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on the three-dimensional CR sphere

Ridha Yacoub

(Recommended by Tobias Holck Colding)

Abstract. In this paper, we address the problem of prescribed
fractional Q-curvature on a 3-dimensional sphere endowed with its
standard CR structure. Since the associated variational problem is
noncompact, we approach this issue using techniques of Bahri as the
theory of critical points at infinity, using topological tools from
generalizations of Morse theory. We prove some perturbative existence
results.

1. Introduction

The CR Nirenberg problem in CR geometry is the well known Webster scalar curva-
ture problem. Let (M , θ) be a compact (2n+1)-dimensional CR manifold equipped with
a contact form θ. Given a prescribed function K : M → R, this problem amounts to
solving the following curvature equation{

Pθ
1 u = K u

n+2
n

u > 0 on M ,

where Pθ
1 = −∆θ + n

2(n+1) Rθ is the CR invariant sublaplacian of M , ∆θ the sublaplacian,
and Rθ the Webster scalar curvature associated to θ. Introduced by Jerison and Lee in
1987 in [JL87], and better known as the CR Yamabe operator, Pθ

1 was the first in a series
of CR covariant operators that were discovered later. In 2005, Gover and Graham con-
structed and studied in [GG05] generalizations of the CR invariant sublaplacian which
are the CR analogues of the conformally invariant powers of the Laplacian in confor-
mal geometry. More recently in 2015, Frank, Gonzalez, Monticelli, and Tan introduced
in [FGMT15] fractional powers of the sublaplacian on CR manifolds and constructed a
class of fractional CR invariant operators on a CR manifold, from scattering theory on
a Kähler-Einstein manifold [EMM91, GSB08, HPT08]. Denoted by Pθ

s these operators
are actually pseudo-differential operators of order 2s where s ∈ R, and whose princi-
pal symbol agrees with the pure fractional powers of the sublaplacian (−∆θ)s . The main
property of the operator Pθ

s is its CR covariance. Indeed, given a CR invariant change of

contact form θ̃ = u
2

n+1−s θ, the corresponding operator is given by the following transfor-
mation law:

P θ̃
s ( f ) = u− n+1+s

n+1−s Pθ
s (u f ) ∀ f ∈C ∞(M).
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The formula for the Webster scalar curvature or the Paneitz–Branson Q-curvature can
be extended, and the CR fractional Q-curvature for θ̃ of order s can be defined as

Q θ̃
s = P θ̃

s (1),

which enjoys interesting covariant properties. Noting that for f ≡ 1 we have

Pθ
s (u) = u

n+1+s
n+1−s P θ̃

s (1),

we can then formulate the CR fractional Nirenberg problem, or the CR fractional Q-

curvature problem, as follows: find a CR invariant change of contact form θ̃ = u
2

n+1−s θ

such that Q θ̃
s = K where K : M → R is a prescribed function. This problem reduces to

solving the following curvature equation{
Pθ

s u = K u
n+1+s
n+1−s

u > 0 on M ,

which is a nonlocal semilinear equation with critical power nonlinearity.

We are interested here in the case where M is the CR unit sphere S2n+1 with n = 1.
Namely, let S3 be the unit sphere of C2 defined by

S3 =
{
ζ= (ζ1, ζ2) ∈C2

∣∣∣ |ζ|2 = 2∑
j=1

|ζ j |2 = 1
}

endowed with its standard contact form

θ = i (∂−∂)|ζ|2 = i
2∑

j=1
ζ j d ζ

j −ζ j
d ζ j .

We wonder whether we can deform the contact form θ into a CR equivalent contact

form θ̃ whose associated fractional CR Q-curvature Q θ̃
s = K , where K :S3 → R is a pre-

scribed function, and s ∈ (0, 1). Thus, by posing θ̃ = u
2

2−s θ, it is equivalent to finding a
solution u of the following fractional Q-curvature equation:{

Pθ
s u = K u

2+s
2−s

u > 0 on S3.
(1.1)

We recall that if the function K is constant, then problem (1.1) is the fractional CR Yam-
abe problem which was studied in [GMM18]. However, the fractional CR Q-curvature
problem has been addressed in [CW17] and in [LW18]. Our aim is to handle such a ques-
tion using some topological and dynamical tools related to the theory of critical points
at infinity (see Bahri-Coron [BC85], Bahri [Bah89]) as well as to generalizations of Morse
theory.

Let K : S3 −→ R be a C 2 function. We assume that K satisfies the following nonde-
generacy assumption:

(A1) K has a finite set I of nondegenerate critical points, such that ∆θK (y) 6= 0 ∀y ∈ I,

where ∆θ is the usual sublaplacian operator of S3, (see e.g. [JL87]). We consider the
following subset of critical points of K :

(1.2) I+ = {
y ∈ I

∣∣−∆θK (y) > 0
}
,

and we introduce the following perturbative assumption:

(A2) Assume that K (ζ) = 1+εK0(ζ) , ∀ζ ∈S3, where K0 ∈C 2(S3) and |ε| small.
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Let ind(K , y) be the Morse index of K at its critical point y . For an integer k, we write
k ∈ N , if k satisfies the following condition: For any y ∈ I+ , we have 3− ind(K , y) 6= k +1.
That is to say

(1.3) N = {
k ∈N ∣∣∀y ∈ I+, 3− ind(K , y) 6= k +1

}
.

Our first existence result is:

Theorem 1.1. Let 2/3 É s É 1, and K :S3 → R a C 2 positive function satisfying (A1) and
(A2). If

(1.4) max
k∈N

∣∣∣∣1− ∑
y∈I+

3−ind(K ,y)Ék

(−1)3−ind(K ,y)
∣∣∣∣ 6= 0

then for |ε| small enough, there exists a solution for problem (1.1).

Observe that taking k to be 3, the condition 3− ind(K , y) ≤ 3 is obviously satisfied for
all y ∈ I+, therefore we obtain the following corollary:

Corollary 1.1. Let 2/3 É s É 1, K :S3 →R a C 2 positive function satisfying (A1) and (A2).
If

(1.5)
∑

y∈I+
(−1)3−ind(K ,y) 6= 1,

then for |ε| small enough, there exists a solution for problem (1.1).

Comment. This Corollary recalls the main result of [LW18] which states that under con-
dition (A1), if the sum ∑

y∈I+
(−1)3−ind(K ,y) 6= 1,

then equation (1.1) has a solution. However, if in addition we impose the condition (A2),
we will have a perturbative version of the result of [LW18], which coincides with Corol-
lary 1.1. Therefore our Theorem 1.1 can be seen as a generalization of this perturbative
version of the result of [LW18]. Note that an interpretation of the fact that the sum∑

y∈I+
(−1)3−ind(K ,y) 6= 1

is that the total topological contribution of all the critical points at infinity in the topol-
ogy of the lower levels sets of J (see definition (2.3)) is nontrivial. A perturbative ver-
sion of the result of [LW18] would state that under conditions (A1) and (A2), if the total
topological contribution of all the critical points at infinity is nontrivial, there exists a
solution to equation (1.1). But what if that total contribution is trivial? The main nov-
elty of our Theorem 1.1 is to answer the following question: What can be said if the total
contribution is trivial, but the partial contribution of a subset of critical points at infinity
is nontrivial? Can we still take advantage of such partial topological information? Our
Theorem 1.1 gives a sufficient condition to be able to deduce from such partial topolog-
ical information the existence of solutions for (1.1). Contrary to the perturbative version
of [LW18], our Theorem 1.1 works even when the sum∑

y∈I+
(−1)3−ind(K ,y) = 1,

but when this sum is different from 1, the result of [LW18] is more general than our
Corollary 1.1, since it is true for any prescribed positive Morse function on S3, and not
only for a positive Morse function close to a constant.
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Note. Initially, the hypothesis imposed on the fractional order s is 2/3 É s < 1. It is an
unavoidable hypothesis in [LW18] since it appears in its main theorem. The inequality
2/3 É s is required in several places throughout [LW18], and since we use some results of
[LW18] we must keep this lower bound of s. However, as we will see below in the proofs
of our theorems, we could improve the upper bound by allowing the fractional order s
to take the value 1.

In order to state our second perturbative existence result let us introduce for all inte-
ger p ∈N,

(1.6) I+p = {
y ∈ I+ ; ind(K , y) = p

}
and let

(1.7) I+∗ = I+ \ I+0 .

We then have

Theorem 1.2. Let 2/3 É s É 1, K :S3 →R a C 2 positive function satisfying (A1), (A2) and
the condition:

(A3) ∃ ỹ ∈ I+1 , such that, K (ỹ) Ê K (z) , ∀z ∈ I+2 .
Then provided that |ε| is small enough, there exists a solution for problem (1.1).

2. Variational aspect, defect of compactness, and Palais-Smale sequences

We denote by H s the completion of C ∞(S3) with respect to the norm

‖u‖2 =
∫
S3

Pθ
s u ·u θ∧dθ

and recall that solutions of eq. (1.1) are the critical points in H s of the energy functional

(2.1) E(u) = 1

2
‖u‖2 − 2− s

4

∫
S3

K u
4

2−s θ∧dθ.

Let in the sequel
∑= {

u ∈ H s
∣∣ ‖u‖ = 1

}
and

∑+ = { u ∈∑ ∣∣ u ≥ 0 } . The Euler functional
associated to problem (1.1) is denoted by J and is defined on H s by:

J (u) = ‖u‖2(∫
S3 K |u| 4

2−s θ∧dθ
) 1

2

.

One knows that if v is a critical point of J in
∑+, then u = J (v)

1
s v is a solution for (1.1) in

H s , and hence the contact form θ̃ = u
2

2−s θ has its fractional Q-curvature Q θ̃
s = K .

Problem (1.1) is known to be delicate because 4
2−s is the critical exponent for the in-

clusion H s ,→ L
4

2−s which is continuous but not compact, and the functional J does not
satisfy the Palais-Smale condition. In order to characterize the sequences that fail the
Palais-Smale condition, we recall some definitions and notations. Let ω be the typi-
cal solution of the fractional CR Yamabe problem on the Heisenberg group H1 (see e.g.
[LW18, GMM18]), defined for all ξ= (z, t ) in H1 by

ω(ξ) = 1

|1+|z|2 − i t |2−s .

For each (g ,λ) ∈H1 × (0 , ∞) we obtain another solution by left translation and dilation,
ω(g ,λ)(ξ) =λ2−sω

(
λg−1ξ

)
. Now, for each (a,λ) ∈S3×(0 , ∞), we introduce the solution of

the fractional CR Yamabe problem on S3, denoted by δ(a,λ) and defined by:

(2.2) δ(a,λ)(ζ) = 1

|1+ζ2|2−s ω(F (a),λ) ◦F (ζ)
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for all ζ ∈ S3, where F is a biholomorphic map from S3 à {−a} onto H1, induced by the
Cayley Transform (see [LW18, JL87, MU02]). Observe that one can choose a coordinate
system such that point a coincides with the north pole of S3, and therefore, F (a) = 0.

Let us recall that a sequence (vk ) in
∑+ is called a Palais-Smale (PS) sequence if

J ′(vk ) → 0 and J (vk ) is bounded. We associate with (vk ) the sequence uk = J (vk )
1
s vk . It

follows that uk ∈ H s . Since J (uk ) = J (vk ), one can easily see that (vk ) is a (PS) sequence
for J in

∑+ if and only if (uk ) is a (PS) sequence for E in H s –topology. (PS) sequences
for the functional E have been completely identified by Theorem 1.1 in [GMM18] in the
general case ofS2n+1, and for the functional J by Lemma 5.2 in [LW18] in the special case
of S3. If we assume that there are no solutions, then (PS) sequences for the functional
J are linear combinations of bubble functions

∑p
i=1δ(ai ,λi ), for some integer p Ê 1, such

that concentration points ai tend to distinct critical points yi of K when speeds of con-
centration λi tend to infinity. Among these (PS) sequences, only sequences for which
yi

′s belong to I+ give rise to a critical point at infinity, others are sometimes referred to
as false critical points at infinity. Then, the limit of such a linear combination is called a
critical point at infinity made out of p masses. From a dynamical point of view, it corre-
sponds to a noncompact orbit for the flow of −∇J , the opposite of the gradient of J . We
then have

Proposition 2.1. Assume (1.1) has no solution. The only critical points at infinity of
J in

∑+ are combinations of p masses (p Ê 1), which are denoted by
∑p

i=1δ(yi ,+∞) :=
(y1, ..., yp )∞, where the yi

′s are distinct critical points of K in I+.

From a topological point of view, the property of a critical point at infinity which
interests us is that, as a classical critical point, it induces a change of topology in the sets
of the lower levels of the functional J , defined for β ∈R, by

(2.3) Jβ = {u ∈∑+ ∣∣ J (u) Éβ}.

A critical point at infinity has a Morse index. In order to calculate it we need a Morse
lemma and a Morse decomposition in some appropriate neighborhood of the critical
point at infinity. To the best of our knowledge, this has been done only in the case of S3

in [LW18] (see Lemma 5.3). The unstable manifolds for K are the stable manifolds for
1/K . It leads to the following result expressed with help of our notations:

Proposition 2.2. The Morse index of a critical point at infinity made of p masses
(y1, ..., yp )∞ is the integer µ(y1, ..., yp )∞ = p −1+∑p

i=1 3− ind(K , yi ).

Notice that in Lemma 5.4 of [LW18], the critical point at infinity (y1, ..., yp )∞ is iden-
tified to the p-uple τp = (y1, ..., yp ) where the yi

′s are distinct critical points in I+. The
Morse index of τp is denoted there by k(τp ) = 4p −1−∑p

i=1 ind(K , yi ) which is equal to

µ(y1, ..., yp )∞ = p −1+∑p
i=1 3− ind(K , yi ).

3. Proofs of the theorems

Proof of Theorem 1.1. First, consider the case where 2/3 É s < 1. Since K = 1+εK0,
the functional is

J (u) = ‖u‖2(∫
S3 (1+εK0)|u| 4

2−s θ∧dθ
) 2−s

2

,

and for ε= 0, we obtain the fractional CR Yamabe functional

J0(u) = ‖u‖2(∫
S3 |u| 4

2−s θ∧dθ
) 2−s

2
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which possesses a 4-dimensional manifold of critical points

Z = {
δ(a,λ)

∣∣ (a,λ) ∈S3 × (0 , ∞)
}
.

Let σ be the lowest critical level of the functional J0, that is to say: σ = J0(δ(a,λ)) =
min J0 on

∑+. Since K0 is bounded on S3, we derive that J (u) = J0(u)
(
1+O(ε)

)
, where

O(ε) is independent of u and tends to 0 with ε. Hence, the next lemma:

Lemma 3.1. Let η> 0, for |ε| small enough, we have Jσ+η ⊂ Jσ+2η
0 ⊂ Jσ+3η.

On the other hand, the critical level of a critical point at infinity made of p masses

J
(
(y1, ..., yp )∞

) = σ
(∑p

i=1 1/K (yi )
2−s

s
) s

2 tends to σp
s
2 as ε→ 0, since K (yi ) = 1+εK0(yi ).

Taking η = σ/4, we can assume |ε| sufficiently small so that critical points at infinity
made of two masses or more are above the level σ+3η, and those made of a single mass
are below the level σ+η. Therefore, J has no critical points at infinity in the set

Jσ+3η
σ+η = {

u ∈∑+ ∣∣σ+ηÉ J (u) Éσ+3η
}
.

Since, arguing by contradiction, we assume that (1.1) has no solution, it follows that
Jσ+3η ' Jσ+η, where ' denotes retracts by deformation. Using Lemma 3.1, we have that

Jσ+2η
0 ' Jσ+η. Now, we claim that Jσ+η is a contractible set. Indeed, from what precedes,

it is sufficient to prove that Jσ+2η
0 is a contractible set. Let u0 ∈ Jσ+2η

0 , and t 7→ u(t ,u0)
the fractional CR Yamabe flow line. The flow verifies the following equation{ ∂u

∂t =−∇J0(u)
u(0) = u0.

Using the results of [LW18], we know that the Palais-Smale condition is satisfied for the
above equation for all t > 0, and when t →+∞, u(t ,u0) converges to a single mass in Z .

Thus, Jσ+2η
0 ' Z . Since Z is a contractible set it follows that Jσ+2η

0 is a contractible set,
and our claim follows. Now, let ` be the integer for which

max
k∈N

∣∣∣1− ∑
{y∈I+|µ(y)∞Ék}

(−1)µ(y)∞
∣∣∣ 6= 0

is achieved. Here µ(y)∞ = 3− ind(K , y) is the Morse index of the critical point at infinity
of single mass (y)∞. We introduce the set

X ∞
` = ⋃

{y∈I+|µ(y)∞É`}
Wu(y)∞.

It is a stratified set of top dimension `, and since it is made of unstable manifolds of
critical points at infinity of a single mass, we derive from what precedes that X ∞

`
⊂ Jσ+η.

Observe that X ∞
`

is contractible in Jσ+η, since Jσ+η is a contractible set. More precisely,
there exists a contraction h : [0,1]×X ∞

`
→ Jσ+η, i.e. h continuous and such that h(0,u) =

u and h(1,u) = ũ a fixed point in X ∞
`

. Let H = h
(
[0,1]×X ∞

`

)
. H is a contractible stratified

set of dimension `+1. Using the flow lines of −∇J , and the fact that H ⊂ Jσ+η, we have

H ' ⋃
{y∈I+|µ(y)∞É`+1}

Wu(y)∞.

Now, using the fact that ` ∈ N, there are no critical points at infinity of Morse index `+1.
We derive that H ' X ∞

`
. Then, taking the Euler characteristic of both sides, we derive

that
1 = ∑

{y∈I+|µ(y)∞É`}

(−1)µ(y)∞ .

This contradicts the assumption of Theorem 1.1. Therefore, Theorem 1.1 is proven in
this case.
Now consider the case where s = 1. Then problem (1.1) is the classical problem of the
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prescribed Webster scalar curvature, and our Theorem 1.1 is reduced to the particular
case n = 1 of Theorem 1.1 of [Yac11]. As this last theorem is true for n ≥ 1, our Theorem
1.1 is true in this case, which completes the proof of Theorem 1.1.

Proof of Theorem 1.2. First consider the case where 2/3 É s < 1. Arguing by con-
tradiction, we assume that (1.1) has no solution. Let ∂ be the boundary operator in the
sense of Floer-Milnor homology as introduced in [Yac02]. We recall that singular chains,
in this homology, are generated by unstable manifolds of critical points of J , and, if (y)∞
is a critical point at infinity of Morse index µ(y)∞, then

∂
(
Wu(y)∞

)= ∑
{(z)∞|µ(z)∞=µ(y)∞−1}

int
(
(y)∞, (z)∞

)
Wu(z)∞

where int
(
(y)∞, (z)∞

)
is the intersection number of Wu(y)∞ and Ws (z)∞, the unstable

(resp. stable) manifold of (y)∞ (resp. (z)∞), with respect of −∇J , (see [Bah96, Yac02]).
Taking y = ỹ in I+1 , given by assumption (A3) of Theorem 1.2, Wu(ỹ)∞ is a manifold of
dimension µ(ỹ)∞ = 2, and satisfies Wu(ỹ)∞

⋂
Ws (z)∞ =; for any (z)∞ of Morse index 1,

since under assumption (A3), J
(
(ỹ)∞

)É J
(
(z)∞

)
for all z ∈ I+2 . It follows that ∂

(
Wu(ỹ)∞

)=
0, hence Wu(ỹ)∞ defines a cycle in C2(X ∞) the group of 2-dimensional chains of

X ∞ = ⋃
y∈I+∗

Wu(y)∞.

Note that X ∞ is a stratified set of top dimension 2, since the highest Morse index of crit-
ical points at infinity (y)∞ where y ∈ I+∗, is less than or equal to 2. But then Wu(ỹ)∞
cannot belong to the boundary of a 2-dimensional chain of X ∞. Therefore Wu(ỹ)∞
defines a homological class of dimension 2 which is nontrivial in X ∞. Denoting the
2-dimensional homology group of X ∞ by H2(X ∞), we then have

(3.1) H2(X ∞) 6= 0

Using the same arguments and notations of the proof of Theorem 1.1, we derive that
X ∞ is contractible in Jσ+η which retracts by deformation on X ∞. It follows that X ∞ is a
contractible set, and therefore Hk (X ∞) = 0 for all k Ê 1, which is in contradiction with
(3.1). Theorem 1.2 is thereby proven in this case.
Now we consider the case where s = 1. Then problem (1.1) is the classical Webster scalar
curvature problem, and our Theorem 1.2 becomes the particular case n = 1 of Theorem
1.3 of [Yac11] (or of the first part of Theorem 1.2 of [Yac13]). Since these two last theo-
rems are true for n ≥ 1, then Theorem 1.2 is true in this case too, which ends the proof of
Theorem 1.2.

Acknowledgements

The author thanks the Institute for Mathematical Sciences of the National University
of Singapore for its support.

References

[Bah89] A. Bahri, Critical points at infinity in some variational problems, Pitman Research Notes in Math-
ematics Series, vol. 182, Longman Scientific & Technical, Harlow; copublished in the United States
with John Wiley & Sons, Inc., New York, 1989.

[Bah96] A. Bahri, “An invariant for Yamabe-type flows with applications to scalar-curvature problems in
high dimension”, Duke Math. J. 81 (1996), no. 2, p. 323-466.

[BC85] A. Bahri & J.-M. Coron, “Vers une théorie des points critiques à l’infini”, in Bony-Sjöstrand-Meyer
seminar, 1984–1985, École Polytech., Palaiseau, 1985, p. Exp. No. 8, 24.

[CW17] Y.-H. Chen & Y. Wang, “Perturbation of the CR fractional Yamabe problem”, Math. Nachr. 290
(2017), no. 4, p. 534-545.

[EMM91] C. L. Epstein, R. B. Melrose & G. A. Mendoza, “Resolvent of the Laplacian on strictly pseudoconvex
domains”, Acta Math. 167 (1991), no. 1-2, p. 1-106.



54 Ridha Yacoub

[FGMT15] R. L. Frank, M. d. M. González, D. D. Monticelli & J. Tan, “An extension problem for the CR frac-
tional Laplacian”, Adv. Math. 270 (2015), p. 97-137.

[GG05] A. R. Gover & C. R. Graham, “CR invariant powers of the sub-Laplacian”, J. Reine Angew. Math. 583
(2005), p. 1-27.

[GMM18] C. Guidi, A. Maalaoui & V. Martino, “Palais-Smale sequences for the fractional CR Yamabe func-
tional and multiplicity results”, Calc. Var. Partial Differential Equations 57 (2018), no. 6, p. Paper
No. 152, 27.

[GSB08] C. Guillarmou & A. Sá Barreto, “Scattering and inverse scattering on ACH manifolds”, J. Reine
Angew. Math. 622 (2008), p. 1-55.

[HPT08] P. D. Hislop, P. A. Perry & S.-H. Tang, “CR-invariants and the scattering operator for complex man-
ifolds with boundary”, Anal. PDE 1 (2008), no. 2, p. 197-227.

[JL87] D. Jerison & J. M. Lee, “The Yamabe problem on CR manifolds”, J. Differential Geom. 25 (1987),
no. 2, p. 167-197.

[LW18] C. Liu & Y. Wang, “Existence results for the fractional Q-curvature problem on three dimensional
CR sphere”, Commun. Pure Appl. Anal. 17 (2018), no. 3, p. 849-885.

[MU02] A. Malchiodi & F. Uguzzoni, “A perturbation result for the Webster scalar curvature problem on
the CR sphere”, J. Math. Pures Appl. (9) 81 (2002), no. 10, p. 983-997.

[Yac02] R. Yacoub, “On the scalar curvature equations in high dimension”, Adv. Nonlinear Stud. 2 (2002),
no. 4, p. 373-393.

[Yac11] ——— , “Prescribing the Webster scalar curvature on C R spheres”, C. R. Math. Acad. Sci. Paris 349
(2011), no. 23-24, p. 1277-1280.

[Yac13] ——— , “Existence results for the prescribed Webster scalar curvature on higher dimensional CR
manifolds”, Adv. Nonlinear Stud. 13 (2013), no. 3, p. 625-661.

Ridha Yacoub: Department of Mathematics and Computer Sciences, I.P. E.I.M., Avenue Ibn Al Jazzar, 5000
Monastir, Tunisia.


	1. Introduction
	2. Variational aspect, defect of compactness, and Palais-Smale sequences
	3. Proofs of the theorems
	Acknowledgements
	References

