ADMM iteration as a finite-difference discretized Poisson’s problem for which efficient
solvers exists (either based on Fast Fourier transform or multigrid strategies).

In seismic, (3.14) can be resolved considering different effective dimensionalities for the data
representation space X (using previously introduced notations). The 3D case, i.e., X = %, x[0, T
with ¥, C R?, tends to be too costly for industrial applications because of the size of the linear
problem that is expressed in Appendix A. As a consequence, most 3D data applications first
split the data into 2D receiver “lines” considering 3, = Y€ x 3.1 with Xl"¢ C R and 2;F C R;
then, the KR problem is solved independently for each line, i.e. considering X — 47 x [0, T]
n (3.14). With an effective dimensionality reduced to 2, the KR problem becomes manageable
in an industrial context. In practice, the direction of the receiver lines is chosen to be the best
sampled (or less noisy) one.

3.3. The graph-space approach

The graph-space OT concept was first introduced in a paper published in the Geophysics jour-
nal [50]. However, in this preliminary study, the underlying computational cost was too expen-
sive for possible applications in realistic settings. Only the analysis and the development of the
associated numerical strategy, performed in [53] and recently refined in [51], have made such
applications possible. We review here the main ideas presented in these studies.

3.3.1. Misfit function

Whereas the KR norm implementation considers the seismic data as a “whole”, ie., X —
Zﬁ”e x [0,T] in computations done independently for each defined line in ¥, the graph-space
implementation considers the data as a collection of 1D time functions or “traces”, i.e., X —
[0, 7] in computations done independently for each position in ¥,. Each 1D time function is
denoted by

dealsr(t), dops,sr(t), s=1,...,Ng, r=1,...,N,, (3.21)
with
dcal,s,r(t) = dcal,s(xﬁ t)» dobs,s,r(t) = dObS,S('xTa t)- (322)

This amounts to a discretization of the receiver variable x,, considered as continuous in the
previous sections.

For the sake of clarity, let us consider for a moment the simple case where Ny = 1 and N, = 1,
and drop the subscript s and r. After subsequent time discretization, each function d.q(t) and
dops(t) can be considered as discrete point clouds in a 2D time/amplitude space, or graph-space.
Assuming that the time discretization is the same for both d . (t) and dops(t), which is satisfied
in practice, we consider

dcal S ( )Nta dcal - {(ti7dcal(ti))7 1=1,.. -,Nt},
dobs ( )Ntﬂ dobs - {(ti7d0b8(ti)) =100, Nt}7

where N; € N is the number of time samples. We now associate a Dirac probability density
function to each point of the discrete point clouds dml and dobs and compute the corresponding p-
Wasserstein distance using (3.10). A standard result shows that computing such a p-Wasserstein
distance to power p is equivalent to solving the following linear sum assignment problem:

(3.23)

Wp<dcalvdobs> = O_ergbr%]t ch (i) ( i g)f), (3.24)
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where S(N;) is the ensemble of permutation of {1,..., N;} and the cost in the graph represen-
tation space can be defined by

Cij (dcal ) dobs) = H(ti7 dcal(ti)) - (tj7 dobs@j))”ﬁ = ‘ti - tj ’p + ’dcal(ti) - dobs(tj)’p‘ (325)

A proof of this equivalence can be found in [90].
In the following, we consider a weighted version cgj of ¢;; such that

(dcal ) dobs) = 7]|ti - tj |p + |dcal(ti) — dobs (tj)|p7 (3'26)

where n € RT is a dimensioning parameter whose role is discussed later. The defined p-
Wasserstein distance power p is minimized when the point clouds dcal and dobs coincide, thus
when the functions d.q(t;) and dups(t;) coincide, which is in agreement with our goal. As the
time sampling and values ¢; are fixed in our applications, we can consider the p-Wasserstein
distance power p to be a function of d.q(t;) and dyps(t;) only, and finally have

Ny
= P — i P P ) — p
9= Wh(doat- ) = 1min 3 (it = Lol + doaa(t) = (o)) . (327

Re-introducing the source and receiver dependencies, the misfit function F(dcqis, dops,s) is
obtained by summing the various receiver contributions

F(dcal,57 obs, s Z 9 cal,s,rv obs,s,r) (328)
3.3.2. Adjoint source
We have from (3.28)
oF 0
m(dcal,& dobs,s) = stﬂn(dcal,sﬂ”’ dObS:SJ‘)' (329)
This calls for a definition of the quantity 8517 (deat,s,r» dobs,s.r)- In [53], we prove the following
result 9 N
7g(dcal,s,r7 dobs,s,r) = p‘dcal,s,r - des s r’p72 (dcal,s,r - dgbs s 7") a.e. (330)
8dcal,s,r H 7
where @ is defined by
Nt
o =argmind_ (nlti — to(y " + [dear (1) = dobs (to(i))?) (3:31)
ceS(NY) i3
and
obs s 'r‘(tl) = dobs,s,r (ta(i))a Z = 1, e ,Nt. (332)

This result calls for several comments. First, within the graph-space approach, the p-Wasserstein
distance power p between observed and calculated data can be seen as a generalization of LP
distances power p. Indeed, the adjoint source associated with the latter would be given by

_99
8dcal,s,r

with p = 2 being the least-squares case. The generalization to the graph-space OT adjoint-
source (3.29) comes from the optimal assignment & computed as the solution of the OT problem
between the seismic data traces seen as point clouds. Instead of comparing calculated and
observed traces at the same time samples ¢;, i =1..., Ny, they are compared at time samples
matched by this optimal assignment, which are ¢; and 5, i=1..., N,

Second, as in the KR approach, implementing the graph-space strategy within FWI requires
a single solver, computing the solution of (3.27). For a single trace s,r, the minimum value of

(dcal,s,r> dob&s,r) = p|dcal,s,7’ - dobs,s7r|p_2 (dcal,s,r - dobs,s,r) ) (333)
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the criterion in (3.27) provides the misfit function value, while the adjoint source can be deter-
mined from the optimal assignment & achieving this minimum value. The final misfit function
F (dcal,s, dobs,s) and its adjoint source are obtained considering all the traces.

3.3.3. Choice of the parameter 7

In (3.26), the scaling parameter n plays a crucial role. It controls the behavior of the permutation
& (and thus of the graph-space misfit function g(dcqi s, dobs,s,r)) by weighting the cost of assign-
ing points of the graphs of d.q s, and dgps s » along the time axis. If 1 is chosen to be “large”, the
assignment is preferably done along the amplitude axis, and the graph-space misfit function boils
down to the conventional least-squares misfit. On the other hand, if 7 is “small”, the assignment
is preferably done along the time axis, and the graph-space misfit function becomes sensitive to
time shifts.
More precisely, a practical choice for 7 is, for a trace s, 7,
2

_ As,r
nN="Nsr= ?7 (334)

where 7 € R is a maximum expected time shift and A, € R is an amplitude normalization
parameter, for instance the difference between the maximum amplitude peaks in de, s, and
dobs,s,r- Following this definition, a point (¢, dear s (t)) € R? such that deg s, (t) — dops,sr(t) € R
is equal to Ay, can be assigned with a point of the same amplitude but shifted in the time-
direction by 7’ such that |7/| < 7. If |7/| > 7 then it will be assigned with (¢, dops,sr(t)). As is
illustrated in the next Section, this scaling strategy provides a convenient way to calibrate the
graph-space misfit function, to make it convex with respect to time-shifts as large as 7.

3.3.4. Numerical computation

Numerous economy field problems can be modeled as linear sum assignment problems. For
this reason, various algorithms have been proposed during the second half of the twentieth
century, see for instance [8, 19] for a review. These algorithms can be divided in three main
classes: those based on primal-dual methods (among them the Hungarian algorithm [39]); those
based on a specification of the simplex algorithm, either the primal [2] or dual [6] version of
the simplex method; those based on purely dual algorithms, a category to which belongs the
auction strategy introduced by [9]. From different studies [8, 19], it appears that the auction
algorithm, combined with an e-scaling technique, achieves one of the best worst-case complexity.
Benchmarking experiments on different sets of reference problems also show its good performance
for the solution of small scale dense problems.

In our applications in the frame of seismic imaging, the observed complexity of the auction
algorithm is between quadratic and cubic, and the computation time to solve instances of prob-
lems with point clouds containing up to one thousand points is very small (typically less than
1 second on a single core architecture). This is within the order of the number of time samples
one has to consider to represent a single seismic trace at Nyquist sampling. For this reason, the
auction algorithm has proven very useful for our applications. A full description of the algorithm
is beyond the scope of this study. We refer the interested reader to [8, 9, 19, 53] for a complete
presentation of the auction algorithm.

4. Tllustration on synthetic and field data examples

In this Section, we illustrate the main properties of the KR and the graph-space approaches
in the framework of FWI and present applications of these two strategies to 3D field data. Let
us mention that, from a methodological point of view, these two methods have been compared
to each other, and also with more conventional strategies to mitigate non-convexity in FWI
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mentioned in Section 2.3. This comparison has been the main topic and motivation of a recently
published paper in the journal Geophysics, which might be of interest for the reader [65].

4.1. A simple Ricker synthetic test to illustrate the convexity with respect to a
time-shift

We first illustrate the convexity properties of the two approaches with respect to a time-shift,
related to the cycle-skipping issue. Ricker-type time wavelets are considered here. Such wavelets,
also known as Mexican hat wavelets, are commonly used in geophysics to represent seismic
sources. Mathematically, a Ricker corresponds to a second-order derivative of a Gaussian, and
can be expressed as

rlto, fo)(t) = (1= 272 f3(t — 0)?) exp (—7f3 (¢ — t0)?) (4.1)

In (4.1), fo is the central frequency in Hertz and t( is a time delay in seconds such that the
Ricker wavelet peak (or maximum) is at to. We consider a reference Ricker wavelet r(t), such
that
Tref(t) = ?”[2, 5](t)> (42)

on a time interval [0, 7] with 7" = 4s. We then build a series of Ricker wavelets shifted in time
Tshife(t) such that

Tshifels](t) = r[2 + 5,5](t), s € [-1.5,1.5]. (4.3)
The shifted Ricker wavelets have the same shape as the reference wavelet (same central frequency
of 5 Hz). The Ricker wavelets r./(t) and rgp[—1.5](t) are presented in Figure 4.1(a). Then,
for each time shift s, we compute the distance between 7. and 7g¢[s] using the KR approach
and the graph-space OT approach. Namely, according to previously introduced notations, we
compute the following functions of s:

Wi (Tshifels], Tref) s G (PshifelS)s Trep) , s € [—1.5,1.5]. (4.4)

A is chosen equal to 1, while for the graph-space OT approach the 7 parameter is set to 7 = 1.5s.
The results are presented in Figure 4.1(b) together with what would be obtained following a
standard least-squares approach.

As can be seen in Figure 4.1, the least-squares approach produces a multi-modal misfit func-
tion, with a global minimum reached for s = 0 (no time-shift), and two local minima reached
approximately at s = —1.15s and s = 1.15s. The left local minimum corresponds to the situa-
tion in which the right side-lobe of s is in phase with the left side-lobe of r,.. The right local
minimum corresponds to the opposite situation. When the two Ricker wavelets do not overlap,
the least-squares misfit becomes constant. This is an illustration of the non-convexity of the
least-squares misfit function with respect to a time-shift. In an FWI analogy, for the method to
converge towards a meaningful subsurface model, one would need an initial model predicting the
data within a time-shift between approximately —0.1 and 0.1s; otherwise, the method would
converge towards a local minimum or would stagnate at the initial estimation.

The KR and graph-space strategies exhibit different misfit function profiles. Both present a
single global minimum. The KR approach improves to some extent the pathologies associated
with the convexity of the least-squares misfit, the KR misfit function exhibiting a wider valley
of attraction. This brings more robustness to cycle-skipping, especially when dealing with the
low temporal frequencies of the data [47]. In an FWTI analogy, to make the KR method converge
towards a meaningful subsurface model, one would need an initial model predicting the data
within a time shift between —0.15 and 0.15s. However, the KR misfit function exhibits two
large regions where the misfit function is almost constant. The reason for this loss of convexity
with respect to time-shifts has been documented for instance in [49]. It can be shown that
computing Wi y for signed data is equivalent to summing the OT distance between the negative
(respectively, the positive) part of the calculated data and the positive (respectively, the negative)
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Fi1GURE 4.1. Comparison of the least-squares, KR and graph-space misfit values
for 2 shifted Ricker wavelets.

part of the observed data. This decomposition has been proposed by Mainini [45] to extend OT
distances to signed data. However, such decomposition does not provide a measure of distance
that is convex with respect to time shifts.

Conversely, the graph-space strategy produces a misfit function that is monotonically decreas-
ing and close to being convex with respect to the time-shift, that is the expected behavior with
the choice of 7 = 1.5s (which is the maximum absolute time shift considered here).

This simple example illustrates the pathological behavior of the least-squares approach, the
interest of using OT-based misfits to enhance the convexity with respect to time-shifts, and the
superiority of the graph-space approach over the KR approach regarding this convexity. We now
illustrate that the KR approach is superior regarding two other sources of non-convexity, related
to the treatment of the amplitude information and the low-frequency information in the data.

4.2. A Marmousi synthetic test to illustrate the link between convexity and the
treatment of the amplitude and low-frequency informations in the data

We consider a 2D synthetic case called the Marmousi 2 model [46]. It consists of a 2D velocity
model, Figure 4.2 (left), in which seismic data are modelled with the constant-density acoustic
approximation using a Ricker wavelet with peak frequency at 6 Hz that has been low-cut filtered
below 3 Hz to be more realistic. The obtained data will be considered as the observed data for
our FWI problem. The velocity model in Figure 4.2 (right) will be the initial model for a FWI
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(it was obtained by Gaussian filtering of the Marmousi 2 model), with the goal being to obtain
a model much closer to the Marmousi 2 model at the end of the iterations. This inverse crime
test provides us with a clear benchmark to reach. Data can be calculated in the initial model
in Figure 4.2 (right) and then corresponding adjoint sources can be computed for various misfit
functions. Figure 4.3 illustrates the obtained adjoint sources for the least-squares, graph-space
and KR norm misfits.

Compared to the least-squares adjoint source, the graph-space adjoint source tends to contain
shifted events, which is especially visible in the boxes of Figure 4.3 containing zoomed-in parts of
the adjoint sources that contribute the most to FWI. These shifts or changes in events kinematics
explain the improved graph-space convexity with respect to time-shifts.

The KR adjoint source features are very different. Firstly, there is an amplitude equalization
compared to the least-squares adjoint source, visible in Figure 4.3. This tends to help putting
more weight on the events times (or phases) within the FWI, reducing the non-convexity issue.
Secondly, contrariwise to the graph-space adjoint source, there is no change in the events posi-
tions but rather a change in the events wavelets. The wavelets become more spread and with a
lower frequency content as highlighted in Figure 4.4 (note that the higher frequency content of
the graph-space adjoint source occurs only because a permutation is not a smooth transform).
The lower frequency content explains the better convexity of KR with respect to time-shifts,
compared to least-squares, with the limitation that has been underlined in previous section. A
specificity of the use of the KR norm is to be able to denoise the low frequencies present in
the data to some extent and thus to exploit even some very low frequencies (non-exploitable
by other methods) to reduce the non-convexity issue. This can be particularly interesting with
noisy field data acquisitions where the quality of the low frequencies in the data could be bad.
Figure 4.5 shows how the KR adjoint source compares to the least-squares adjoint source for
marine field data with a mute applied (common in industrial FWI situations). The noise in the
data is strong and differs trace-to-trace, degrading the continuity of the least-squares adjoint
source. Interestingly, the KR adjoint source is strongly denoised, with an increased continuity
in the direction of the events and better amplitude balancing. This may be useful to start FWI
at an even lower frequency to mitigate the non-convexity.

As we can see, graph-space and KR FWI each have their strengths, which are related to
complementary features. After the adjoint sources analysis, we study if one of these methods
gives better FWI results. Using the Marmousi configuration, we start the FWI from the smooth
initial velocity model in Figure 4.6 (right), performing 20 iterations directly at up to 10 Hz,.
The models estimated by graph-space and KR FWI match the Marmousi 2 model in Figure 4.2
(left) much better than the models estimated by least-squares FWI. This is especially true in
the highlighted zones where the poor least-squares result can be related to non-convexity issues,
i.e., least-squares FWI is stuck in a local minimum. Interestingly, we did not find Marmousi 2
configurations where graph-space FWI outperformed KR FWI or vice versa. It seems that both
graph-space and KR FWI manage to mitigate the non-convexity issues to a similar level in the
Marmousi 2 case, while working very differently on the data (shifting events for graph-space,
and enhancing the amplitudes balancing, low frequencies and events continuity for KR).

4.3. Industrial applications of the Kantorovich—Rubinstein strategy to various 3D
field data

Many successful industrial applications of KR, FWI on 3D field data have been published, see
for instance [20, 31, 32, 48, 68, 79]. In this Section, we review three examples. For further details
or more illustrations, the reader is invited to refer to the aforementioned articles.
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FIGURE 4.2. Marmousi 2 model [46] and initial model for FWI.
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FIGURE 4.3. Marmousi 2 data set [46] (Ricker wavelet with peak frequency at 6
Hz and frequencies below 3 Hz muted). Least-squares, graph-space and KR norm
adjoint sources are shown.

4.3.1. North of Oman land data

The first example refers to 3D land data acquired in the North of Oman (see [20] for more
details). The FWI was run with the frequency increasing from 2 Hz to 16 Hz, using a pseudo-
acoustic wave propagation and following the data pre-processing workflow proposed by [79].
Figure 4.7 compares the least-squares and KR FWI results for a subsurface velocity inversion.
The oval in Figure 4.7 highlights the improved velocity contrast achieved by KR FWI, along
with the correction of an unexpected velocity increase produced by least-squares FWI.

The FWI velocity models can be further used in a “depth migration” algorithm, whose aim
is to provide images of the subsurface 'reflectors’ (or discontinuities). Details on such a method
can be found in [3, 10, 21]. Such subsurface reflectors images have been superimposed to their
corresponding FWI velocity models in Figure 4.7 (left) and are shown alone in Figure 4.7 (right).
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FI1GURE 4.5. Marine field data at 4 Hz with a mute applied. Least-squares and
KR norm adjoint sources are shown.
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FIGURE 4.6. Marmousi 2 model [46]. FWI inversion performing 20 iterations
directly at 10 Hz.

20



OT DISTANCES FOR SEISMIC IMAGING

X (km) 13 0 X (km) 13

Depth (km)
Depth (km)

2000

Velocity (km/s)
_
(=)
N
o
o

7000

Depth (km)
Depth (km)

FIGURE 4.7. North of Oman data. (a) Least-squares and (b) KR FWI results
at 16 Hz (obtained in the same configuration). Left: velocity model inverted by
FWI superimposed on images of the subsurface reflectors (obtained using the
FWI model into a “Kirchhoff” depth migration algorithm). The ovals highlight
the improved velocity contrast and the correction of the velocity increase achieved
by KR FWI. Right: images of the subsurface reflectors alone; the arrows highlight
the improved focusing of a fault achieved by KR FWI. From [47].

We can observe that the KR FWI velocity model provides a better or more focused image of
the subsurface deep reflectors than the least-squares FWI model, especially at the position of a
major fault as highlighted by the yellow arrows. This contributes to demonstrate the superiority
of KR FWI over least-squares FWI

This example illustrates, in a challenging land acquisition context, how the better convexity
properties of the KR norm translate into a better FWI model.

4.3.2. North Sea marine data

The second example refers to North Sea marine data (see [48] for more details). Figure 4.8 shows
results obtained with a 7 Hz FWI inversion of the subsurface velocity. Figure 4.8 (left) shows the
observed data overlaid on top of the data calculated in the FWI updated model. At the position
of the green arrows, we can observe that least-squares FWI leads to “red spots”. These red spots
are due to events that suddenty jump from one “cycle” to another in the calculated data, a
typical cause of cycle-skipping, which allows to deduce that least-squares FWI get stuck in a
local minimum. Contrariwise, KR FWI does not exhibit red spots, an indication of an absence
of cycle-skipping.
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FIGURE 4.8. North Sea data. (a) Least-squares and (b) KR FWI results at 7 Hz
(obtained in the same configuration). Left: observed data (in black-grey-white)
superimposed on the data calculated in corresponding FWI-updated model (red-
blue) (the arrows highlight where the calculated data suddenly jumps from one
cycle to another when using the least-squares model). Right: FWI-updated mod-
els superimposed on corresponding images of the subsurface reflectors (the arrows
highlight areas where KR FWI gives an improved velocity model). From [47].

Figure 4.8 (right) shows the least-squares and KR FWI models superimposed on corresponding
images of the subsurface reflectors. We can observe that the least-squares FWI model does not
“follow” the structures in the subsurface reflectors images, i.e., it lacks structural consistency,
especially in the zones highlighted by green arrows. This illustrates how the cycle-skipping can
affect the FWI result. Conversely, the KR FWI model exhibits a better structural consistency,
inverting for an improved velocity model.

4.3.3. Barents Sea marine data

The last example refers to Barents Sea marine data (see [20] for more details). It is challenging
because of gas accumulations of varying sizes and depths that can lead to instabilities within
FWI. The poor initial model in Figure 4.9 (top-left) has been used to initialize the FWT iterations.
Figure 4.9 (left) illustrates the improved FWI-updated model obtained using KR compared to
least-squares. With corresponding images of the subsurface reflectors superimposed, we observe
that KR FWI leads to more structural consistency and less instabilities, an indication that the
inverted velocity model is better.

Figure 4.9 (middle and right) shows the normalized absolute value of the difference between
observed data and data calculated in the FWI models, less red indicating a better data matching
after FWI. Of course, both least-squares and KR FWI improve the data matching compared
to the one related to the initial model (by inverse problem construction). However, KR FWI
shows a much better matching than least-squares FWI, which is an indication that KR FWI
has converged to a better minimum thanks its enhanced convexity.
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FIGURE 4.9. Barents Sea data. (a) Initial FWI model, (b) least-squares FWI
result and (c) KR FWI result at 6 Hz (obtained in the same configuration). Left:
FWI updated models superimposed on corresponding images of the subsurface
reflectors. Middle and right: normalized absolute values of the difference between
observed data and data calculated in FWI-updated models (red means large
values and thus poor matching) at the positions highlighted by the red triangles
in the left figures. From [47].

4.4. Application of the graph-space strategy to 3D field data: the Valhall case study

The results presented here are extracted from a recently published study [64].

4.4.1. Data acquisition and context

The Valhall field is located in the southern part of the Norwegian sector in the North Sea,
approximately 300 km southwest of Stavanger. This field was discovered in 1975 and it has
been used since then for oil production. An oil reservoir is located below trapped gas in tertiary
shales. This trapped gas forms a low-velocity zone acting as a screen, making imaging below it
challenging.

Thanks to a shallow-water environment (the water depth is approximately 70 m), the deploy-
ment of ocean-bottom cables (OBC) with 4-component receivers (hydrophones measuring the
pressure + 3 components geophones measuring the displacement) was relatively easy. Twelve
receiver cables were deployed on the seabed, containing 2048 receivers with an inline spacing of
50 m and a cable spacing of 300 m. On the surface, a total of 50824 shots of pressure airgun
sources were performed, 5 m below the surface. The layout of this 3D acquisition is presented
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FI1GURE 4.10. Layout of the Valhall acquisition overlapped on an horizontal P-
wave velocity slice at 1 km obtained by FWI. Location of sources (gray dots) and
receivers (blue diamonds). Two receivers positions (A and B) are located with

black stars. Cables A (z = 2950 m), B (z = 5530 m) and C (z = 3080 m) are
identified.

in Figure 4.10. The imaged zone represents a volume of 9 x 16 x 4.5 km?, discretized on a 50 m
Cartesian grid at the finest level, leading to 181 x 321 x 91 discrete unknowns. In this study, we
use only the hydrophone component of the acquisition performed in 2011 [7]. This 3D dataset
was made available to us thanks to AkerBP, one of the companies that supports the SEISCOPE
project.

We have investigated the Valhall case study quite extensively over the past few years [36, 62,
70, 71], with successful results based on the conventional tomography + multi-scale approach
described in the introduction. This makes the Valhall case study an adequate playground for
testing new FWI methodologies such as the use of optimal transport distances.

To highlight the interest for using the graph-space strategy, we present the results obtained
when starting from two different initial velocity models. The first is accurate and is obtained
through reflection tomography. It has been provided to us by AkerBP. Starting from this initial
model, and interpreting the data in a multiscale manner using the two frequency bands 2.5-5 Hz
and 2.5-7 Hz, least-squares based FWI converges towards a plausible 3D velocity model which
satisfactorily explains the data. The second initial model is purposely rough, varying only along
the vertical direction. It generates important time-delays in the waveform, which in turn prevents
least-squares FWI from converging towards a correct estimation of the subsurface velocity due
to cycle-skipping. We show how the use of the graph-space optimal transport strategy can help
mitigate this effect.

For this field data application, we rely on a 3D visco-acoustic anisotropic approximation of
the wave propagation. Taking into account both attenuation and anisotropy has shown to be
important to correctly interpreting the data, while elastic propagation effects can be neglected
as their imprint is weak on the hydrophone component of the data in this frequency range. In
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this frame, the subsurface is described by the P-wave velocity, attenuation and density models,
and anisotropy models related to a vertical transverse isotropy approximation of the subsurface
anisotropy (basically, the vertical velocity differs from the horizontal velocity as an effect of
thin sub-wavelength horizontal layering of the subsurface). More details on the implementation
of our 3D visco-acoustic anisotropic modeling and inversion methods can be found in [97]. We
invert only for the P-wave velocity models, and consider the other models as fixed. They are
determined prior to the inversion from different means: the density is inferred from the initial
P-wave velocity model using Gardner’s law, the attenuation is considered as homogeneous below
the water layer, and the anisotropy models are obtained from reflection tomography. They have
also been provided to us by AkerBP.

4.4.2. FWI starting from an accurate initial model from reflection tomography

The accurate initial model obtained by reflection tomography is presented in Figure 4.11. In
the different horizontal (gray scale) and vertical (color scale) slices, we can recognize a central
low-velocity anomaly corresponding to the presence of trapped gas in the sediment layers. The
horizontal slices are extracted at relatively shallow depths (0.2 km, 0.5 km, and 1 km), while the
depth slices give a view of the velocity model down to 4.5 km. Below this low velocity anomaly
appears a strong interface corresponding to a harder rock zone (constituted of chalk). This is the
top of the reservoir, which is located below this interface. As can be seen, this initial tomography
model is “blurred”: no detailed information can be recovered or directly interpreted from it.

The results obtained using a conventional multi-scale least-squares based FWI are presented
in Figure 4.12. The resolution improvement is impressive: the delineation of the trapped gas zone
is much clearer. Also, at 0.2 km depth, a network of submarine channels is revealed with great
accuracy. At 0.5 km depth, coherent “line” features are interpreted as scrapped on the seabed
left by drifting icebergs. This result, in agreement with previous 3D investigations [62, 81], is
a clear illustration of the resolution power of FWI when sufficiently low-frequency data and
sufficiently accurate initial models are available.

The analysis of the fit to the data (comparison between calculated and field data) in the final
model is given in Figure 4.13. The calculated data is presented in color scale, while the field data
is overlapped in gray scale with transparency to analyze the match between the datasets. The
central part of the data has been muted as it contains the imprint of Schélte waves, propagating
at the fluid/solid interface, which cannot be predicted in the acoustic approximation we are using
in this experiment. A good match between the calculated and observed data can be observed.

4.4.3. FWI starting from a rough initial model: interest of the graph-space OT approach

The rough initial model we consider is presented in Figure 4.14. As previously explained, this
model varies only with depth; therefore, the horizontal slices exhibit constant velocity val-
ues. The results obtained using a conventional least-squares FWI at the first-frequency band
2.5-5 Hz are presented in Figure 4.15. As can be seen, this FWI was not able to converge to-
wards a meaningful velocity model. Only the shallowest part of the model provides some details
about the network of channels identified in Figure 4.12, however with an incorrect background
velocity. Deeper, the updates of the velocity are performed in the opposite direction of what
would be required, which is typical of cycle-skipping. As the least-squares inversion fails already
at the first frequency band, we do not continue with the multi-scale workflow and stop the
inversion at 5 Hz.

For comparison, the results obtained using the graph-space OT approach starting from the
same initial model are presented in Figure 4.16. This time the workflow comprises the two
frequency bands. One can see that the results obtained, down to 2 km are similar to the reference
results obtained from the accurate initial tomography model. This is particularly encouraging:
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FIGURE 4.11. Slices of the initial tomography model. (a-c) Horizontal slices at
(a) 0.2 km depth, (b) 0.5 km depth and (c) 1 km depth. (d-e) Inline vertical slices
for (d) z = 2.95 km and (e) = 3.95 km. (f-g) Cross-line vertical slices at (f)
y =9 km and (g) y = 6 km.

compared with the least-squares inversion, graph-space OT FWI is able to compensate for the
kinematic inaccuracies of the initial model and provides a meaningful velocity reconstruction
within the zone of the medium which is sampled both by diving and reflected waves. It is well
known that reconstructing the deeper velocity, in a zone sampled exclusively by reflected waves, is
a challenge which requires specific treatment (namely treating reflections separately to compute
long-wavelength velocity updates from them in the framework of reflection FWI [17, 72, 96, 102]).
One difference remains: the low velocity anomaly, interpreted as trapped gas, appears slightly
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FI1GURE 4.12. Slices of the 7 Hz FWI reconstructed velocity using a least-squares
misfit function starting from the initial tomography model. (a~c) Horizontal slices
at (a) 0.2 km depth, (b) 0.5 km depth and (c) 1 km depth. (d-e) Inline vertical
slices for (d) z = 2.95 km and (e) = 3.95 km. (f-g) Cross-line vertical slices at
(f) y =9 km and (g) y = 6 km.

deeper than in the reference results (110 m deeper). This is due to an imperfect reconstruction of
the shallower part of the medium, which leads to a depth-shifting of this low-velocity anomaly.
Note, however, that this corresponds to a 2 to 3 grid points difference on a Cartesian grid at
50 m.

For comparison, the fit to the data at the first frequency band using least-squares and graph-
space OT FWI is presented in Figure 4.17. One can clearly see the improvement yielded by the
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FIGURE 4.13. 2D common-receiver gathers at 7 Hz starting from the initial
tomography model. Synthetic data (blue/white/red color scale) generated into
the final reconstructed velocity model using the least-squares misfit function. (a)
receivers along cable A (through the low velocity anomaly). (b) receiver B along
cable B. Field data are overlapped in gray-scale with transparency.

graph-space OT strategy over least-squares based FWI. To complete the study, the final data-fit
at the second frequency band using the graph-space OT strategy is presented in Figure 4.18,
where it can be seen that the calculated data is in phase with the field data.
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FIGURE 4.14. Slices of the rough initial model. (a-c) Horizontal slices at (a) 0.2
km depth, (b) 0.5 km depth and (c) 1 km depth. (d-e) Inline vertical slices for (d)
z =2.95 km and (e) z = 3.95 km. (f-g) Cross-line vertical slices at (f) y =9 km
and (g) y = 6 km.

5. Conclusion and perspectives

The applications of OT distances in the framework of FWI are now well established and have
proven their benefits for practical large-scale applications in an industrial context. We have
reviewed two OT-based methods which are robust when applied to seismic data while improving
the convexity of the FWI problem, i.e. alleviating the sensitivity to the initial model and to
various conventional workflow steps.
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F1GURE 4.15. Slices of the 5 Hz FWI reconstructed velocity model using the
least-squares misfit starting from the rough initial model. (a-c) Horizontal slices
at (a) 0.2 km depth, (b) 0.5 km depth and (c) 1.1 km depth. (d-e) Inline vertical
slices for (d) z = 2.95 km and (e) x = 3.95 km. (f-g) Cross-line vertical slices at
(f) y =9 km and (g) y = 6 km.

The first of these methods, named KR norm-based OT, relies on a specific dual form of the
OT distance and has a close connection with the KR norm. Its main benefits in the framework
of FWI are its ability to consider the seismic data (or at least data lines) as a whole, accounting
for the lateral coherency of the events, to reduce sensitivity to the amplitude information, and
to better exploit the low-frequency information in the data. These features, which have been
illustrated on the KR norm adjoint source, enhance the general convexity of the FWI problem.
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FiGURE 4.16. Slices of the 7 Hz FWI reconstructed velocity using the graph-
space OT approach starting from the rough initial model. (a-c) Horizontal slices
at (a) 0.2 km depth, (b) 0.5 km depth and (c) 1.1 km depth. (d-e) Inline vertical
slices for (d) z = 2.95 km and (e) x = 3.95 km. (f-g) Cross-line vertical slices at
(f) y =9 km and (g) y = 6 km.

The enhancement of the convexity specifically with respect to time-shifts exists but remains
limited.

The second method, named graph-space OT, is based on a transformation of each seismic trace
into 2D point clouds. Using such a transform into an OT distance leads to a formalism that
allows to greatly improve the convexity with respect to time-shifts. The underlying mechanism
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FIGURE 4.17. 2D common-receiver gathers at 5 Hz starting from the rough ini-
tial model. Synthetic data (blue/white/red color scale) generated into the final
velocity model using: (a,b) the leas-squares misfit function, (c,d) the graph-space
OT misfit function. (a,c) receiver A along cable A (through the low velocity
anomaly). (b,d) receiver B along cable B. Field data are overlapped in grayscale
with transparency. Black arrows point to area where graph-space improves the
fit to the data.

produces shifted events in the graph-space adjoint source through a permutation, which has
been illustrated.

Graph-space and KR FWI thus both have their strengths, which are related to complementary
features that reinforce the kinematic content in the adjoint-source (shifting events for graph-
space, and enhancing the amplitudes balancing, low frequencies, and events continuity for KR).

The features of graph-space and KR FWI have been illustrated on synthetic tests. Interest-
ingly, we did not find Marmousi 2 configurations where graph-space FWI outperformed KR
FWI or vice versa. It seems in this case that both graph-space and KR FWI manage to mit-
igate the non-convexity issues to a similar level, while working very differently on the data.
Such a behavior has also been observed on field data [38] and deserves further fundamental
investigations.

Then, 3D field data results were presented. Several industrial case studies, including land and
marine data acquisitions, have shown that KR FWI outperforms least-squares FWI, mitigating
non-convexity issues with the specific strengths of KR-based OT. A marine case study has shown
how graph-space FWI outperforms least-squares FWI, also mitigating non-convexity issues with
the specific strengths of graph-space OT.

A natural perspective regarding the techniques presented here would be to find a way to
combine the KR and graph-space approaches to accumulate their respective strengths and bring
even more convexity. A first investigation in this direction has been performed in [38, 47], with
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FIGURE 4.18. 2D common-receiver gathers at 7 Hz starting from the rough ini-
tial model. Synthetic data (blue/white/red color scale) generated into the final
reconstructed velocity using the graph-space OT approach. (a) receiver A along
cable A (through the low velocity anomaly). (b) receiver B along cable B. Field
data are overlapped in gray-scale with transparency.

the proposal of embedding the graph transform into the KR norm. More investigations are
ongoing.
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Another perspective would be to increase the effective dimensionality of the KR problem
(considering a full 3D data representation space instead of a 2D splitting per line) or of the
graph-space problem (considering more than one trace in the graph transform).
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Appendix A. Numerical computation for the Kantorovich—Rubinstein norm

In this section we assume that the dimension d is set to 3. Assuming the functions are discretized
on a Cartesian mesh with N points (x;,y;, 2), and a spacing h between adjacent point, the
discrete problem associated with (3.14) writes

maXZ ijk (Hijk — Vijk), S-C.
Sazgk ij

o Al
{vu,y,k), (Lman)s loih — oomnl < |70 — 31l + [y — vl + 25 — 20l D

v(iaja k)a "Pz]kz’ S A

We use a property of the ¢; norm on R? to reduce the number of constraints from N2 4+ N to
4N.

Proposition. The two following assertions are equivalent
(Al) v (iajv k)v (lam,n)’ ’90ij - Qolmn‘ < ’xz - l’l| + |Z/J - ym‘ + ’Zk - Zn|a
YV (4,5,k), @itk — Pijkl < |Tig1 — 4, (A.2)

(A2) SV (i,5,k), |@ij+ie — @ikl <lyj+1 — vjl,
V (i, 5, k), @ik — @ikl < |z — 2kl

Proof. (A1) obviously implies (A2). To prove the reciprocal implication, consider a pair of points
on the mesh denoted by uw and v, such that

u = (wivyjyzk)a U= (xbymazn)' (A3)

A sequence of M € N points wy = (i, Yj,»> 2k,)> ¢ = 1,..., M can be selected to form a path
on the mesh from u to v, such that wy = u, wy = v, and w, are all adjacent on the grid, with
monotonically varying coordinates. The key is to see that, for such a sequence of points, the /;
norm on R? ensures that

M
lv—u| = Z |[wg+1 — Wel. (A.4)
q=1
This property of the ¢; norm is also known as its Manhattan property.
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Now, consider a function ¢ satisfying (A2). The triangle inequality yields

M
lp(v) —p(u)] < 3 lp(war) — p(wg)|-
q=1

(A.5)

As the points w, are adjacent, the local inequalities described by (A2), satisfied by ¢, yield

M M
D lp(weir) — o(wg)| <D Jwgsr — wyl.
q=1 q=1

Putting together equations (A.5), (A.6) and (A.4) yields

lp(v) — p(u)] < |v—ul,
or
|§0ijk - (len| < |l‘z - xl| + ‘yj - ym| + |Zk — Zn|,

which proves the proposition.

Using the equivalence (A.2), the problem (A.1) can be rewritten in its equivalent form

m%XZ Pijk (Mz’jk — Vijk) , S.C.
Pk ik

s itk — Pijkl < |Tiv1 — zi| = ha,
@itk — Pijkl < |Yje1 — v = hy,
|Pijkt1 — ijkl < l2e11 — 26| = ha,
s lpijel < A

The problem (A.9) is equivalent to (A.1) with only 4N constraints, as announced.

(A.6)

(A.9)

We solve problem (A.9) through a proximal splitting algorithm named Alternative Direction
Method of Multipliers (ADMM). We first reformulate (A.9) as the convex non-smooth problem

mngl(SD) + fa(¥),

where

filyp) = Z ©ijk (Hijk — Vi), f2 =iK 0 A,
Z"j7k

with K the unit hypercube
K= {xeR4N, | < 1, z’zl,...4N},
1x the indicator function of K

ifre K

+oo ifzx ¢ K,

. 0
ix(x) = {
and A € Myn n(R) a rectangular real matrix with 4N rows and N columns such that

1 T
IN:| )

A= |D, D, D,
RS
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where Iy is the real identity matrix of size N and D, D,, D, are the forward finite differences
operators

Pi+1,5,k — Pijk
(Dx‘ao)ijk == ]h ==,
Pi,j+1 kz_ Pijk
(Dy)yjp = == (A.15)
Y
O ikt — Pijh
(DzSD)ijk = == h o
4

The second part of the misfit function f2(¢) represents the constraints of the problem A.9.
The ADMM method can be described as follows [22].

Algorithm 1: ADMM method for the solution of the problem (A.10).
7¥>0,99=0,98=0,2)=0,29=0;
for n=20,1,... do

-1
on = (v +ATA) (o~ 21) + AT (8 - )]
Y = prox, g (9" + 27) 5
AL Zgn o gt
B =2 4 Apn — it
end

Proximal splitting strategies rely on a splitting of the problem in terms of the functions f1(y)
and fa(p) and the computation of the proximity operators of these two functions (scaled by a
positive factor ). For the particular case of the function f; and ik, closed-form formulations
can be found such that

prox, s, (¢) = ¢ = y(u+v), (A.16)
v, if —1<g;<1
Vi=1,... 4N, (proxw-K(x))i =<1 ifay>1 (A.17)
-1 ifx; < —1.

The closed-form formulations (A.16) and (A.17) are inexpensive to compute with an overall
complexity in O(N) operations.

However, the ADMM algorithm requires the solution of a linear system involving the matrix
I + AT A, which is the most time-consuming part of the algorithm. We have

ATA=A+ %IN, A=DID,+D]D,+ DID.. (A.18)

In [56] we prove that the matrix A actually corresponds to the second-order finite differences
discretization of the 3D Laplacian operator defined on 2 with homogeneous Neumann boundary
conditions. We redirect the reader to this study for a formal proof.

The linear system which has to be solved at each iteration of the ADMM algorithm thus
corresponds to a second-order finite-differences discretization of the Poisson’s problem

- (A + (1 + ;) IN> o= f, (A.19)

where A is a Laplacian operator with homogeneous Neumann boundary conditions and " =
—(yp — 27) — AT (y% — 28). The best numerical strategies for the solution of such problems
appears to rely either on the Fast Fourier Transform algorithm with O(N log N) complexity [83]
or multigrid solvers with O(N) complexity [14].
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The combination of the reduction of the number of constraints using the property of the
¢1 distance and the observation that the matrix appearing in the ADMM strategy actually
corresponds to the discretization of the Poisson’s equation offers the possibility to design an

efficient numerical method to compute the KR norm for large scale problems. g
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