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Height and Weber’s Class Number Problem

par Takayuki MORISAWA et Ryotaro OKAZAKI

Résumé. Nous étudions la non divisibilité par un nombre pre-
mier ` du nombre de classes hn du n-ième étage Bn de la Zp-
extension cyclotomique de Q, où p est un nombre premier fixé.
Posons q = 4 si p = 2 et q = p si p ≥ 3 et notons D(p, s, f) l’en-
semble des nombres premiers ` dont l’ordre modulo q vaut f et
dont ps est la plus grande puissance de p divisant `f −1. Dans cet
article nous définissons une constante explicite G(p, s, f) ayant la
propriété que chaque hn est non divisible par les ` dans D(p, s, f)
tels que ` > G(p, s, f).

Abstract. We discuss indivisibility by prime numbers ` of the
class number of the n-th layer Bn of the cyclotomic Zp-extension
of Q where p is an arbitrary fixed prime number.

We denote by hn the class number of Bn. Put q = 4 if p = 2 or
q = p if p ≥ 3. For positive integers f and s, letD(p, s, f) be the set
of prime numbers ` satisfying the following two conditions: (1) the
order of ` modulo q is f and (2) ps is the exact power of p dividing
`f−1. In this paper, we define an explicit function G(p, s, f) which
depends only on p, s and f . We show that hn is indivisible by
every prime number ` in D(p, s, f) with ` > G(p, s, f) for every
non-negative integer n.

1. Introduction

Let p be a prime number and µm the group of all m-th roots of unity.
We put q = 4 if p = 2 or q = p if p ≥ 3. We denote by Bn the unique real
subfield of Q(µqpn) which is the cyclic extension of the rational number
field Q with degree pn. Note that the Galois group of B∞ =

⋃
n≥0 Bn over

Q is isomorphic to the p-adic integer ring Zp as additive group. The fields
B∞ and Bn are called the cyclotomic Zp-extension of Q and its n-th layer,
respectively. We denote by hn the class number of Bn. We consider the
following problem.

Weber’s class number problem. Is the class number hn equal to 1 for
every non-negative integer n?

Manuscrit reçu le 6 novembre 2014, révisé le 27 juin 2015, accepté le 7 juillet 2015.
Mathematics Subject Classification. 11R06, 11R18, 11R29.
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In the case p = 2, H. Weber proved h1 = h2 = h3 = 1. Later, several
authors showed hn = 1 for (p, n) = (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (5, 1)
and (7, 1) (see [1], [3], [18] and [19]). And recently, J. C. Miller obtained
striking results determining hn = 1 for (p, n) = (2, 6), (5, 2), (11, 1), (13, 1),
(17, 1) and (19, 1) (see [20] and [21]). However, calculating one class number
by one gives information on the class numbers for only finitely many layers.
Thus, we are lead to a problem of different aspect.
Problem 1.1. Fix a prime number `. Is the class number hn indivisible by
` for every non-negative integer n?

In the case ` = p, H. Weber [28] and K. Iwasawa [17] showed that hn is
indivisible by p for every non-negative integer n.

In the case ` 6= p, by studying generalized Bernoulli numbers, L. C. Wash-
ington [27] proved that the quotient hn/hn−1 is indivisible by ` for suffi-
ciently large n.

However, this result does not immediately imply the `-indivisibility of
hn. On the indivisibility problem, Washington [26] also showed that the
minus part of the class number of Q(µ5n+1) is indivisible by every prime
number ` with `8 6≡ 1 (mod 100) for every non-negative integer n. Later,
K. Horie [7, 8, 9, 10] and K. Horie–M. Horie [11, 12, 13, 14, 15] made a
breakthrough. Indeed, they succeeded in controlling cyclotomic units which
relate to our class numbers.

We introduce notation before presenting a summary of their results. Let
fp(`) be the order of ` modulo q and psp(`) the exact power of p dividing
`fp(`) − 1. And we define the set D(p, s, f) of prime numbers to be

D(p, s, f) = {` 6= p | fp(`) = f, sp(`) = s}.
If f divides ϕ(q), where ϕ is the Euler function, and (p, s, f) is not in
{(2, 1, 1), (2, 1, 2), (2, 2, 2)}, then D(p, s, f) contains infinitely many prime
numbers. Moreover, D(p, s, f) can be written as a union of congruence
classes of prime numbers modulo p-power. For example, D(2, 6, 2) = {` ≡
31 mod 64} and D(3, 1, 2) = {` ≡ 2 mod 9} ∪ {` ≡ 5 mod 9}.
Theorem 1.2 (K. Horie–M. Horie). Let p be a prime number.

(1) Let s be a positive integer and f a positive divisor of ϕ(q). There ex-
ists an explicit positive constant H(p, s, f) such that the class num-
ber hn is indivisible by every prime number ` in D(p, s, f) with
` > H(p, s, f) for every non-negative integer n.

(2) If p = 2, then the class number hn is indivisible by every
prime number ` such that ` 6≡ ±1 (mod 8) for every non-negative
integer n.

(3) If 3 ≤ p ≤ 23, then the class number hn, for every non-negative
integer n, is indivisible by every prime number ` such that ` is a
primitive root modulo p2.
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Remark 1.3. They wrote H(p, s, f) explicitly. We give a few of its numer-
ical values at the end of this section.

T. Fukuda–K. Komatsu [5] proved the following theorem on the basis of
the works of K. Horie.
Theorem 1.4 (T. Fukuda–K. Komatsu, [5]). Let p = 2 and ` a prime
number. Assume that ` < 109 or ` 6≡ ±1 (mod 32). Then the class number
hn is indivisible by ` for every non-negative integer n.

In our previous papers [22, 24, 25], we proposed new methods for con-
trolling cyclotomic units, which enabled us to prove the following theorem.
Theorem 1.5. Let p, f and s be the same as in Theorem 1.2 and c =
(p− 1)ps−1. We put

G1(p, s, f) =


(c!)1/f if p = 2,
(2c/2 · c!)1/f if p = 3,((√

6p
2

)c
· c!
)1/f

if p > 3.

Assume that ` is greater than G1(p, s, f). Then the class number hn is
indivisible by ` for every non-negative integer n.

The technical condition of Theorem 1.5 on the magnitude of ` is weaker
than that of Theorem 1.2.

In this paper, we show the `-indivisibility under even weaker technical
condition on the magnitude.
Theorem A. Let p, f , s and c be the same as in Theorem 1.5. We put
G(p,s,f) =

2

 √
π

√
2 log

(
2 +
√

5
)
c c+ 2

2 !

1/f

if p = 2,

(( √
2π

33/4 log((340/81 +
√

380/81 + 4)/2)

)c
c+ 2

2 !
)1/f

if p = 3,((
2
√
π

53/8 log((531/125 +
√

562/125 + 4)/2)

)c
c+ 2

2 !
)1/f

if p = 5, √
π(p− 1)

√
p+ 1

2
√

6p(p−2)/2(p−1) log((p(p+1)/p2 +
√
p2(p+1)/p2 +4)/2)

c c+2
2 !

1/f

if 7 ≤ p ≤ 19, √
π(p− 1)

√
p+ 1

2
√

6p(p−2)/2(p−1) log((p1/p+
√
p2/p+4)/2)

c c+2
2 !

1/f

if p ≥ 23.
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Then the class number hn is indivisible by every prime number ` in
D(p, s, f) with ` > G(p, s, f) for every non-negative integer n.

For example, G(2, 6, 1) and G(2, 6, 2) are smaller than 7.8 × 1012 and
2.8× 106, respectively.

Recalling Theorem 1.4, we see Theorem A implies the following corollary.

Corollary B. Let p = 2. If ` is not congruent to ±1 modulo 64, then hn
is indivisible by ` for every non-negative integer n.

Example 1.6. We can compute H, G1 and G. In the following table, we
give a few examples of their values rounded up to two significant figures.

(p, s, f) D(p, s, f) H(p, s, f) G1(p, s, f) G(p, s, f)
(2, 5, 1) ` ≡ 33 (mod 64) 6.2× 1066 2.1× 1013 7.6× 104

(3, 3, 2) ` ≡ 26, 53 (mod 81) 5.5× 1032 1.9× 109 4.3× 104

(5, 1, 1) ` ≡ 6, 11, 16, 21 (mod 25) 2.0× 1013 3.4× 104 3.8× 102

Remark 1.7. In this paper, we don’t study small primes. For small primes
`, the reader should consult papers of H. Ichimura–S. Nakajima [16] or
K. Horie–M. Horie [15]. In the case ` = 2, H. Ichimura–S. Nakajima showed
that if p ≤ 509, then hn is odd for every non-negative integer n. For small
odd primes, there are several results proven by K. Horie–M. Horie. For
example, they showed that if 3 ≤ ` ≤ 13 and p ≤ 101, then hn is indivisible
by ` for every non-negative integer n.

2. Lemmas

2.1. Horie unit. Let p be a prime number. We put ζn = exp(2π
√
−1/pn),

Q(µp∞) =
⋃∞
n=1 Q(µpn), σ the topological generator of the Galois group

Gal(Q(µp∞)/Q(µq)) with ζσn+2 = ζ5
n+2 if p = 2 or ζσn+1 = ζ1+p

n+1 if p > 2.
Set τn = σp

n−1 . Then the restriction of σ and τn to Bn generate the Galois
groups Gal(Bn/Q) and Gal(Bn/Bn−1), respectively. Thus, we use the same
symbols σ and τn for their restriction to Bn.

Let En and Cn be the group of units and of cyclotomic units of Bn,
respectively. Since

[E1−τn
n : C1−τn

n ] = hn/hn−1,

we study E1−τn
n and C1−τn

n (see [8]).
Since (1− τn)(1 + τn + · · ·+ τp−1

n ) = 0, the ring Z[ζn] acts on (B×n )1−τn ,
E1−τn
n and C1−τn

n via the isomorphism:

Z[Gal(Bn/Q)]/(1 + τn + · · ·+ τp−1
n ) ∼= Z[ζn],

σ mod (1 + τn + · · ·+ τp−1
n ) 7−→ ζn.

Hence we regard (B×n )1−τn , E1−τn
n and C1−τn

n as Z[ζn]-modules.
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We define the n-th Horie unit ηn by

(2.1) ηn =


ζn+3 − ζ−1

n+3√
−1(ζn+3 + ζ−1

n+3)
if p = 2,

NrQ(ζn+1+ζ−1
n+1)/Bn

(
ζn+1 − ζ−1

n+1
ζ1ζn+1 − ζ−1

1 ζ−1
n+1

)
if p > 2.

In the case p = 2, ηn is also called Weber’s normal unit (see e.g. [4] and [29]).
The n-th Horie unit is essential for controlling our unit groups since η1−σ

n

generates C1−τn
n as Z[ζn]-module. Indeed, K. Horie showed the following

lemma.

Lemma 2.1 (K. Horie, [8]). Let ` be a prime number different from p
and F an intermediate field of Q(ζn) and the decomposition field of ` for
Q(ζn)/Q. Then ` divides the integer hn/hn−1 if and only if there exists a
prime ideal L of F dividing ` such that ηαn is an `-th power in En for every
element α of the integral ideal `L−1 of F .

In the case where p is an odd prime number, we consider another cyclo-
tomic unit δn defined by

δn = NrQ(ζn+1+ζ−1
n+1)/Bn

(
(ζn+1 − ζ−1

n+1)p

ζn − ζ−1
n

)
which enables us to obtain precise information on the Horie unit ηn through
the relation
(2.2) δ1−τn

n = ηpn.

For simplicity, we also put δn = ηn if p = 2.

2.2. Height of unit. Let ε be a totally real unit of degree N with conju-
gates ε1 = ε, ε2, · · · , εN . We define the height of unit ε.

Definition 2.2 (Height of unit). We define the L2-height of the Dirichlet
embedding of ε by

ht(ε) =

√√√√ N∑
i=1

(log |εi|)2.

For simplicity, we call ht(ε) the height of ε.
The height of totally real units allows quantitative control as described

below.

Lemma 2.3. Let ε be a totally real unit of degree N > 1. We put C =
|NrQ(ε)/Q(ε2 − 1)|. Then we have

ht(ε) ≥
√
N log

(
C1/N +

√
C2/N + 4

2

)
.
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In particular, we have

ht(ε) ≥
√
N log

(
1 +
√

5
2

)
.

Proof. Let

M(ε) =
N∏
i=1

max{1, |εi|}

be the Mahler measure of ε. Then we have

(2.3) M(ε) ≥
(
C1/N +

√
C2/N + 4

2

)N/2

(see e.g. [24, Theorem 2.2]).
On the other hand, we know that

logM(ε) = 1
2

N∑
i=1
| log |εi||.

Hence we obtain

(2.4)
√
N

2 ht(ε) ≥ logM(ε)

from the Cauchy–Schwarz inequality. The assertions follow after (2.3)
and (2.4). �

Up to this point, ε is just an irrational totally real unit. To apply
Lemma 2.3 to our case, we have the following lemma.
Lemma 2.4. Let ε be a unit in En \ En−1 with NrBn/Bn−1(ε) = 1.

(1) ([23, Lemma 5.2]) If p = 2, then ε is congruent to 1 modulo 2. In
particular, we have

|NrBn/Q(ε2 − 1)| ≥ 42n
.

(2) ([24, Lemma 9.1]) If p is odd, then we know
|NrBn/Q(ε2 − 1)| ≥ p(pn−1)/(p−1).

Proof. For the convenience of the reader, we give an alternative proof of (1).
Let ε be a unit in En \ En−1 with NrBn/Bn−1(ε) = 1. Then there exist

integers b0, · · · , bN−1 such that

ε = b0 +
N−1∑
i=1

bi(ζin+2 + ζ−in+2).

We put
γ+(ε) = b0 + b2(ζ2

n+2 + ζ−2
n+2) + · · ·+ bN−2(ζN−2

n+2 + ζ−N+2
n+2 ),

γ−(ε) = b1(ζn+2 + ζ−1
n+2) + · · ·+ bN−1(ζN−1

n+2 + ζ−N+1
n+2 ).
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Then we have
ε = γ+(ε) + γ−(ε), γ+(ε)τn = γ+(ε), γ−(ε)τn = −γ−(ε).

Since NrBn/Bn−1(ε) = 1, we obtain

γ+(ε)2 − γ−(ε)2 = 1.
This implies
(2.5) (γ+(ε)− 1)(γ+(ε) + 1) = γ−(ε)2.

Let pn be the prime ideal of Bn lying above 2. We denote by ν2 the
additive pn-adic valuation nomalized by ν2(ζn+2 + ζ−1

n+2) = 1. Assume that
ν2(γ+(ε)− 1) < N . Then we have

ν2(γ+(ε)− 1) = ν2(γ+(ε) + 1) = ν2(γ−(ε))
from (2.5). However, ν2(γ+(ε)−1) and ν2(γ+(ε)+1) are even and ν2(γ−(ε))
is odd or ∞. This is a contradiction.

Thus, we have ν2(γ+(ε) − 1) ≥ N . Therefore, we obtain γ+(ε) ≡ 1
(mod 2) and γ−(ε) ≡ 0 (mod 2), that is, ε ≡ 1 (mod 2). �

By combining Lemma 2.3 and Lemma 2.4, we obtain the following lemma.

Lemma 2.5. Let ε be a unit in En \ En−1 with NrBn/Bn−1(ε) = 1.
(1) If p = 2, then we have

ht(ε) ≥
√

2n log
(
2 +
√

5
)
.

(2) If p is an odd prime number, then we have

ht(ε) ≥
√
pn log

p(pn−1)/pn(p−1) +
√
p2(pn−1)/pn(p−1) + 4
2

 .
2.3. Geometry of numbers. For applying Lemma 2.1, it is desirable to
choose an α in an ideal of F so that ht(δαn) is small.

Let r and n be positive integers with r ≤ n and pr 6= 2. We put d = ϕ(pr)
where ϕ is the Euler function. We start with geometry of numbers for an
arbitrary ideal a of Z[ζr] (F = Q(ζr)).

Definition 2.6. We define a map λn from En to Rpn by

λn(ε) =
(
log |ε|, log |εσ|, · · · , log |εσpn−1 |

)
.

We define d-dimensional R-vector space

Vn = Rλn(δn)⊕ Rλn(δζr
n )⊕ · · · ⊕ Rλn(δζ

d−1
r
n )

with standard metric. Let a be an integral ideal of Q(ζr). We associate the
lattice

Λ = λn(a) = {λn(δαn) ; α ∈ a}
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in Vn with a.
Let β1, · · · , βd be a Z-basis of a. The metric of Vn induces the quadratic

form
Fa(x1, · · · , xd) = ht(δ

∑d

i=1 xiβi
n )2.

Then

Fa(x1, · · · , xd) =
pn−1∑
j=0

(
d∑
i=1

xi log |δβiσ
j

n |
)2

is a positive definite quadratic form in d variables and of determinant
vol(d)(Λ)2 where vol(d) is the d-dimensional volume on Vn.

We will detect a non-zero lattice point of Λ by the following theorem in
geometry of numbers.

Theorem 2.7 (Blichfeldt, [2, Theorem II]). Let Λ be a lattice in the metric
vector space of dimension d. Then there exists a non-zero vector v of Λ such
that

|v|2 ≤ 2
π

(
Γ
(

1 + d+ 2
2

))2/d
vol(d)(Λ)2/d.

In our setting of Λ, this implies the following lemma.

Lemma 2.8. Let a be an integral ideal of Z[ζr]. Then there exists a non-
zero element α in a such that

ht(δαn) ≤
√

2
π

(
d+ 2

2 ! [Z(ζr) : a] vol(d)(λn(Z[ζr]))
)1/d

.

3. Proof in the case p = 2

In this section, we prove Theorem A for p = 2.
Let p = 2, ` a prime number in D(2, s, f) and n a positive integer. We

put r = min{n, s} and d = 2r−1.

3.1. Height of Horie unit for p = 2.

Lemma 3.1. Assume p = 2. We have

ht(ηn) ≤ π

2
√

2n.

Proof. We rewrite (2.1) as

ηn =
ζn+3 − ζ−1

n+3

ζ1+2n+1
n+3 − ζ−1−2n+1

n+3
.

Then, we see

ησ
i

n = tan 5iπ
2n+2 .
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Hence we obtain

ht(ηn)2 =
2n∑
i=1

(
log

∣∣∣∣tan (2i− 1)π
2n+2

∣∣∣∣)2

= 2
2n−1∑
i=1

(
log tan (2i− 1)π

2n+2

)2
.

Since

(3.1) d

dθ
(log tan θ)2 = 2 log tan θ

sin θ cos θ < 0

and

(3.2) d2

dθ2 (log tan θ)2 = 8(1− cos 2θ log tan θ)
(sin 2θ)2 > 0

for 0 < θ < π/4, we have

2
2n−1∑
i=1

(
log

∣∣∣∣tan (2i− 1)π
2n+2

∣∣∣∣)2
≤ 2n+2

π

∫ π/4

0
(log tan θ)2dθ

= π2

4 2n. �

3.2. Volume of lattice for p = 2. We assume n ≥ 2. Then we have the
following lemma.

Lemma 3.2. Assume p = 2. Let L be a prime ideal of Q(ζr) lying above `.
We have

vol(d)(λn((1− ζr)`L−1)) ≤ 2`d−f
(
π

2
√

2n
)d
.

Proof. Note that

vol(d)(λn((1− ζr)`L−1)) = [Z[ζr] : (1− ζr)`L−1]vol(d)(λn(Z[ζr])).

From r ≤ s, we have

[Z[ζr] : (1− ζr)`L−1] = 2`d−f .

Since ht(ηn) = ht(ηζr
n ) = · · · = ht(ηζ

d−1
r
n ), we obtain

vol(d)(λn(Z[ζr])) ≤ ht(ηn)d

≤
(
π

2
√

2n
)d
. �
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3.3. Concluding the proof of Theorem A for p = 2. We prove the
contrapositive. Suppose that ` divides hn/hn−1. It is sufficient to show that
` ≤ G(2, s, f).

Since h1 = 1, we may assume that n ≥ 2. From Lemma 2.1, there exists
a prime ideal L in Q(ζr) lying above ` such that ηαn is an `-th power in En
for every element α of `L−1.

We put a = (1 − ζr)`L−1. From Lemmas 2.8 and 3.2, there exists a
non-zero element α in `L−1 such that

(3.3) ht
(
η(1−ζr)α
n

)
≤
√

2
π

(
d+ 2

2 ! 2`d−f
(
π

2
√

2n
)d)1/d

.

From Lemma 2.1, there exists a unit ε in En such that ηαn = ε`. Therefore,
we have

(3.4) η(1−ζr)α
n =

(
ε1−ζr

)`
.

Since NrBn/Bn−1(ηn) = −1 and (1− ζr)α is non-zero, the degree of ε1−ζr is
2n and NrBn/Bn−1

(
ε1−ζr

)
= 1. Hence we have

(3.5) ht
(
ε1−ζr

)
≥
√

2n log
(
2 +
√

5
)
.

from Lemma 2.5 (1).
From (3.3), (3.4) and (3.5), we obtain

`
√

2n log
(
2 +
√

5
)
≤
√

2
π

(
d+ 2

2 !2`d−f
(
π

2
√

2n
)d)1/d

.

This implies

` ≤

2

 √
π

√
2 log

(
2 +
√

5
)
d d+ 2

2 !


1/f

.

Since c = 2s−1 and s ≥ r, we have c ≥ d. Hence we can replace d with c.
Therefore, we have

` ≤

2

 √
π

√
2 log

(
2 +
√

5
)
c c+ 2

2 !

1/f

= G(2, s, f).

4. Proof in the case p ≥ 3

In this section, we prove Theorem A for p ≥ 3.
Let p be a prime number with p ≥ 3, ` a prime number in D(p, s, f) and

n a positive integer. We put r = min{n, s} and d = (p− 1)pr−1.
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4.1. Height of δn. From the definition of δn and the Cauchy-Schwarz
inequality, we obtain

ht(δn)2 =
pn−1∑
i=0

(
log

∣∣∣δσi

n

∣∣∣)2

≤ p− 1
4

pn+1−1∑
i=1,p-i

(
log

∣∣∣∣∣(ζin+1 − ζ−in+1)p

ζin − ζ−in

∣∣∣∣∣
)2

= p− 1
4

pn+1−1∑
i=1,p-i

(
p log

∣∣∣∣2 sin
( 2iπ
pn+1

)∣∣∣∣− log
∣∣∣∣2 sin

(2iπ
pn

)∣∣∣∣)2
.

Since 2 acts on (Z/pn+1Z)×, we have

p− 1
4

pn+1−1∑
i=1,p-i

(
p log

∣∣∣∣2 sin
( 2iπ
pn+1

)∣∣∣∣− log
∣∣∣∣2 sin

(2iπ
pn

)∣∣∣∣)2

= p− 1
4

pn+1−1∑
i=1,p-i

(
p log

∣∣∣∣2 sin
(

iπ

pn+1

)∣∣∣∣− log
∣∣∣∣2 sin

(
iπ

pn

)∣∣∣∣)2

= p− 1
4

pn−1∑
i=1,p-i

p−1∑
j=0

(
p log

∣∣∣∣2 sin
(

iπ

pn+1 + jπ

p

)∣∣∣∣− log
∣∣∣∣2 sin

(
iπ

pn

)∣∣∣∣)2

= p(p− 1)
4

pn−1∑
i=1, p-i

g

(
iπ

pn+1

)

= p(p− 1)
4

pn−1−1∑
k=0

p−1∑
i=1

g

((i+ pk)π
pn+1

)
where

g(θ) = 1
p

p−1∑
j=0

(
p log

∣∣∣∣2 sin
(
θ + jπ

p

)∣∣∣∣− log |2 sin(pθ)|
)2
.

From the equality
p−1∏
j=0

(ζj1x− ζ
−j
1 x−1) = xp − x−p,

we get

p−1∏
j=0

∣∣∣∣2 sin
(
θ + jπ

p

)∣∣∣∣ = |2 sin(pθ)|.
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Hence we obtain

(4.1) g(θ) = p
p−1∑
j=0

(
log

∣∣∣∣2 sin
(
θ + jπ

p

)∣∣∣∣)2
− (log |2 sin(pθ)|)2.

In order to get an upper bound on the height of δn, we give another
description of g(θ). We put C(θ, α) = (log |2 sin θ| − log |2 sin(θ + α)|)2.
Then we get

1
2

p−1∑
i′=0

p−1∑
j′=0

C

(
θ + i′π

p
,
j′π

p

)

= 1
2

p−1∑
i′=0

p−1∑
j′=0

(
log

∣∣∣∣2 sin
(
θ + i′π

p

)∣∣∣∣− log
∣∣∣∣2 sin

(
θ + i′π

p
+ j′π

p

)∣∣∣∣)2

= p
p−1∑
j=0

(
log

∣∣∣∣2 sin
(
θ + jπ

p

)∣∣∣∣)2

−
p−1∑
i′=0

log
∣∣∣∣2 sin

(
θ + iπ

p

)∣∣∣∣ p−1∑
j′=0

log
∣∣∣∣2 sin

(
θ + i′π

p
+ j′π

p

)∣∣∣∣
= p

p−1∑
j=0

(
log

∣∣∣∣2 sin
(
θ + jπ

p

)∣∣∣∣)2
− (log |2 sin(pθ)|)2.

This implies

(4.2) g(θ) = 1
2

p−1∑
i′=0

p−1∑
j′=0

C

(
θ + i′π

p
,
j′π

p

)
.

Note that

1
2

(
d

dθ

)2
C(θ, α)

=
(cos θ

sin θ −
cos(θ+α)
sin(θ+α)

)2
−
( 1

(sin θ)2 −
1

(sin(θ+α))2

)
log

∣∣∣∣ sin θ
sin(θ+α)

∣∣∣∣ .
We see (

d

dθ

)2
C(θ, α) ≥ 0

for θ and θ + α not equal to multiples of π. Therefore, g(θ) is a convex
function on ]0, π/p[ from (4.2).

Now we need the following proposition.
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Proposition 4.1. Let M be a positive integer and F (θ) a convex function
on an interval ]a, b[. Assume that

∫ b
a F (θ)dθ is convergent. Then we have

M∑
i=1

F

(
a+ b− a

M + 1 i
)
≤ M

b− a

∫ b

a
F (θ)dθ.

Note that g(θ) is a convex function on the interval ]0, π/p[. By applying
Proposition 4.1 for M = p− 1, a = kπ/pn and b = (k + 1)π/pn, we see

p−1∑
i=1

g

((i+ pk)π
pn+1

)
≤ (p− 1)pn

π

∫ (k+1)π/pn

kπ/pn
g(θ)dθ.

for 0 ≤ k ≤ pn−1 − 1. Therefore, by taking sum, we obtain

ht(δn)2 ≤ (p− 1)2pn+1

4π

∫ π/p

0
g(θ)dθ.

From the equality (4.1), we have∫ π/p

0
g(θ)dθ

= p
p−1∑
j=0

∫ π/p

0

(
log

∣∣∣∣2 sin
(
θ + jπ

p

)∣∣∣∣)2
dθ −

∫ π/p

0
(log |2 sin(pθ)|)2dθ

= p
p−1∑
j=0

∫ (j+1)π/p

jπ/p
(log |2 sin θ|)2 dθ − 1

p

∫ π

0
(log |2 sin θ|)2dθ

= p2 − 1
p

∫ π

0
(log |2 sin θ|)2dθ

= (p2 − 1)π3

12p .

Hence we obtain
ht(δn)2 ≤ pn(p− 1)3(p+ 1)π2

48 .

Therefore, we get the following lemma.

Lemma 4.2. Assume p ≥ 3. We have

ht(δn) ≤ (p− 1)π
√

3(p2 − 1)
12

√
pn.

4.2. Volume of lattice for p ≥ 3. Let m and d be positive integers with
m ≤ d and V a d-dimensional R-vector space. For v0, v1, · · · , vm in V , we
define the parallelotope S(v0, v1, · · · , vm) by

S(v0, v1, · · · , vm) =
{

m∑
i=0

tivi ; 0 ≤ ti ≤ 1,
m∑
i=0

ti = 1
}
.
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We quote the following estimate ([6, Theorem 2.2]) of its volume.

Proposition 4.3. If ||v0|| = ||v1|| = · · · = ||vm|| = h, then we have

vol(m)(S(v0, v1, · · · , vm)) ≤ (m+ 1)(m+1)/2

m!mm/2 hm.

We put

Q(v1, · · · , vm) =
{

m∑
i=1

tivi ; 0 ≤ ti ≤ 1
}

and

Qj,k = Q

(
λn(δζ

j
r
n ), λn(δζ

j
rζ1
n ), · · · , λn(δζ

j
rζ

k−1
1

n ), λn(δζ
j
rζ

k+1
1

n ), · · · , λn(δζ
j
rζ

p−1
1

n )
)
.

Then we have the following proposition.

Proposition 4.4. For 0 ≤ j ≤ pr−1 − 1, we have

p

(p− 1)!vol(p−1)(Qj,p−1)

= vol(p−1)
(
S

(
λn(δζ

j
r
n ), λn(δζ

j
rζ1
n ), · · · , λn(δζ

j
rζ

p−1
1

n )
))

.

Proof. Note that, since
∑p−1
k=0 λn(δζ

i
rζ

k
1

n ) = 0, we have

vol(p−1)
(
S

(
λn(δζ

j
r
n ), λn(δζ

j
rζ1
n ), · · · , λn(δζ

j
rζ

p−1
1

n )
))

= 1
(p− 1)!

p−1∑
k=0

vol(p−1)(Qj,k).

and vol(p−1)(Qj,k) = vol(p−1)(Qj,k′) for 0 ≤ k, k′ ≤ p − 1. Therefore, we
obtain the assertion. �

Then we obtain the following lemma.

Lemma 4.5. Assume p ≥ 3. Let L be a prime ideal of Q(ζr) lying above `.
Then we have

vol(d)(λn((1− ζ1)`L−1)) ≤ `d−f
(
π(p− 1)pp/2(p−1)√p+ 1

4
√

3
√
pn

)d
.
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Proof. From Propositions 4.3 and 4.4, we have

[Z[ζr] : (1− ζ1)`L−1]vol(d)(λn(Z[ζr]))

= pp
r−1
`d−fvol(d)(λn(Z[ζr]))

≤ ppr−1
`d−f

pr−1−1∏
j=0

vol(p−1)(Qj,p−1)

≤ ppr−1
`d−f

pr−1−1∏
j=0

(p− 1)!
p

vol(p−1)

×
(
S

(
λn(δζ

j
r
n ), λn(δζ

j
rζ1
n ), · · · , λn(δζ

j
rζ

p−1
1

n )
))

≤ `d−f pp
r/2

(p− 1)d/2ht(δn)d.

From Lemma 4.2, we obtain the assertion. �

4.3. Concluding the proof of Theorem A for odd p. We prove the
contrapositive. Suppose that ` divides hn/hn−1. It is sufficient to show that
` ≤ G(p, s, f). Since hn = 1 for (p, n) = (3, 1), (3, 2), (3, 3), (5, 1), (5, 2),
(7, 1), (11, 1), (13, 1), (17, 1) and (19, 1), we may assume that n ≥ 4 if p = 3,
n ≥ 3 if p = 5 and n ≥ 2 if 7 ≤ p ≤ 17.

From Lemma 2.1, there exist a prime ideal L in Q(ζr) lying above ` such
that ηαn is an `-th power in En for every element α of `L−1.

We put a = (1 − ζ1)`L−1. From Lemmas 2.8 and 4.5, there exists a
non-zero element α in `L−1 such that
(4.3)

ht
(
δ(1−ζ1)α
n

)
≤
√

2
π

d+2
2 ! `d−f

(
π(p−1)pp/2(p−1)√p+1

4
√

3
√
pn

)d1/d

.

From (2.2), we have δ1−ζ1
n = ηpn. Moreover, from Lemma 2.1, there exist a

unit ε in En such that ηαn = ε`. These two assertions imply that

(4.4) δ(1−ζ1)α
n = εp`.

Since NrBn/Bn−1(δn) = 1 and (1 − ζ1)α is non-zero, the degree of ε is pn
and NrBn/Bn−1(ε) = 1. Hence we have

(4.5) ht(ε) ≥
√
pn log

p(pn−1)/pn(p−1) +
√
p2(pn−1)/pn(p−1) + 4
2

 .
from Lemma 2.5 (2).
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From (4.3), (4.4) and (4.5), we obtain

p`
√
pn log

p(pn−1)/pn(p−1) +
√
p2(pn−1)/pn(p−1) + 4
2


≤
√

2
π

d+ 2
2 ! `d−f

(
π(p− 1)pp/2(p−1)√p+ 1

4
√

3
√
pn

)d1/d

.

This implies
` ≤


√
π(p− 1)

√
p+ 1

2
√

6p(p−2)/2(p−1)log
(
(p(pn−1)/pn(p−1)+

√
p2(pn−1)/pn(p−1)+4)/2

)

d

d+2
2 !


1/f

.

Since c ≥ d, we can replace d by c. Therefore, we have
` ≤


√
π(p− 1)

√
p+ 1

2
√

6p(p−2)/2(p−1)log
(
(p(pn−1)/pn(p−1)+

√
p2(pn−1)/pn(p−1)+4)/2

)

c

c+2
2 !


1/f

.

From the assumption on n, we obtain

pn − 1
pn(p− 1) ≥


40/81, if p = 3,
31/125, if p = 5,
(p+ 1)/p2, if 7 ≤ p ≤ 19,
1/p, if p ≥ 23.

This implies ` ≤ G(p, s, f).

5. Corollary B

In this section, we show the `-indivisibility of the class number hn for
p = 2 and ` 6≡ ±1 (mod 64).

From Theorem 1.4, we study the cases ` ≡ 31 (mod 64) and ` ≡ 33
(mod 64).

5.1. ` ≡ 31 (mod 64). Let ` be a prime number with ` ≡ 31 (mod 64).
Then f = 2, s = 6 and c = 32. Hence we have

G(2, 6, 2) =

√√√√√2

 √
π

√
2 log

(
2 +
√

5
)
32

17! < 2777715 < 109.
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From Theorem 1.4 and Theorem A, hn is indivisible by ` for every non-
negative integer n if ` ≡ 31 (mod 64).

5.2. ` ≡ 33 (mod 64). Let ` be a prime number with ` ≡ 33 (mod 64).
Then f = 1, s = 5 and c = 16. Hence we have

G(2, 5, 1) = 2

 √
π

√
2 log

(
2 +
√

5
)
16

9! < 75585 < 109.

From Theorem 1.4 and Theorem A, hn is indivisible by ` for every non-
negative integer n if ` ≡ 33 (mod 64).
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