Théorie des Nombres de BORDEAUX

anciennement Séminaire de Théorie des Nombres de Bordeaux

Takayuki MORISAWA et Ryotaro OKAZAKI Height and Weber's Class Number Problem Tome 28, nº 3 (2016), p. 811-828. <http://jtnb.cedram.org/item?id=JTNB_2016__28_3_811_0>

© Société Arithmétique de Bordeaux, 2016, tous droits réservés.

L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

Height and Weber's Class Number Problem

par Takayuki MORISAWA et Ryotaro OKAZAKI

RÉSUMÉ. Nous étudions la non divisibilité par un nombre premier ℓ du nombre de classes h_n du *n*-ième étage \mathbb{B}_n de la \mathbb{Z}_p extension cyclotomique de \mathbb{Q} , où p est un nombre premier fixé. Posons q = 4 si p = 2 et q = p si $p \ge 3$ et notons D(p, s, f) l'ensemble des nombres premiers ℓ dont l'ordre modulo q vaut f et dont p^s est la plus grande puissance de p divisant $\ell^f - 1$. Dans cet article nous définissons une constante explicite G(p, s, f) ayant la propriété que chaque h_n est non divisible par les ℓ dans D(p, s, f)tels que $\ell > G(p, s, f)$.

ABSTRACT. We discuss indivisibility by prime numbers ℓ of the class number of the *n*-th layer \mathbb{B}_n of the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} where *p* is an arbitrary fixed prime number.

We denote by h_n the class number of \mathbb{B}_n . Put q = 4 if p = 2 or q = p if $p \ge 3$. For positive integers f and s, let D(p, s, f) be the set of prime numbers ℓ satisfying the following two conditions: (1) the order of ℓ modulo q is f and (2) p^s is the exact power of p dividing $\ell^f - 1$. In this paper, we define an explicit function G(p, s, f) which depends only on p, s and f. We show that h_n is indivisible by every prime number ℓ in D(p, s, f) with $\ell > G(p, s, f)$ for every non-negative integer n.

1. Introduction

Let p be a prime number and μ_m the group of all m-th roots of unity. We put q = 4 if p = 2 or q = p if $p \ge 3$. We denote by \mathbb{B}_n the unique real subfield of $\mathbb{Q}(\mu_{qp^n})$ which is the cyclic extension of the rational number field \mathbb{Q} with degree p^n . Note that the Galois group of $\mathbb{B}_{\infty} = \bigcup_{n\ge 0} \mathbb{B}_n$ over \mathbb{Q} is isomorphic to the p-adic integer ring \mathbb{Z}_p as additive group. The fields \mathbb{B}_{∞} and \mathbb{B}_n are called the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} and its n-th layer, respectively. We denote by h_n the class number of \mathbb{B}_n . We consider the following problem.

Weber's class number problem. Is the class number h_n equal to 1 for every non-negative integer n?

Manuscrit reçu le 6 novembre 2014, révisé le 27 juin 2015, accepté le 7 juillet 2015.

Mathematics Subject Classification. 11R06, 11R18, 11R29.

Mots-clefs. Class number, \mathbb{Z}_p -extension, Height of algebraic number.

In the case p = 2, H. Weber proved $h_1 = h_2 = h_3 = 1$. Later, several authors showed $h_n = 1$ for (p, n) = (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (5, 1)and (7, 1) (see [1], [3], [18] and [19]). And recently, J. C. Miller obtained striking results determining $h_n = 1$ for (p, n) = (2, 6), (5, 2), (11, 1), (13, 1), (17, 1) and (19, 1) (see [20] and [21]). However, calculating one class number by one gives information on the class numbers for only finitely many layers. Thus, we are lead to a problem of different aspect.

Problem 1.1. Fix a prime number ℓ . Is the class number h_n indivisible by ℓ for every non-negative integer n?

In the case $\ell = p$, H. Weber [28] and K. Iwasawa [17] showed that h_n is indivisible by p for every non-negative integer n.

In the case $\ell \neq p$, by studying generalized Bernoulli numbers, L. C. Washington [27] proved that the quotient h_n/h_{n-1} is indivisible by ℓ for sufficiently large n.

However, this result does not immediately imply the ℓ -indivisibility of h_n . On the indivisibility problem, Washington [26] also showed that the minus part of the class number of $\mathbb{Q}(\mu_{5^{n+1}})$ is indivisible by every prime number ℓ with $\ell^8 \not\equiv 1 \pmod{100}$ for every non-negative integer n. Later, K. Horie [7, 8, 9, 10] and K. Horie–M. Horie [11, 12, 13, 14, 15] made a breakthrough. Indeed, they succeeded in controlling cyclotomic units which relate to our class numbers.

We introduce notation before presenting a summary of their results. Let $f_p(\ell)$ be the order of ℓ modulo q and $p^{s_p(\ell)}$ the exact power of p dividing $\ell^{f_p(\ell)} - 1$. And we define the set D(p, s, f) of prime numbers to be

$$D(p, s, f) = \{ \ell \neq p \mid f_p(\ell) = f, s_p(\ell) = s \}.$$

If f divides $\varphi(q)$, where φ is the Euler function, and (p, s, f) is not in $\{(2, 1, 1), (2, 1, 2), (2, 2, 2)\}$, then D(p, s, f) contains infinitely many prime numbers. Moreover, D(p, s, f) can be written as a union of congruence classes of prime numbers modulo p-power. For example, $D(2, 6, 2) = \{\ell \equiv 31 \mod 64\}$ and $D(3, 1, 2) = \{\ell \equiv 2 \mod 9\} \cup \{\ell \equiv 5 \mod 9\}$.

Theorem 1.2 (K. Horie–M. Horie). Let p be a prime number.

- Let s be a positive integer and f a positive divisor of φ(q). There exists an explicit positive constant H(p, s, f) such that the class number h_n is indivisible by every prime number l in D(p, s, f) with l > H(p, s, f) for every non-negative integer n.
- (2) If p = 2, then the class number h_n is indivisible by every prime number ℓ such that $\ell \not\equiv \pm 1 \pmod{8}$ for every non-negative integer n.
- (3) If $3 \le p \le 23$, then the class number h_n , for every non-negative integer n, is indivisible by every prime number ℓ such that ℓ is a primitive root modulo p^2 .

Remark 1.3. They wrote H(p, s, f) explicitly. We give a few of its numerical values at the end of this section.

T. Fukuda–K. Komatsu [5] proved the following theorem on the basis of the works of K. Horie.

Theorem 1.4 (T. Fukuda–K. Komatsu, [5]). Let p = 2 and ℓ a prime number. Assume that $\ell < 10^9$ or $\ell \not\equiv \pm 1 \pmod{32}$. Then the class number h_n is indivisible by ℓ for every non-negative integer n.

In our previous papers [22, 24, 25], we proposed new methods for controlling cyclotomic units, which enabled us to prove the following theorem.

Theorem 1.5. Let p, f and s be the same as in Theorem 1.2 and $c = (p-1)p^{s-1}$. We put

$$G_1(p, s, f) = \begin{cases} (c!)^{1/f} & \text{if } p = 2, \\ (2^{c/2} \cdot c!)^{1/f} & \text{if } p = 3, \\ \left(\left(\frac{\sqrt{6p}}{2} \right)^c \cdot c! \right)^{1/f} & \text{if } p > 3. \end{cases}$$

Assume that ℓ is greater than $G_1(p, s, f)$. Then the class number h_n is indivisible by ℓ for every non-negative integer n.

The technical condition of Theorem 1.5 on the magnitude of ℓ is weaker than that of Theorem 1.2.

In this paper, we show the ℓ -indivisibility under even weaker technical condition on the magnitude.

Theorem A. Let p, f, s and c be the same as in Theorem 1.5. We put G(p,s,f) =

$$\begin{cases} \left(2 \left(\frac{\sqrt{\pi}}{\sqrt{2} \log\left(2 + \sqrt{5}\right)} \right)^c \frac{c+2}{2}! \right)^{1/f} & \text{if } p = 2, \end{cases}$$

$$\left(\left(\frac{\sqrt{2\pi}}{3^{3/4} \log((3^{40/81} + \sqrt{3^{80/81} + 4})/2)} \right)^{\frac{c}{2}} \frac{c+2}{2}! \right) \qquad if \ p = 3,$$

$$\left(\left(\frac{2\sqrt{\pi}}{\sqrt{2\pi}} \frac{\sqrt{2\pi}}{\sqrt{2\pi}} \frac{c}{\sqrt{2\pi}} \frac{c}{2}! \right)^{1/f} \qquad if \ p = 5,$$

$$\left(\left(\frac{\sqrt{\pi}(p-1)\sqrt{p+1}}{2\sqrt{6}p^{(p-2)/2(p-1)}\log((p^{(p+1)/p^2} + \sqrt{p^{2(p+1)/p^2} + 4})/2)} \right)^c \frac{c+2}{2}! \right)^{1/f} \\ if 7 \le p \le 19, \\ \left(\left(\frac{\sqrt{\pi}(p-1)\sqrt{p+1}}{2\sqrt{6}p^{(p-2)/2(p-1)}\log((p^{1/p} + \sqrt{p^{2/p} + 4})/2)} \right)^c \frac{c+2}{2}! \right)^{1/f} \\ if p \ge 23. \end{aligned}$$

Then the class number h_n is indivisible by every prime number ℓ in D(p, s, f) with $\ell > G(p, s, f)$ for every non-negative integer n.

For example, G(2,6,1) and G(2,6,2) are smaller than 7.8×10^{12} and 2.8×10^6 , respectively.

Recalling Theorem 1.4, we see Theorem A implies the following corollary.

Corollary B. Let p = 2. If ℓ is not congruent to ± 1 modulo 64, then h_n is indivisible by ℓ for every non-negative integer n.

Example 1.6. We can compute H, G_1 and G. In the following table, we give a few examples of their values rounded up to two significant figures.

(p, s, f)	D(p, s, f)	H(p, s, f)	$G_1(p,s,f)$	G(p,s,f)
(2, 5, 1)	$\ell \equiv 33 \pmod{64}$	$6.2 imes 10^{66}$	$2.1 imes 10^{13}$	$7.6 imes 10^4$
(3, 3, 2)	$\ell \equiv 26, 53 \pmod{81}$	$5.5 imes 10^{32}$	$1.9 imes 10^9$	4.3×10^4
(5, 1, 1)	$\ell \equiv 6, 11, 16, 21 \pmod{25}$	2.0×10^{13}	$3.4 imes 10^4$	3.8×10^2

Remark 1.7. In this paper, we don't study small primes. For small primes ℓ , the reader should consult papers of H. Ichimura–S. Nakajima [16] or K. Horie–M. Horie [15]. In the case $\ell = 2$, H. Ichimura–S. Nakajima showed that if $p \leq 509$, then h_n is odd for every non-negative integer n. For small odd primes, there are several results proven by K. Horie–M. Horie. For example, they showed that if $3 \leq \ell \leq 13$ and $p \leq 101$, then h_n is indivisible by ℓ for every non-negative integer n.

2. Lemmas

2.1. Horie unit. Let p be a prime number. We put $\zeta_n = \exp(2\pi\sqrt{-1}/p^n)$, $\mathbb{Q}(\mu_{p^{\infty}}) = \bigcup_{n=1}^{\infty} \mathbb{Q}(\mu_{p^n})$, σ the topological generator of the Galois group $\operatorname{Gal}(\mathbb{Q}(\mu_{p^{\infty}})/\mathbb{Q}(\mu_q))$ with $\zeta_{n+2}^{\sigma} = \zeta_{n+2}^5$ if p = 2 or $\zeta_{n+1}^{\sigma} = \zeta_{n+1}^{1+p}$ if p > 2. Set $\tau_n = \sigma^{p^{n-1}}$. Then the restriction of σ and τ_n to \mathbb{B}_n generate the Galois groups $\operatorname{Gal}(\mathbb{B}_n/\mathbb{Q})$ and $\operatorname{Gal}(\mathbb{B}_n/\mathbb{B}_{n-1})$, respectively. Thus, we use the same symbols σ and τ_n for their restriction to \mathbb{B}_n .

Let E_n and C_n be the group of units and of cyclotomic units of \mathbb{B}_n , respectively. Since

$$[E_n^{1-\tau_n}:C_n^{1-\tau_n}] = h_n/h_{n-1},$$

we study $E_n^{1-\tau_n}$ and $C_n^{1-\tau_n}$ (see [8]).

Since $(1 - \tau_n)(1 + \tau_n + \dots + \tau_n^{p-1}) = 0$, the ring $\mathbb{Z}[\zeta_n]$ acts on $(\mathbb{B}_n^{\times})^{1-\tau_n}$, $E_n^{1-\tau_n}$ and $C_n^{1-\tau_n}$ via the isomorphism:

$$\mathbb{Z}[\operatorname{Gal}(\mathbb{B}_n/\mathbb{Q})]/(1+\tau_n+\cdots+\tau_n^{p-1}) \cong \mathbb{Z}[\zeta_n],$$

$$\sigma \mod (1+\tau_n+\cdots+\tau_n^{p-1}) \longmapsto \zeta_n.$$

Hence we regard $(\mathbb{B}_n^{\times})^{1-\tau_n}$, $E_n^{1-\tau_n}$ and $C_n^{1-\tau_n}$ as $\mathbb{Z}[\zeta_n]$ -modules.

We define the *n*-th Horie unit η_n by

(2.1)
$$\eta_n = \begin{cases} \frac{\zeta_{n+3} - \zeta_{n+3}^{-1}}{\sqrt{-1}(\zeta_{n+3} + \zeta_{n+3}^{-1})} & \text{if } p = 2, \\ Nr_{\mathbb{Q}(\zeta_{n+1} + \zeta_{n+1}^{-1})/\mathbb{B}_n} \begin{pmatrix} \zeta_{n+1} - \zeta_{n+1}^{-1} \\ \zeta_1 \zeta_{n+1} - \zeta_1^{-1} \zeta_{n+1}^{-1} \end{pmatrix} & \text{if } p > 2. \end{cases}$$

In the case p = 2, η_n is also called Weber's normal unit (see e.g. [4] and [29]). The *n*-th Horie unit is essential for controlling our unit groups since $\eta_n^{1-\sigma}$ generates $C_n^{1-\tau_n}$ as $\mathbb{Z}[\zeta_n]$ -module. Indeed, K. Horie showed the following lemma.

Lemma 2.1 (K. Horie, [8]). Let ℓ be a prime number different from pand F an intermediate field of $\mathbb{Q}(\zeta_n)$ and the decomposition field of ℓ for $\mathbb{Q}(\zeta_n)/\mathbb{Q}$. Then ℓ divides the integer h_n/h_{n-1} if and only if there exists a prime ideal \mathfrak{L} of F dividing ℓ such that η_n^{α} is an ℓ -th power in E_n for every element α of the integral ideal $\ell \mathfrak{L}^{-1}$ of F.

In the case where p is an odd prime number, we consider another cyclotomic unit δ_n defined by

$$\delta_n = Nr_{\mathbb{Q}(\zeta_{n+1} + \zeta_{n+1}^{-1})/\mathbb{B}_n} \left(\frac{(\zeta_{n+1} - \zeta_{n+1}^{-1})^p}{\zeta_n - \zeta_n^{-1}} \right)$$

which enables us to obtain precise information on the Horie unit η_n through the relation

(2.2)
$$\delta_n^{1-\tau_n} = \eta_n^p.$$

For simplicity, we also put $\delta_n = \eta_n$ if p = 2.

2.2. Height of unit. Let ε be a totally real unit of degree N with conjugates $\varepsilon_1 = \varepsilon, \varepsilon_2, \dots, \varepsilon_N$. We define the height of unit ε .

Definition 2.2 (Height of unit). We define the L_2 -height of the Dirichlet embedding of ε by

$$ht(\varepsilon) = \sqrt{\sum_{i=1}^{N} (\log |\varepsilon_i|)^2}.$$

For simplicity, we call $ht(\varepsilon)$ the height of ε .

The height of totally real units allows quantitative control as described below.

Lemma 2.3. Let ε be a totally real unit of degree N > 1. We put $C = |Nr_{\mathbb{Q}(\varepsilon)/\mathbb{Q}}(\varepsilon^2 - 1)|$. Then we have

$$ht(\varepsilon) \ge \sqrt{N} \log\left(\frac{C^{1/N} + \sqrt{C^{2/N} + 4}}{2}\right).$$

In particular, we have

$$ht(\varepsilon) \ge \sqrt{N} \log\left(\frac{1+\sqrt{5}}{2}\right).$$

Proof. Let

$$M(\varepsilon) = \prod_{i=1}^{N} \max\{1, |\varepsilon_i|\}$$

be the Mahler measure of ε . Then we have

(2.3)
$$M(\varepsilon) \ge \left(\frac{C^{1/N} + \sqrt{C^{2/N} + 4}}{2}\right)^{N/2}$$

(see e.g. [24, Theorem 2.2]).

On the other hand, we know that

$$\log M(\varepsilon) = \frac{1}{2} \sum_{i=1}^{N} |\log |\varepsilon_i||.$$

Hence we obtain

(2.4)
$$\frac{\sqrt{N}}{2}ht(\varepsilon) \ge \log M(\varepsilon)$$

from the Cauchy–Schwarz inequality. The assertions follow after (2.3) and (2.4).

Up to this point, ε is just an irrational totally real unit. To apply Lemma 2.3 to our case, we have the following lemma.

Lemma 2.4. Let ε be a unit in $E_n \setminus E_{n-1}$ with $Nr_{\mathbb{B}_n/\mathbb{B}_{n-1}}(\varepsilon) = 1$.

(1) ([23, Lemma 5.2]) If p = 2, then ε is congruent to 1 modulo 2. In particular, we have

$$|Nr_{\mathbb{B}_n/\mathbb{Q}}(\varepsilon^2 - 1)| \ge 4^{2^n}.$$

(2) ([24, Lemma 9.1]) If p is odd, then we know

$$|Nr_{\mathbb{B}_n/\mathbb{Q}}(\varepsilon^2 - 1)| \ge p^{(p^n - 1)/(p - 1)}.$$

Proof. For the convenience of the reader, we give an alternative proof of (1).

Let ε be a unit in $E_n \setminus E_{n-1}$ with $Nr_{\mathbb{B}_n/\mathbb{B}_{n-1}}(\varepsilon) = 1$. Then there exist integers b_0, \dots, b_{N-1} such that

$$\varepsilon = b_0 + \sum_{i=1}^{N-1} b_i (\zeta_{n+2}^i + \zeta_{n+2}^{-i}).$$

We put

$$\gamma_{+}(\varepsilon) = b_{0} + b_{2}(\zeta_{n+2}^{2} + \zeta_{n+2}^{-2}) + \dots + b_{N-2}(\zeta_{n+2}^{N-2} + \zeta_{n+2}^{-N+2}),$$

$$\gamma_{-}(\varepsilon) = b_{1}(\zeta_{n+2} + \zeta_{n+2}^{-1}) + \dots + b_{N-1}(\zeta_{n+2}^{N-1} + \zeta_{n+2}^{-N+1}).$$

Then we have

$$\varepsilon = \gamma_+(\varepsilon) + \gamma_-(\varepsilon), \quad \gamma_+(\varepsilon)^{\tau_n} = \gamma_+(\varepsilon), \quad \gamma_-(\varepsilon)^{\tau_n} = -\gamma_-(\varepsilon)$$

Since $Nr_{\mathbb{B}_n/\mathbb{B}_{n-1}}(\varepsilon) = 1$, we obtain

$$\gamma_+(\varepsilon)^2 - \gamma_-(\varepsilon)^2 = 1.$$

This implies

(2.5)
$$(\gamma_+(\varepsilon) - 1)(\gamma_+(\varepsilon) + 1) = \gamma_-(\varepsilon)^2.$$

Let \mathfrak{p}_n be the prime ideal of \mathbb{B}_n lying above 2. We denote by ν_2 the additive \mathfrak{p}_n -adic valuation nomalized by $\nu_2(\zeta_{n+2}+\zeta_{n+2}^{-1})=1$. Assume that $\nu_2(\gamma_+(\varepsilon)-1) < N$. Then we have

$$\nu_2(\gamma_+(\varepsilon) - 1) = \nu_2(\gamma_+(\varepsilon) + 1) = \nu_2(\gamma_-(\varepsilon))$$

from (2.5). However, $\nu_2(\gamma_+(\varepsilon)-1)$ and $\nu_2(\gamma_+(\varepsilon)+1)$ are even and $\nu_2(\gamma_-(\varepsilon))$ is odd or ∞ . This is a contradiction.

Thus, we have $\nu_2(\gamma_+(\varepsilon) - 1) \ge N$. Therefore, we obtain $\gamma_+(\varepsilon) \equiv 1 \pmod{2}$ and $\gamma_-(\varepsilon) \equiv 0 \pmod{2}$, that is, $\varepsilon \equiv 1 \pmod{2}$.

By combining Lemma 2.3 and Lemma 2.4, we obtain the following lemma.

Lemma 2.5. Let ε be a unit in $E_n \setminus E_{n-1}$ with $Nr_{\mathbb{B}_n/\mathbb{B}_{n-1}}(\varepsilon) = 1$. (1) If p = 2, then we have

$$ht(\varepsilon) \ge \sqrt{2^n} \log\left(2 + \sqrt{5}\right).$$

(2) If p is an odd prime number, then we have

$$ht(\varepsilon) \ge \sqrt{p^n} \log \left(\frac{p^{(p^n-1)/p^n(p-1)} + \sqrt{p^{2(p^n-1)/p^n(p-1)} + 4}}{2} \right).$$

2.3. Geometry of numbers. For applying Lemma 2.1, it is desirable to choose an α in an ideal of F so that $ht(\delta_n^{\alpha})$ is small.

Let r and n be positive integers with $r \leq n$ and $p^r \neq 2$. We put $d = \varphi(p^r)$ where φ is the Euler function. We start with geometry of numbers for an arbitrary ideal \mathfrak{a} of $\mathbb{Z}[\zeta_r]$ $(F = \mathbb{Q}(\zeta_r))$.

Definition 2.6. We define a map λ_n from E_n to \mathbb{R}^{p^n} by

$$\lambda_n(\varepsilon) = \left(\log |\varepsilon|, \log |\varepsilon^{\sigma}|, \cdots, \log |\varepsilon^{\sigma^{p^n-1}}| \right).$$

We define d-dimensional \mathbb{R} -vector space

$$V_n = \mathbb{R}\lambda_n(\delta_n) \oplus \mathbb{R}\lambda_n(\delta_n^{\zeta_r}) \oplus \cdots \oplus \mathbb{R}\lambda_n(\delta_n^{\zeta_n^{d-1}})$$

with standard metric. Let \mathfrak{a} be an integral ideal of $\mathbb{Q}(\zeta_r)$. We associate the lattice

$$\Lambda = \lambda_n(\mathfrak{a}) = \{\lambda_n(\delta_n^{\alpha}) ; \alpha \in \mathfrak{a}\}$$

in V_n with \mathfrak{a} .

Let β_1, \dots, β_d be a \mathbb{Z} -basis of \mathfrak{a} . The metric of V_n induces the quadratic form

$$F_{\mathfrak{a}}(x_1,\cdots,x_d) = ht(\delta_n^{\sum_{i=1}^d x_i\beta_i})^2.$$

Then

$$F_{\mathfrak{a}}(x_1,\cdots,x_d) = \sum_{j=0}^{p^n-1} \left(\sum_{i=1}^d x_i \log |\delta_n^{\beta_i \sigma^j}|\right)^2$$

is a positive definite quadratic form in d variables and of determinant $\operatorname{vol}^{(d)}(\Lambda)^2$ where $\operatorname{vol}^{(d)}$ is the d-dimensional volume on V_n .

We will detect a non-zero lattice point of Λ by the following theorem in geometry of numbers.

Theorem 2.7 (Blichfeldt, [2, Theorem II]). Let Λ be a lattice in the metric vector space of dimension d. Then there exists a non-zero vector v of Λ such that

$$|v|^2 \le \frac{2}{\pi} \left(\Gamma\left(1 + \frac{d+2}{2}\right) \right)^{2/d} \operatorname{vol}^{(d)}(\Lambda)^{2/d}.$$

In our setting of Λ , this implies the following lemma.

Lemma 2.8. Let \mathfrak{a} be an integral ideal of $\mathbb{Z}[\zeta_r]$. Then there exists a non-zero element α in \mathfrak{a} such that

$$ht(\delta_n^{\alpha}) \le \sqrt{\frac{2}{\pi}} \left(\frac{d+2}{2}! \left[\mathbb{Z}(\zeta_r) : \mathfrak{a}\right] \operatorname{vol}^{(d)}(\lambda_n(\mathbb{Z}[\zeta_r]))\right)^{1/d}$$

3. Proof in the case p = 2

In this section, we prove Theorem A for p = 2.

Let p = 2, ℓ a prime number in D(2, s, f) and n a positive integer. We put $r = \min\{n, s\}$ and $d = 2^{r-1}$.

3.1. Height of Horie unit for p = 2.

Lemma 3.1. Assume p = 2. We have

$$ht(\eta_n) \le \frac{\pi}{2}\sqrt{2^n}.$$

Proof. We rewrite (2.1) as

$$\eta_n = \frac{\zeta_{n+3} - \zeta_{n+3}^{-1}}{\zeta_{n+3}^{1+2^{n+1}} - \zeta_{n+3}^{-1-2^{n+1}}}.$$

Then, we see

$$\eta_n^{\sigma^i} = \tan \frac{5^i \pi}{2^{n+2}}.$$

Hence we obtain

$$ht(\eta_n)^2 = \sum_{i=1}^{2^n} \left(\log \left| \tan \frac{(2i-1)\pi}{2^{n+2}} \right| \right)^2$$
$$= 2 \sum_{i=1}^{2^{n-1}} \left(\log \tan \frac{(2i-1)\pi}{2^{n+2}} \right)^2.$$

Since

(3.1)
$$\frac{d}{d\theta} (\log \tan \theta)^2 = \frac{2\log \tan \theta}{\sin \theta \cos \theta} < 0$$

and

(3.2)
$$\frac{d^2}{d\theta^2} (\log \tan \theta)^2 = \frac{8(1 - \cos 2\theta \log \tan \theta)}{(\sin 2\theta)^2} > 0$$

for $0 < \theta < \pi/4$, we have

$$2\sum_{i=1}^{2^{n-1}} \left(\log \left| \tan \frac{(2i-1)\pi}{2^{n+2}} \right| \right)^2 \le \frac{2^{n+2}}{\pi} \int_0^{\pi/4} (\log \tan \theta)^2 d\theta$$
$$= \frac{\pi^2}{4} 2^n.$$

3.2. Volume of lattice for p = 2. We assume $n \ge 2$. Then we have the following lemma.

Lemma 3.2. Assume p = 2. Let \mathfrak{L} be a prime ideal of $\mathbb{Q}(\zeta_r)$ lying above ℓ . We have

$$\operatorname{vol}^{(d)}(\lambda_n((1-\zeta_r)\ell\mathfrak{L}^{-1})) \le 2\ell^{d-f} \left(\frac{\pi}{2}\sqrt{2^n}\right)^d.$$

Proof. Note that

$$\operatorname{vol}^{(d)}(\lambda_n((1-\zeta_r)\ell\mathfrak{L}^{-1})) = [\mathbb{Z}[\zeta_r] : (1-\zeta_r)\ell\mathfrak{L}^{-1}]\operatorname{vol}^{(d)}(\lambda_n(\mathbb{Z}[\zeta_r])).$$

From $r \leq s$, we have

$$[\mathbb{Z}[\zeta_r]: (1-\zeta_r)\ell\mathfrak{L}^{-1}] = 2\ell^{d-f}.$$

Since $ht(\eta_n) = ht(\eta_n^{\zeta_r}) = \dots = ht(\eta_n^{\zeta_r^{d-1}})$, we obtain

$$\operatorname{vol}^{(d)}(\lambda_n(\mathbb{Z}[\zeta_r])) \le ht(\eta_n)^d \le \left(\frac{\pi}{2}\sqrt{2^n}\right)^d.$$

3.3. Concluding the proof of Theorem A for p = 2. We prove the contrapositive. Suppose that ℓ divides h_n/h_{n-1} . It is sufficient to show that $\ell \leq G(2, s, f)$.

Since $h_1 = 1$, we may assume that $n \ge 2$. From Lemma 2.1, there exists a prime ideal \mathfrak{L} in $\mathbb{Q}(\zeta_r)$ lying above ℓ such that η_n^{α} is an ℓ -th power in E_n for every element α of $\ell \mathfrak{L}^{-1}$.

We put $\mathfrak{a} = (1 - \zeta_r)\ell \mathfrak{L}^{-1}$. From Lemmas 2.8 and 3.2, there exists a non-zero element α in $\ell \mathfrak{L}^{-1}$ such that

(3.3)
$$ht\left(\eta_n^{(1-\zeta_r)\alpha}\right) \le \sqrt{\frac{2}{\pi}} \left(\frac{d+2}{2}! \, 2\ell^{d-f} \left(\frac{\pi}{2}\sqrt{2^n}\right)^d\right)^{1/d}.$$

From Lemma 2.1, there exists a unit ε in E_n such that $\eta_n^{\alpha} = \varepsilon^{\ell}$. Therefore, we have

(3.4)
$$\eta_n^{(1-\zeta_r)\alpha} = \left(\varepsilon^{1-\zeta_r}\right)^\ell.$$

Since $Nr_{\mathbb{B}_n/\mathbb{B}_{n-1}}(\eta_n) = -1$ and $(1-\zeta_r)\alpha$ is non-zero, the degree of $\varepsilon^{1-\zeta_r}$ is 2^n and $Nr_{\mathbb{B}_n/\mathbb{B}_{n-1}}(\varepsilon^{1-\zeta_r}) = 1$. Hence we have

(3.5)
$$ht\left(\varepsilon^{1-\zeta_r}\right) \ge \sqrt{2^n}\log\left(2+\sqrt{5}\right).$$

from Lemma 2.5(1).

From (3.3), (3.4) and (3.5), we obtain

$$\ell\sqrt{2^n}\log\left(2+\sqrt{5}\right) \le \sqrt{\frac{2}{\pi}} \left(\frac{d+2}{2}! 2\ell^{d-f} \left(\frac{\pi}{2}\sqrt{2^n}\right)^d\right)^{1/d}$$

This implies

$$\ell \le \left(2\left(\frac{\sqrt{\pi}}{\sqrt{2}\log\left(2+\sqrt{5}\right)}\right)^d \frac{d+2}{2}!\right)^{1/f}.$$

Since $c = 2^{s-1}$ and $s \ge r$, we have $c \ge d$. Hence we can replace d with c. Therefore, we have

$$\ell \le \left(2\left(\frac{\sqrt{\pi}}{\sqrt{2}\log\left(2+\sqrt{5}\right)}\right)^c \frac{c+2}{2}!\right)^{1/f} = G(2,s,f).$$

4. Proof in the case $p \geq 3$

In this section, we prove Theorem A for $p \geq 3$.

Let p be a prime number with $p \ge 3$, ℓ a prime number in D(p, s, f) and n a positive integer. We put $r = \min\{n, s\}$ and $d = (p-1)p^{r-1}$.

4.1. Height of δ_n . From the definition of δ_n and the Cauchy-Schwarz inequality, we obtain

$$ht(\delta_n)^2 = \sum_{i=0}^{p^n - 1} \left(\log \left| \delta_n^{\sigma^i} \right| \right)^2$$

$$\leq \frac{p - 1}{4} \sum_{i=1, p \nmid i}^{p^{n+1} - 1} \left(\log \left| \frac{(\zeta_{n+1}^i - \zeta_{n+1}^{-i})^p}{\zeta_n^i - \zeta_n^{-i}} \right| \right)^2$$

$$= \frac{p - 1}{4} \sum_{i=1, p \nmid i}^{p^{n+1} - 1} \left(p \log \left| 2 \sin \left(\frac{2i\pi}{p^{n+1}} \right) \right| - \log \left| 2 \sin \left(\frac{2i\pi}{p^n} \right) \right| \right)^2.$$

Since 2 acts on $(\mathbb{Z}/p^{n+1}\mathbb{Z})^{\times}$, we have

$$\frac{p-1}{4} \sum_{i=1,p\nmid i}^{p^{n+1}-1} \left(p \log \left| 2 \sin \left(\frac{2i\pi}{p^{n+1}} \right) \right| - \log \left| 2 \sin \left(\frac{2i\pi}{p^n} \right) \right| \right)^2$$

$$= \frac{p-1}{4} \sum_{i=1,p\nmid i}^{p^{n+1}-1} \left(p \log \left| 2 \sin \left(\frac{i\pi}{p^{n+1}} \right) \right| - \log \left| 2 \sin \left(\frac{i\pi}{p^n} \right) \right| \right)^2$$

$$= \frac{p-1}{4} \sum_{i=1,p\nmid i}^{p^n-1} \sum_{j=0}^{p-1} \left(p \log \left| 2 \sin \left(\frac{i\pi}{p^{n+1}} + \frac{j\pi}{p} \right) \right| - \log \left| 2 \sin \left(\frac{i\pi}{p^n} \right) \right| \right)^2$$

$$= \frac{p(p-1)}{4} \sum_{i=1,p\nmid i}^{p^n-1} g \left(\frac{i\pi}{p^{n+1}} \right)$$

$$= \frac{p(p-1)}{4} \sum_{k=0}^{p^{n-1}-1} \sum_{i=1}^{p-1} g \left(\frac{(i+pk)\pi}{p^{n+1}} \right)$$

where

$$g(\theta) = \frac{1}{p} \sum_{j=0}^{p-1} \left(p \log \left| 2 \sin \left(\theta + \frac{j\pi}{p} \right) \right| - \log \left| 2 \sin(p\theta) \right| \right)^2.$$

From the equality

$$\prod_{j=0}^{p-1} (\zeta_1^j x - \zeta_1^{-j} x^{-1}) = x^p - x^{-p},$$

we get

$$\prod_{j=0}^{p-1} \left| 2\sin\left(\theta + \frac{j\pi}{p}\right) \right| = |2\sin(p\theta)|.$$

Hence we obtain

(4.1)
$$g(\theta) = p \sum_{j=0}^{p-1} \left(\log \left| 2\sin\left(\theta + \frac{j\pi}{p}\right) \right| \right)^2 - \left(\log \left| 2\sin(p\theta) \right| \right)^2.$$

In order to get an upper bound on the height of δ_n , we give another description of $g(\theta)$. We put $C(\theta, \alpha) = (\log |2\sin\theta| - \log |2\sin(\theta + \alpha)|)^2$. Then we get

$$\begin{split} \frac{1}{2} \sum_{i'=0}^{p-1} \sum_{j'=0}^{p-1} C\left(\theta + \frac{i'\pi}{p}, \frac{j'\pi}{p}\right) \\ &= \frac{1}{2} \sum_{i'=0}^{p-1} \sum_{j'=0}^{p-1} \left(\log\left|2\sin\left(\theta + \frac{i'\pi}{p}\right)\right| - \log\left|2\sin\left(\theta + \frac{i'\pi}{p} + \frac{j'\pi}{p}\right)\right|\right)^2 \\ &= p \sum_{j=0}^{p-1} \left(\log\left|2\sin\left(\theta + \frac{j\pi}{p}\right)\right|\right)^2 \\ &- \sum_{i'=0}^{p-1} \log\left|2\sin\left(\theta + \frac{i\pi}{p}\right)\right| \sum_{j'=0}^{p-1} \log\left|2\sin\left(\theta + \frac{i'\pi}{p} + \frac{j'\pi}{p}\right)\right| \\ &= p \sum_{j=0}^{p-1} \left(\log\left|2\sin\left(\theta + \frac{j\pi}{p}\right)\right|\right)^2 - (\log|2\sin(p\theta)|)^2. \end{split}$$

This implies

(4.2)
$$g(\theta) = \frac{1}{2} \sum_{i'=0}^{p-1} \sum_{j'=0}^{p-1} C\left(\theta + \frac{i'\pi}{p}, \frac{j'\pi}{p}\right).$$

Note that

$$\begin{split} &\frac{1}{2} \left(\frac{d}{d\theta}\right)^2 C(\theta, \alpha) \\ &= \left(\frac{\cos\theta}{\sin\theta} - \frac{\cos(\theta + \alpha)}{\sin(\theta + \alpha)}\right)^2 - \left(\frac{1}{(\sin\theta)^2} - \frac{1}{(\sin(\theta + \alpha))^2}\right) \log\left|\frac{\sin\theta}{\sin(\theta + \alpha)}\right|. \end{split}$$

We see

$$\left(\frac{d}{d\theta}\right)^2 C(\theta,\alpha) \geq 0$$

for θ and $\theta + \alpha$ not equal to multiples of π . Therefore, $g(\theta)$ is a convex function on $]0, \pi/p[$ from (4.2).

Now we need the following proposition.

Proposition 4.1. Let M be a positive integer and $F(\theta)$ a convex function on an interval]a, b[. Assume that $\int_a^b F(\theta) d\theta$ is convergent. Then we have

$$\sum_{i=1}^{M} F\left(a + \frac{b-a}{M+1}i\right) \le \frac{M}{b-a} \int_{a}^{b} F(\theta) d\theta.$$

Note that $g(\theta)$ is a convex function on the interval $]0, \pi/p[$. By applying Proposition 4.1 for M = p - 1, $a = k\pi/p^n$ and $b = (k + 1)\pi/p^n$, we see

$$\sum_{i=1}^{p-1} g\left(\frac{(i+pk)\pi}{p^{n+1}}\right) \le \frac{(p-1)p^n}{\pi} \int_{k\pi/p^n}^{(k+1)\pi/p^n} g(\theta) d\theta.$$

for $0 \le k \le p^{n-1} - 1$. Therefore, by taking sum, we obtain

$$ht(\delta_n)^2 \le \frac{(p-1)^2 p^{n+1}}{4\pi} \int_0^{\pi/p} g(\theta) d\theta$$

From the equality (4.1), we have

$$\begin{split} &\int_{0}^{\pi/p} g(\theta) d\theta \\ &= p \sum_{j=0}^{p-1} \int_{0}^{\pi/p} \left(\log \left| 2\sin\left(\theta + \frac{j\pi}{p}\right) \right| \right)^{2} d\theta - \int_{0}^{\pi/p} (\log |2\sin(p\theta)|)^{2} d\theta \\ &= p \sum_{j=0}^{p-1} \int_{j\pi/p}^{(j+1)\pi/p} (\log |2\sin\theta|)^{2} d\theta - \frac{1}{p} \int_{0}^{\pi} (\log |2\sin\theta|)^{2} d\theta \\ &= \frac{p^{2} - 1}{p} \int_{0}^{\pi} (\log |2\sin\theta|)^{2} d\theta \\ &= \frac{(p^{2} - 1)\pi^{3}}{12p}. \end{split}$$

Hence we obtain

$$ht(\delta_n)^2 \le \frac{p^n(p-1)^3(p+1)\pi^2}{48}$$

Therefore, we get the following lemma.

Lemma 4.2. Assume $p \ge 3$. We have

$$ht(\delta_n) \le \frac{(p-1)\pi\sqrt{3(p^2-1)}}{12}\sqrt{p^n}.$$

4.2. Volume of lattice for $p \geq 3$ **.** Let m and d be positive integers with $m \leq d$ and V a d-dimensional \mathbb{R} -vector space. For v_0, v_1, \dots, v_m in V, we define the parallelotope $S(v_0, v_1, \dots, v_m)$ by

$$S(v_0, v_1, \cdots, v_m) = \left\{ \sum_{i=0}^m t_i v_i \; ; \; 0 \le t_i \le 1, \sum_{i=0}^m t_i = 1 \right\}.$$

We quote the following estimate ([6, Theorem 2.2]) of its volume.

Proposition 4.3. If $||v_0|| = ||v_1|| = \cdots = ||v_m|| = h$, then we have

$$\operatorname{vol}^{(m)}(S(v_0, v_1, \cdots, v_m)) \le \frac{(m+1)^{(m+1)/2}}{m!m^{m/2}}h^m.$$

We put

$$Q(v_1, \cdots, v_m) = \left\{ \sum_{i=1}^m t_i v_i \; ; \; 0 \le t_i \le 1 \right\}$$

and

$$Q_{j,k} = Q\left(\lambda_n(\delta_n^{\zeta_r^j}), \lambda_n(\delta_n^{\zeta_r^j}\zeta_1^{-1}), \cdots, \lambda_n(\delta_n^{\zeta_r^j}\zeta_1^{k-1}), \lambda_n(\delta_n^{\zeta_r^j}\zeta_1^{k+1}), \cdots, \lambda_n(\delta_n^{\zeta_r^j}\zeta_1^{p-1})\right).$$

Then we have the following proposition.

Proposition 4.4. For $0 \le j \le p^{r-1} - 1$, we have

$$\frac{p}{(p-1)!} \operatorname{vol}^{(p-1)}(Q_{j,p-1}) = \operatorname{vol}^{(p-1)} \left(S\left(\lambda_n(\delta_n^{\zeta_r^j}), \lambda_n(\delta_n^{\zeta_r^j \zeta_1}), \cdots, \lambda_n(\delta_n^{\zeta_r^j \zeta_1^{p-1}})\right) \right).$$

Proof. Note that, since $\sum_{k=0}^{p-1} \lambda_n(\delta_n^{\zeta_r^i \zeta_1^k}) = 0$, we have

$$\operatorname{vol}^{(p-1)}\left(S\left(\lambda_n(\delta_n^{\zeta_r^j}),\lambda_n(\delta_n^{\zeta_r^j\zeta_1}),\cdots,\lambda_n(\delta_n^{\zeta_r^j\zeta_1^{p-1}})\right)\right)$$
$$=\frac{1}{(p-1)!}\sum_{k=0}^{p-1}\operatorname{vol}^{(p-1)}(Q_{j,k}).$$

and $\operatorname{vol}^{(p-1)}(Q_{j,k}) = \operatorname{vol}^{(p-1)}(Q_{j,k'})$ for $0 \leq k, k' \leq p-1$. Therefore, we obtain the assertion.

Then we obtain the following lemma.

Lemma 4.5. Assume $p \geq 3$. Let \mathfrak{L} be a prime ideal of $\mathbb{Q}(\zeta_r)$ lying above ℓ . Then we have

$$\operatorname{vol}^{(d)}(\lambda_n((1-\zeta_1)\ell\mathfrak{L}^{-1})) \le \ell^{d-f}\left(\frac{\pi(p-1)p^{p/2(p-1)}\sqrt{p+1}}{4\sqrt{3}}\sqrt{p^n}\right)^d.$$

Proof. From Propositions 4.3 and 4.4, we have

$$\begin{split} [\mathbb{Z}[\zeta_{r}] : (1-\zeta_{1})\ell\mathfrak{L}^{-1}] \mathrm{vol}^{(d)}(\lambda_{n}(\mathbb{Z}[\zeta_{r}])) \\ &= p^{p^{r-1}}\ell^{d-f} \mathrm{vol}^{(d)}(\lambda_{n}(\mathbb{Z}[\zeta_{r}])) \\ &\leq p^{p^{r-1}}\ell^{d-f} \prod_{j=0}^{p^{r-1}-1} \mathrm{vol}^{(p-1)}(Q_{j,p-1}) \\ &\leq p^{p^{r-1}}\ell^{d-f} \prod_{j=0}^{p^{r-1}-1} \frac{(p-1)!}{p} \mathrm{vol}^{(p-1)} \\ &\qquad \times \left(S\left(\lambda_{n}(\delta_{n}^{\zeta_{r}^{j}}), \lambda_{n}(\delta_{n}^{\zeta_{r}^{j}}\zeta_{1}), \cdots, \lambda_{n}(\delta_{n}^{\zeta_{r}^{j}}\zeta_{1}^{p-1})\right) \right) \right) \\ &\leq \ell^{d-f} \frac{p^{p^{r}/2}}{(p-1)^{d/2}} ht(\delta_{n})^{d}. \end{split}$$

From Lemma 4.2, we obtain the assertion.

4.3. Concluding the proof of Theorem A for odd p**.** We prove the contrapositive. Suppose that ℓ divides h_n/h_{n-1} . It is sufficient to show that $\ell \leq G(p, s, f)$. Since $h_n = 1$ for (p, n) = (3, 1), (3, 2), (3, 3), (5, 1), (5, 2), (7, 1), (11, 1), (13, 1), (17, 1) and (19, 1), we may assume that $n \geq 4$ if p = 3, $n \geq 3$ if p = 5 and $n \geq 2$ if $7 \leq p \leq 17$.

From Lemma 2.1, there exist a prime ideal \mathfrak{L} in $\mathbb{Q}(\zeta_r)$ lying above ℓ such that η_n^{α} is an ℓ -th power in E_n for every element α of $\ell \mathfrak{L}^{-1}$. We put $\mathfrak{a} = (1 - \zeta_1)\ell \mathfrak{L}^{-1}$. From Lemmas 2.8 and 4.5, there exists a

We put $\mathfrak{a} = (1 - \zeta_1)\ell\mathfrak{L}^{-1}$. From Lemmas 2.8 and 4.5, there exists a non-zero element α in $\ell\mathfrak{L}^{-1}$ such that (4.3)

$$ht\left(\delta_n^{(1-\zeta_1)\alpha}\right) \le \sqrt{\frac{2}{\pi}} \left(\frac{d+2}{2}! \,\ell^{d-f}\left(\frac{\pi(p-1)p^{p/2(p-1)}\sqrt{p+1}}{4\sqrt{3}}\sqrt{p^n}\right)^d\right)^{1/d}.$$

From (2.2), we have $\delta_n^{1-\zeta_1} = \eta_n^p$. Moreover, from Lemma 2.1, there exist a unit ε in E_n such that $\eta_n^{\alpha} = \varepsilon^{\ell}$. These two assertions imply that

(4.4)
$$\delta_n^{(1-\zeta_1)\alpha} = \varepsilon^{p\ell}.$$

Since $Nr_{\mathbb{B}_n/\mathbb{B}_{n-1}}(\delta_n) = 1$ and $(1 - \zeta_1)\alpha$ is non-zero, the degree of ε is p^n and $Nr_{\mathbb{B}_n/\mathbb{B}_{n-1}}(\varepsilon) = 1$. Hence we have

(4.5)
$$ht(\varepsilon) \ge \sqrt{p^n} \log \left(\frac{p^{(p^n-1)/p^n(p-1)} + \sqrt{p^{2(p^n-1)/p^n(p-1)} + 4}}{2} \right).$$

from Lemma 2.5(2).

From (4.3), (4.4) and (4.5), we obtain

$$p\ell\sqrt{p^n}\log\left(\frac{p^{(p^n-1)/p^n(p-1)} + \sqrt{p^{2(p^n-1)/p^n(p-1)} + 4}}{2}\right)$$
$$\leq \sqrt{\frac{2}{\pi}}\left(\frac{d+2}{2}! \ \ell^{d-f}\left(\frac{\pi(p-1)p^{p/2(p-1)}\sqrt{p+1}}{4\sqrt{3}}\sqrt{p^n}\right)^d\right)^{1/d}.$$

This implies

 $\ell \leq$

$$\left(\left(\frac{\sqrt{\pi}(p-1)\sqrt{p+1}}{2\sqrt{6}p^{(p-2)/2(p-1)}\log\left((p^{(p^n-1)/p^n(p-1)} + \sqrt{p^{2(p^n-1)/p^n(p-1)} + 4})/2\right)} \right)^d \frac{d+2}{2}! \right)^{1/f}$$

Since $c \ge d$, we can replace d by c. Therefore, we have

$$\left(\left(\frac{\sqrt{\pi}(p-1)\sqrt{p+1}}{2\sqrt{6}p^{(p-2)/2(p-1)}\log\left((p^{(p^n-1)/p^n(p-1)} + \sqrt{p^{2(p^n-1)/p^n(p-1)} + 4})/2\right)} \right)^c \frac{c+2}{2}! \right)^{1/f}.$$

From the assumption on n, we obtain

$$\frac{p^n - 1}{p^n(p-1)} \ge \begin{cases} 40/81, & \text{if } p = 3, \\ 31/125, & \text{if } p = 5, \\ (p+1)/p^2, & \text{if } 7 \le p \le 19, \\ 1/p, & \text{if } p \ge 23. \end{cases}$$

This implies $\ell \leq G(p, s, f)$.

5. Corollary B

In this section, we show the ℓ -indivisibility of the class number h_n for p = 2 and $\ell \not\equiv \pm 1 \pmod{64}$.

From Theorem 1.4, we study the cases $\ell \equiv 31 \pmod{64}$ and $\ell \equiv 33 \pmod{64}$.

5.1. $\ell \equiv 31 \pmod{64}$. Let ℓ be a prime number with $\ell \equiv 31 \pmod{64}$. Then f = 2, s = 6 and c = 32. Hence we have

$$G(2,6,2) = \sqrt{2\left(\frac{\sqrt{\pi}}{\sqrt{2}\log\left(2+\sqrt{5}\right)}\right)^{32}17!} < 2777715 < 10^9.$$

From Theorem 1.4 and Theorem A, h_n is indivisible by ℓ for every non-negative integer n if $\ell \equiv 31 \pmod{64}$.

5.2. $\ell \equiv 33 \pmod{64}$. Let ℓ be a prime number with $\ell \equiv 33 \pmod{64}$. Then f = 1, s = 5 and c = 16. Hence we have

$$G(2,5,1) = 2\left(\frac{\sqrt{\pi}}{\sqrt{2}\log\left(2+\sqrt{5}\right)}\right)^{16} 9! < 75585 < 10^9.$$

From Theorem 1.4 and Theorem A, h_n is indivisible by ℓ for every non-negative integer n if $\ell \equiv 33 \pmod{64}$.

References

- [1] H. BAUER, "Numerische Bestimmung von Klassenzahlen reeller zyklischer Zahlkörper", J. Number Theory 1 (1969), p. 161-162.
- [2] H. F. BLICHFELDT, "A new principle in the geometry of numbers, with some applications", *Trans. Amer. Math. Soc.* 15 (1914), no. 3, p. 227-235.
- [3] H. COHN, "A numerical study of Weber's real class number of calculation. I", Numer. Math. 2 (1960), p. 347-362.
- [4] —, "Proof that Weber's normal units are not perfect powers", Proc. Amer. Math. Soc. 12 (1961), p. 964-966.
- [5] T. FUKUDA & K. KOMATSU, "Weber's class number problem in the cyclotomic Z₂-extension of Q, III", Int. J. Number Theory 7 (2011), no. 6, p. 1627-1635.
- [6] L. GERBER, "The orthocentric simplex as an extreme simplex", Pacific J. Math. 56 (1975), no. 1, p. 97-111.
- [7] K. HORIE, "Ideal class groups of Iwasawa-theoretical abelian extensions over the rational field", J. London Math. Soc. (2) 66 (2002), no. 2, p. 257-275.
- [8] , "The ideal class group of the basic \mathbb{Z}_p -extension over an imaginary quadratic field", *Tohoku Math. J.* (2) 57 (2005), no. 3, p. 375-394.
- [9] , "Primary components of the ideal class group of the \mathbb{Z}_p -extension over \mathbb{Q} for typical inert primes", *Proc. Japan Acad. Ser. A Math. Sci.* 81 (2005), no. 3, p. 40-43.
- [10] , "Certain primary components of the ideal class group of the \mathbf{Z}_p -extension over the rationals", Tohoku Math. J. (2) **59** (2007), no. 2, p. 259-291.
- [11] K. HORIE & M. HORIE, "The narrow class groups of some Z_p-extensions over the rationals", Acta Arith. 135 (2008), no. 2, p. 159-180.
- [12] —, "The ideal class group of the Z₂₃-extension over the rational field", Proc. Japan Acad. Ser. A Math. Sci. 85 (2009), no. 10, p. 155-159.
- [13] _____, "The ideal class group of the \mathbb{Z}_p -extension over the rationals", Tohoku Math. J. (2) **61** (2009), no. 4, p. 551-570.
- [14] _____, "The narrow class groups of the \mathbb{Z}_{17} and \mathbb{Z}_{19} -extensions over the rational field", *Abh. Math. Semin. Univ. Hambg.* **80** (2010), no. 1, p. 47-57.
- [15] _____, "The *l*-class group of the Z_p -extension over the rational field", *J. Math. Soc. Japan* **64** (2012), no. 4, p. 1071-1089.
- [16] H. ICHIMURA & S. NAKAJIMA, "On the 2-part of the class numbers of cyclotomic fields of prime power conductors", J. Math. Soc. Japan 64 (2012), no. 1, p. 317-342.
- [17] K. IWASAWA, "A note on class numbers of algebraic number fields", Abh. Math. Sem. Univ. Hamburg 20 (1956), p. 257-258.
- [18] F. J. VAN DER LINDEN, "Class number computations of real abelian number fields", Math. Comp. 39 (1982), no. 160, p. 693-707.
- [19] J. M. MASLEY, "Class numbers of real cyclic number fields with small conductor", Compositio Math. 37 (1978), no. 3, p. 297-319.

- [20] J. C. MILLER, "Class numbers of totally real fields and applications to the Weber class number problem", Acta Arith. 164 (2014), no. 4, p. 381-398.
- [21] _____, "Class numbers in cyclotomic \mathbb{Z}_p -extensions", J. Number Theory **150** (2015), p. 47-73.
- [22] T. MORISAWA, "Mahler measure of the Horie unit and Weber's class number problem in the cyclotomic Z₃-extension of Q", Acta Arith. 153 (2012), no. 1, p. 35-49.
- [23] T. MORISAWA & R. OKAZAKI, "On filtrations of units of Viète field", preprint.
- [24] ______, "Mahler measure and Weber's class number problem in the cyclotomic \mathbf{Z}_p -extension of \mathbf{Q} for odd prime number p", Tohoku Math. J. (2) **65** (2013), no. 2, p. 253-272.
- [25] R. OKAZAKI, "On a lower bound for relative units, Schinzel's lower bound and Weber's class number problem", preprint.
- [26] L. C. WASHINGTON, "Class numbers and \mathbf{Z}_p -extensions", Math. Ann. 214 (1975), p. 177-193.
- [27] , "The non-*p*-part of the class number in a cyclotomic \mathbf{Z}_p -extension", *Invent. Math.* **49** (1978), no. 1, p. 87-97.
- [28] H. WEBER, "Theorie der Abel'schen Zahlkörper", Acta Math. 8 (1886), no. 1, p. 193-263.
- [29] —, Lehrbuch der Algebra, Braunschweig, Friedrich Vieweg und Sohn, 1895, xv+653 pages.

Takayuki MORISAWA Division of Liberal Arts, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo, 192-0015, Japan *E-mail*: morisawa@cc.kogakuin.ac.jp

Ryotaro OKAZAKI Junior Division, College of Arts and Sciences,

The university of Tokyo,

3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan

E-mail: rokazaki@dd.iij4u.or.jp