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Height and Weber’s Class Number Problem

par TAKAYUKI MORISAWA et RyoTARO OKAZAKI

RESUME. Nous étudions la non divisibilité par un nombre pre-
mier £ du nombre de classes h,, du n-iéme étage B,, de la Z,-
extension cyclotomique de @Q, ol p est un nombre premier fixé.
Posons g =4 sip=2et g=psip>3etnotons D(p,s, f) len-
semble des nombres premiers ¢ dont I'ordre modulo ¢ vaut f et
dont p* est la plus grande puissance de p divisant ¢/ — 1. Dans cet
article nous définissons une constante explicite G(p, s, f) ayant la
propriété que chaque h,, est non divisible par les £ dans D(p, s, f)
tels que £ > G(p, s, f)-

ABSTRACT. We discuss indivisibility by prime numbers ¢ of the
class number of the n-th layer B,, of the cyclotomic Z,-extension
of Q where p is an arbitrary fixed prime number.

We denote by h,, the class number of B,,. Put ¢ =4 if p=2 or
q = pif p > 3. For positive integers f and s, let D(p, s, f) be the set
of prime numbers ¢ satisfying the following two conditions: (1) the
order of £ modulo ¢ is f and (2) p® is the exact power of p dividing
¢f —1. In this paper, we define an explicit function G(p, s, f) which
depends only on p, s and f. We show that h, is indivisible by
every prime number ¢ in D(p, s, f) with £ > G(p, s, f) for every
non-negative integer n.

1. Introduction

Let p be a prime number and p,, the group of all m-th roots of unity.
We put ¢ =4 if p=2 or ¢ = p if p > 3. We denote by B,, the unique real
subfield of Q(pqpn) which is the cyclic extension of the rational number
field Q with degree p™. Note that the Galois group of Bo, = U,;>0 B, over
Q is isomorphic to the p-adic integer ring Z, as additive group. The fields
B and B,, are called the cyclotomic Z,-extension of Q and its n-th layer,
respectively. We denote by h, the class number of B,,. We consider the
following problem.

Weber’s class number problem. Is the class number h, equal to 1 for
every non-negative integer n ¢

Manuscrit regu le 6 novembre 2014, révisé le 27 juin 2015, accepté le 7 juillet 2015.
Mathematics Subject Classification. 11R06, 11R18, 11R29.
Mots-clefs. Class number, Zp-extension, Height of algebraic number.
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In the case p = 2, H. Weber proved h; = he = hs = 1. Later, several
authors showed h,, = 1 for (p,n) = (2,4), (2,5), (3,1), (3,2), (3,3), (5,1)
and (7,1) (see [1], [3], [18] and [19]). And recently, J. C. Miller obtained
striking results determining h,, = 1 for (p,n) = (2,6), (5,2), (11,1), (13,1),
(17,1) and (19, 1) (see [20] and [21]). However, calculating one class number
by one gives information on the class numbers for only finitely many layers.
Thus, we are lead to a problem of different aspect.

Problem 1.1. Fix a prime number £. Is the class number h,, indivisible by
¢ for every non-negative integer n?

In the case ¢ = p, H. Weber [28] and K. Iwasawa [17] showed that h,, is
indivisible by p for every non-negative integer n.

In the case £ # p, by studying generalized Bernoulli numbers, L. C. Wash-
ington [27] proved that the quotient hy,/h,—_; is indivisible by ¢ for suffi-
ciently large n.

However, this result does not immediately imply the ¢-indivisibility of
hp. On the indivisibility problem, Washington [26] also showed that the
minus part of the class number of Q(usn+1) is indivisible by every prime
number ¢ with 8 #Z 1 (mod 100) for every non-negative integer n. Later,
K. Horie [7, 8, 9, 10] and K. Horie-M. Horie [11, 12, 13, 14, 15] made a
breakthrough. Indeed, they succeeded in controlling cyclotomic units which
relate to our class numbers.

We introduce notation before presenting a summary of their results. Let
fp(£) be the order of £ modulo ¢ and p*® the exact power of p dividing
¢ — 1. And we define the set D(p, s, f) of prime numbers to be

D(p,s, f) ={#p| o) = f,5p(() = s}.
If f divides ¢(q), where ¢ is the Euler function, and (p,s, f) is not in
{(2,1,1),(2,1,2),(2,2,2)}, then D(p,s, f) contains infinitely many prime
numbers. Moreover, D(p, s, f) can be written as a union of congruence

classes of prime numbers modulo p-power. For example, D(2,6,2) = {{ =
31 mod 64} and D(3,1,2) = {¢{ =2 mod 9} U {£ = 5 mod 9}.
Theorem 1.2 (K. Horie-M. Horie). Let p be a prime number.
(1) Let s be a positive integer and f a positive divisor of ¢(q). There ex-
ists an explicit positive constant H(p, s, f) such that the class num-

ber hy is indivisible by every prime number ¢ in D(p,s, f) with
¢> H(p,s, f) for every non-negative integer n.

(2) If p = 2, then the class number h, is indivisible by every
prime number £ such that ¢ Z £1 (mod 8) for every non-negative
integer n.

(3) If 3 < p < 23, then the class number h,, for every non-negative
integer n, is indivisible by every prime number £ such that £ is a
primitive root modulo p*.
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Remark 1.3. They wrote H(p, s, f) explicitly. We give a few of its numer-
ical values at the end of this section.

T. Fukuda-K. Komatsu [5] proved the following theorem on the basis of
the works of K. Horie.

Theorem 1.4 (T. Fukuda-K. Komatsu, [5]). Let p = 2 and { a prime
number. Assume that ¢ < 10° or £ # +1 (mod 32). Then the class number
hn is indivisible by £ for every non-negative integer n.

In our previous papers [22, 24, 25|, we proposed new methods for con-
trolling cyclotomic units, which enabled us to prove the following theorem.

Theorem 1.5. Let p, f and s be the same as in Theorem 1.2 and ¢ =
(p—1)p*~t. We put

(c!)/12/f ” ifp=2,

2¢/4 . ¢l ifp=3,

Gl(p737f): ( \/6 ) c 1/f fp
<<2p> : c!) if p> 3.

Assume that ¢ is greater than Gi(p,s, f). Then the class number h,, is
indivisible by £ for every non-negative integer n.

The technical condition of Theorem 1.5 on the magnitude of ¢ is weaker
than that of Theorem 1.2.

In this paper, we show the f-indivisibility under even weaker technical
condition on the magnitude.

Theorem A. Let p, f, s and ¢ be the same as in Theorem 1.5. We put
G(p,s,f) =

c "
V&S ct+2 =
((\ﬂog 2+\f)> 2 ) Tp=2

v2r C+2 o
33/410g 340/81_|_\/?fgo/gil/2 if p=3,
2/ ‘et s
53/8 log( 531/125+\/W/2 ! if p=>,

Vrlp—1Vvp+1

c 1/f
c+2
<2fp(p 2)/2(p=1) Jog((pP+1)/p* 4 /p2(e+1)/P? 1 4)/ ) )

if7T<p<19,

VTlp—1vp+1

1/f
2/Gp(e=2/201) log((p1/r -+ \[p2/P +4) /2) ) )

if p > 23.

|
|
(
(
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Then the class number h, is indivisible by every prime number ¢ in
D(p, s, f) with £ > G(p, s, f) for every non-negative integer n.

For example, G(2,6,1) and G(2,6,2) are smaller than 7.8 x 10'2 and
2.8 x 108, respectively.
Recalling Theorem 1.4, we see Theorem A implies the following corollary.

Corollary B. Let p = 2. If £ is not congruent to =1 modulo 64, then h,
is indivisible by £ for every mon-negative integer n.

Example 1.6. We can compute H, G; and G. In the following table, we
give a few examples of their values rounded up to two significant figures.

(p,s, f) D(p,s, f) H(p,s, f) | Gi(p, s, f) | G, s, f)
(2,5,1) ¢ =33 (mod 64) 6.2 x 10% | 2.1 x 10'3 | 7.6 x 10*
(3,3,2) | £=26,53 (mod 81) 5.5 x 1032 | 1.9 x 10° | 4.3 x 10*
(5,1,1) | £=6,11,16,21 (mod 25) | 2.0 x 1013 | 3.4 x 10* | 3.8 x 10?

Remark 1.7. In this paper, we don’t study small primes. For small primes
¢, the reader should consult papers of H. Ichimura—S. Nakajima [16] or
K. Horie-M. Horie [15]. In the case ¢ = 2, H. Ichimura-S. Nakajima showed
that if p < 509, then h,, is odd for every non-negative integer n. For small
odd primes, there are several results proven by K. Horie-M. Horie. For
example, they showed that if 3 < ¢ < 13 and p < 101, then h,, is indivisible
by ¢ for every non-negative integer n.

2. Lemmas

2.1. Horie unit. Let p be a prime number. We put ¢, = exp(27v/—1/p"),
Q(up=) = Unz1 Q(ppn ), o the topological generator of the Galois group
: o : o 1 .

Gal(Q(pp=)/Qlg)) With 7y = Glup i p = 2 0r Gy = (17 if p > 2
Set 7, = oP" "' Then the restriction of o and T, to B,, generate the Galois
groups Gal(B,,/Q) and Gal(B,,/B,,_1), respectively. Thus, we use the same
symbols ¢ and 7, for their restriction to B,,.

Let E, and C),, be the group of units and of cyclotomic units of B,
respectively. Since

[E'rll_Tn : Cflz_Tn] = hn/hn-1,

we study EL"™ and C1~™ (see [8]).

Since (1 — 7,,)(1 + 7 + - - + 7271) = 0, the ring Z[(,] acts on (BX) "™,
E}=™ and C1=™ via the isomorphism:

Z[Gal(Bn/Q)/(L+ 7+ 7571 = Z[Gal,
omod (1+7,+---+7271 +— (.

Hence we regard (B)1=™, E}=™ and C1~™ as Z[(,]-modules.
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We define the n-th Horie unit n, by

—1
<n+3 - <n+3

if p=2,
\/jl(Cn—f—?, + C;i:s) nr

Gt =t > if p> 2.

(2'1) h =

Nroreitore \ ae, = G

In the case p = 2, 1), is also called Weber’s normal unit (see e.g. [4] and [29]).
The n-th Horie unit is essential for controlling our unit groups since =7
generates O}~ as Z[(,]-module. Indeed, K. Horie showed the following
lemma.

Lemma 2.1 (K. Horie, [8]). Let ¢ be a prime number different from p
and F an intermediate field of Q((,) and the decomposition field of £ for
Q(¢n)/Q. Then ¢ divides the integer hy/hn—1 if and only if there exists a
prime ideal £ of F' dividing ¢ such that n is an ¢-th power in E,, for every
element o of the integral ideal ££™1 of F.

In the case where p is an odd prime number, we consider another cyclo-
tomic unit J,, defined by

5n _ NTQ (CTL—H - Cr:il)p>

(Cnr1+C 1) /B < Cn — Cﬁl

which enables us to obtain precise information on the Horie unit 7, through
the relation

(2.2) 51 = .

For simplicity, we also put 6, = n, if p = 2.

2.2. Height of unit. Let € be a totally real unit of degree N with conju-
gates €1 = ¢, €9, -+, £n. We define the height of unit €.

Definition 2.2 (Height of unit). We define the Ls-height of the Dirichlet
embedding of € by
N

ht(e) = Z(log lei])?.

i=1

For simplicity, we call ht(¢) the height of .
The height of totally real units allows quantitative control as described
below.

Lemma 2.3. Let € be a totally real unit of degree N > 1. We put C =
|N7ge) (e — 1)|. Then we have

1/N /C2/N L 4
ht(e) > VN log (C + QC + )
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In particular, we have

ht(e) > VN log <1 +2\/3> :

Proof. Let
N
= H max{1, |g;|}
=1

be the Mahler measure of €. Then we have

(Cl/N_I_ /02/N+4>N/2
2

(2.3) M(e) >

(see e.g. [24, Theorem 2.2]).
On the other hand, we know that

log M (e Z]log\aZH
Hence we obtain
N
(2.4) \/2>ht(5) > log M (¢)

from the Cauchy-Schwarz inequality. The assertions follow after (2.3)
and (2.4). O

Up to this point, € is just an irrational totally real unit. To apply
Lemma 2.3 to our case, we have the following lemma.
Lemma 2.4. Let ¢ be a unit in Ey, \ E,—1 with Nrg /g, (¢) = 1.
(1) ([23, Lemma 5.2]) If p = 2, then ¢ is congruent to 1 modulo 2. In
particular, we have
’NT’BH/Q(&J — 1)| > 42n.
(2) ([24, Lemma 9.1]) If p is odd, then we know
\NT]B,L/Q@Q —1)| > p" =D/,

Proof. For the convenience of the reader, we give an alternative proof of (1).
Let € be a unit in E, \ E,—1 with Nrg /g, ,(¢) = 1. Then there exist
integers bg, - - - ,by—_1 such that

N-1

e=bo+ Y bi(Chia+Cilo)

i=1
We put

Y4(8) =bo + b2(Chig + Cofa) + -+ bn—a (YT + G5,
v-(e) = b1(Curz + Cota) + -+ + b1 (VR + BT,
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Then we have

Tn

=74 +7-(e), 1 (@)™ =14:(e), 7-(e)™ =—1-(e).
Since Nrg, /g, _, () = 1, we obtain
1+(8)* = v-(e)* = 1.
This implies
(2.5) (v+(8) = D)(r+(e) + 1) = 7-(e)*.
Let p, be the prime ideal of B, lying above 2. We denote by s the

additive p,-adic valuation nomalized by v((,+2 + C;iQ) = 1. Assume that
v2(74+(e) — 1) < N. Then we have

v2(7+(e) = 1) = v2(v4(e) + 1) = va(y-(e))
from (2.5). However, va(v4(e) —1) and va(v4(e)+1) are even and va(y—(¢))
is odd or oco. This is a contradiction.

Thus, we have vo(y4(e) — 1) > N. Therefore, we obtain v4(e) = 1
(mod 2) and y_(g) =0 (mod 2), that is, e =1 (mod 2). O

By combining Lemma 2.3 and Lemma 2.4, we obtain the following lemma.

Lemma 2.5. Let ¢ be a unit in E, \ E,—1 with NTBR/Bn_l(E) =1.
(1) If p=2, then we have

hi(e) > V2 log (2+ V5) .
(2) If p is an odd prime number, then we have

p®" DR g [0 /1) 4)

ht(e) > /p" log ( 5

2.3. Geometry of numbers. For applying Lemma 2.1, it is desirable to
choose an « in an ideal of F' so that ht(0%) is small.

Let r and n be positive integers with » < n and p" # 2. We put d = ¢(p")
where ¢ is the Euler function. We start with geometry of numbers for an
arbitrary ideal a of Z[(,] (F = Q(()).

Definition 2.6. We define a map ), from E, to RP" by
An(e) = (10g|6|,log|5”\, . ,log|5"pn_1|) )
We define d-dimensional R-vector space
Vi =R (6,) ®RA(65) @ -+~ @ RAn(éfffl)

with standard metric. Let a be an integral ideal of Q(¢,). We associate the
lattice
A=X(a)={ I\ (03); a €a}
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in V,, with a.
Let 51, -+, Bq be a Z-basis of a. The metric of V,, induces the quadratic
form
d . .
Fa(, -+ 2q) = ht(02=1 ")z
Then

pi -1/ d 1\ 2
Fo(z1, -+ ,2q) = Z (Z x; log ](55“7]|>
j=0 \i=1
is a positive definite quadratic form in d variables and of determinant
vol@(A)? where vol®@ is the d-dimensional volume on V.
We will detect a non-zero lattice point of A by the following theorem in
geometry of numbers.

Theorem 2.7 (Blichfeldt, [2, Theorem II]). Let A be a lattice in the metric
vector space of dimension d. Then there exists a non-zero vector v of A such

that )
2/d
< (r(1e22 vol@ (A)2/d
2
T

In our setting of A, this implies the following lemma.

Lemma 2.8. Let a be an integral ideal of Z[(.]. Then there exists a non-
zero element o in a such that

(53) < 2 (S5 2(6) o) vl (a2

1/d

s

3. Proof in the case p = 2

In this section, we prove Theorem A for p = 2.
Let p = 2, ¢ a prime number in D(2,s, f) and n a positive integer. We
put 7 = min{n, s} and d = 2" 1.

3.1. Height of Horie unit for p = 2.

Lemma 3.1. Assume p = 2. We have
ht(n) < 5V2".

Proof. We rewrite (2.1) as

—1
nn - 1+2n+1 _1—9n+1"
Cn+3 ~ Sn+3

Then, we see
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Hence we obtain

Since
d 9 2logtand
and
d? 5 8(1 —cos26logtan)
(3.2) W(logtan@) = (5in 20)2 >0

for 0 < 6 < w/4, we have

2 (2i — 1)
2 Z (log tan T
i=1

on+2 T

2 gn+2 /4
) < / (log tan 6)%d6
0

2
m

= 2", 0
4

3.2. Volume of lattice for p = 2. We assume n > 2. Then we have the
following lemma.

Lemma 3.2. Assume p = 2. Let £ be a prime ideal of Q((,) lying above £.
We have

vol (A, (1= G yee™t)) < 20t/ (;r\/fn)d
Proof. Note that
vol (A ((1 = ¢)ee™h) = [Z[G] : (1= G vol D (An(Z[¢)).
From r < s, we have
2] : (1= ¢ryee™"] =207,
Since ht(n,) = ht(nS) = -~ = ht(n$" ), we obtain

vol D (An (Z[¢])) < Rt ()
- d
<(3v7) - .
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3.3. Concluding the proof of Theorem A for p = 2. We prove the
contrapositive. Suppose that ¢ divides hy,/h,—1. It is sufficient to show that
< G(2s, f).

Since h; = 1, we may assume that n > 2. From Lemma 2.1, there exists
a prime ideal £ in Q((,) lying above ¢ such that 7% is an /-th power in E,
for every element o of ££71.

We put a = (1 — ¢ )€1, From Lemmas 2.8 and 3.2, there exists a
non-zero element o in ££~! such that

(3.3) hi (Th(zlfcr)a) < \/z <d;21 opd—f (g@>d>

From Lemma 2.1, there exists a unit € in E, such that n = et. Therefore,
we have

1/d

4
(34) ’r]'r(Ll_CT)a — (61_Cr> .
Since Nrg, /g, _, (M) = —1 and (1 — ¢;)a is non-zero, the degree of el=C s

2" and Nrg, /p,_, (51*9) = 1. Hence we have

(3.5) ht (£17¢) > V2rlog (24 V5) .

from Lemma 2.5 (1).
From (3.3), (3.4) and (3.5), we obtain

(V2" log (2+\/5) < ﬁ(d—;%%d—f <W@)d>

2

1/d

This implies
1/f

{ <

=17 (ﬁlog (2-1-\/5)

Since ¢ = 2°"! and s > r, we have ¢ > d. Hence we can replace d with c.
Therefore, we have

c 1/f
VT c+2 B .
(< (2 (ﬂlog(u\/g)) 5 !) =G(2,s, f).

4. Proof in the case p > 3

d
NG ) a+2,
2

In this section, we prove Theorem A for p > 3.
Let p be a prime number with p > 3, ¢ a prime number in D(p, s, f) and
n a positive integer. We put r = min{n,s} and d = (p — 1)p" L.
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4.1. Height of J,,. From the definition of §,, and the Cauchy-Schwarz
inequality, we obtain

S iN?
ht(6,)? = > (logoy|)
i=0
nH -1 i —i 2
<P 1? Z <log ’ (Cry1 — Cnﬂ)pD
B 4 i=1,pli C% __ggz
n+l_1 . . 2
p—17 < , (mw)‘ . [ 2im
=— plog |2 sin —log |2sin | — .
4 i;%%h pn+1 pn

Since 2 acts on (Z/p"t1Z)*, we have

p— 17! i 21\ [\ 2
4 Z (plog 2sin( n+1)‘ log 2sm( ) )
i=1,pti p "
nt+l_1 . . )
p—17 . L . (T
=1 Z (plog QSln( n+1>’—log 2sm(n>)
i=1,pti p p
__1 p"—1 p—1 . . )
— Z Z (plog 28111( f:_l + jw)‘ — log |2sin (Z:) )
i=1,pti 7=0 p p
_p@—l)wq' in
T4 > 9 L
i=1, pfi
n 1 1p 1

(1 + pk)m
MY ()
where

. 2
2sin (9 + ‘”)‘ ~log |2$in(p0)|> .
p

é:@bg

%\H

From the equality

we get
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Hence we obtain

p—1
(4.1) g(6 pz <log

7=0

2sin (9 + )‘)2 — (log |2sin(ph)|)2.

In order to get an upper bound on the height of J,, we give another
description of g(#). We put C(0,a) = (log|2sinf| — log |2sin(6 + «)|)2.
Then we get

1”lezlc< i'm m)
IOJIO p

L
9 sin (0 L1 ”)
p  p

;

1IDZI le <log

=0j'=
2sin (9 + JW)
p

2 sin (9 + m)
p

2 sin <9—|—>‘ — log
)2

Z log

p—1
=py <log

=0

p—1
- Z log

p y
231n(9+ﬁ+‘”>’
p

=0 j'=0
p—1 2

—pz <log 2sin (9 + ) > — (log |2sin(ph)|)2.
7=0

This implies

(4.2) 1%%0(%””).

/=0 /=0

Note that
1/ d\?
B (d@) (0, a)

B (o " P

-\/-\/e see
d 2
- >
(d@) C0,a) >0

for 6 and 6 4+ « not equal to multiples of m. Therefore, g(f) is a convex
function on |0, 7/p[ from (4.2).
Now we need the following proposition.

sin 0 ‘
sin(f+a) |
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Proposition 4.1. Let M be a positive integer and F(0) a convex function
on an interval |a, b[. Assume that fb F(G)d@ is convergent. Then we have

ZF (a—l— — ¢ z> < / F(0
b—a
Note that g(f) is a convex function on the interval ]0, 7 /p[. By applying
Proposition 4.1 for M =p—1, a = kr/p” and b = (k+ 1)7/p", we see

p—1 . n
i+ pk)m p—1)p" [k+L)7/p
> (BT < 2 T oy

i=1 /p™

for 0 < k < p"~! — 1. Therefore, by taking sum, we obtain
_ 1 2, n+1 7r/p
5,2 < TP T gy
4 0

From the equality (4.1), we have

/0 " 06

2 /P
) o — / (log 2 sin(p6)|)2d0
0

2 sin ((9 + jﬂ-)
p

’ﬁb
HO

(G+1)7/p

S s
/]

log\2sin9)2d0—1/ (log |2sin A])%d
pJo

I\DQ

/ (log |2sin A])%d
( )

Hence we obtam

PP+ )7

ht(6n)” I

Therefore, we get the following lemma.

Lemma 4.2. Assume p > 3. We have

ht(én) < (p — 1)7[-1\/23(]72 — 1) \/ﬁ

2. Volume of lattice for p > 3. Let m and d be positive integers with
m < d and V a d-dimensional R-vector space. For vg, v1, -+, vy in V, we
define the parallelotope S(vg, v1,+ -+ ,vm) by

m m
S(anvla"'avm):{ztivﬁOSESLZQZl}.
i=0 i=0
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We quote the following estimate ([6, Theorem 2.2]) of its volume.
Proposition 4.3. If ||v|| = ||v1]| = -+ = ||vm|| = h, then we have

(m + 1)(m+1)/2

Vol(m)(S(UO,Ul,"' 7vm)) S hm
mlmm/2
We put
Q(v1, -+ ,vm) = {thz‘ ; 0<¢; < 1}
i=1
and

k+1

' j j rk—1 i _—
Qj,k: =Q ()\n((sgg)a)\n((s%ﬁ@% .. .’)\n(dggﬁl )’)\n(égﬁ 1 )’ . ’)\n(&gjﬁf )> '

Then we have the following proposition.

Proposition 4.4. For 0 < j <p"~!' — 1, we have

p _
MVOIW D(Qjp-1)

. . i op—1
= vl (5 (M8 Mn(351), -+ (875 ).
Proof. Note that, since Zz;é )\n(&ch) = 0, we have

vol®™Y (S (Anwﬁ)An(é%“l), Bt >>)

SR .
T (-1 > vol?D(Q;).
" k=0

and vol(p_l)(Qj,k) = Vol(p_l)(QMr) for 0 < k,k’ < p — 1. Therefore, we
obtain the assertion. O

Then we obtain the following lemma.

Lemma 4.5. Assume p > 3. Let £ be a prime ideal of Q(() lying above £.
Then we have

m — /2(p—1)
voﬂd)(xn((l—com—l))<ed—f( (e 1>P”43§1W\/ﬁ>

d
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Proof. From Propositions 4.3 and 4.4, we have

[Z[¢) : (1 — )L™ vol D (A (Z[¢]))
=" 0 vl D (A, (Z[¢))

'rll

<pr it H vol® Qm 1)
7=0
r 1 1

<ppr1£de
Jj=0 p

' j j op—1
X (S <)\n(57€£),)\n(5§§1)7... 7)\n(5§ij )))

<pf P i
(p—1)42

From Lemma 4.2, we obtain the assertion. Il

Y

vol®—1)

ht(5,)%.

4.3. Concluding the proof of Theorem A for odd p. We prove the
contrapositive. Suppose that ¢ divides hy,/h,—1. It is sufficient to show that
¢ < G(p,s, f). Since h, =1 for (p,n) = (3,1), (3,2), (3,3), (5,1), (5,2),
(7,1), (11,1), (13,1), (17,1) and (19, 1), we may assume that n > 4 if p = 3,
n>3ifp=5andn>2if 7T<p<17.

From Lemma 2.1, there exist a prime ideal £ in Q(¢,) lying above ¢ such
that n% is an /-th power in E,, for every element o of ££7!

We put a = (1 — (1)¢€!. From Lemmas 2.8 and 4.5, there exists a
non-zero element o in ££~! such that
(4.3)

1/d
)20 5T d
ht(dgl‘@’“)g\/g (T!ed—f<”(p 1)pp4\/§ p+1\/p">) :
™

From (2.2), we have 6% = 2. Moreover, from Lemma 2.1, there exist a
unit ¢ in E,, such that n® = . These two assertions imply that

(4.4) gl = gt

Since N7g, /g, ,(0n) = 1 and (1 — (1)a is non-zero, the degree of € is p"
and Nrg, /g, () = 1. Hence we have

e Y 4)

(4.5) ht(e) > /p"log ( 5

from Lemma 2.5 (2).
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From (4.3), (4.4) and (4.5), we obtain

(®"-1)/p"(p—1) 2(p"—1)/p™(p—1) 1 4
P +4/p +
ply/plog ( \/2 )
/2(p-1) ay /4
S\/j d+2!€d_f 7(p—1)pP \/p+1\/ﬁ .
T 2 4/3
This implies
l <
d 1/f
Vrlp—1)yp+1 d+2,

26p(P—2)/2(-1)]og ((p(p"l)/p” (1) + \/pQ(p"fl)/p" (P—1) ¢ 4)/2) 2

Since ¢ > d, we can replace d by c. Therefore, we have
<
c 1/f
Valp—1)yp+1 c+2,
2B -2)/2(Dlog ((p@"l)/pn (1) 2 =D/ 1) 4 4) /2) 2

From the assumption on n, we obtain

40/81, if p =3,

pr-1 _ [31/125, ifp =5,
prp—1) = | (p+1)/p% ifT7<p<19,

1/p, if p > 23.

This implies £ < G(p, s, f).

5. Corollary B

In this section, we show the f-indivisibility of the class number h,, for
p=2and ¢ # £1 (mod 64).

From Theorem 1.4, we study the cases £ = 31 (mod 64) and ¢ = 33
(mod 64).

5.1. £ =31 (mod 64). Let ¢ be a prime number with ¢ = 31 (mod 64).
Then f =2, s =6 and ¢ = 32. Hence we have

G(2,6,2) =

32
2 VT 17! < 2777715 < 10°.
\@log (2 + \/5)



Height and Weber’s Class Number Problem 827

From Theorem 1.4 and Theorem A, h, is indivisible by ¢ for every non-
negative integer n if £ = 31 (mod 64).

5.2. £ = 33 (mod 64). Let ¢ be a prime number with ¢ = 33 (mod 64).
Then f =1, s =5 and ¢ = 16. Hence we have

16
VT 9! < 75585 < 10°.
V2log (2 +5)

From Theorem 1.4 and Theorem A, h, is indivisible by ¢ for every non-
negative integer n if £ = 33 (mod 64).

G(2,5,1) =
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