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Liminf Sets in Simultaneous Diophantine
Approximation

par Faustin ADICEAM

Résumé. Soit Q un ensemble infini d’entiers naturels non nuls.
Soit W ∗

τ,n(Q) l’ensemble des n–uplets de réels simultanément ap-
prochables à l’ordre τ par une infinité de rationnels dont les dé-
nominateurs sont dans Q mais seulement par un nombre fini de
rationnels dont les dénominateurs sont dans le complémentaire de
Q. Nous déterminons la dimension de Hausdorff de l’ensemble li-
minfW ∗

τ,n(Q) lorsque n ≥ 1 et τ > 2+1/n. Un analogue p–adique
du problème considéré est également étudié.

Abstract. Let Q be an infinite set of positive integers. Denote
by W ∗

τ,n(Q) the set of n–tuples of real numbers simultaneously τ–
well approximable by infinitely many rationals with denominators
in Q but by only finitely many rationals with denominators in
the complement of Q. The Hausdorff dimension of the liminf set
W ∗
τ,n(Q) is determined when n ≥ 1 and τ > 2 + 1/n. A p–adic

analogue of the problem is also studied.

1. Introduction and statement of the result

Let n ≥ 1 be an integer and τ > 1 a real number. Given an infinite set of
positive integers Q, denote byWτ,n(Q) the set of points in dimension n ≥ 1
approximable at order τ by infinitely many rationals with denominators in
Q, i.e. the limsup set

(1.1) Wτ,n(Q) :=
{
x ∈ Rn : |x− p/q| < q−τ for i.m. (p, q) ∈ Zn ×Q

}
.

Here and throughout, i.m. stands for infinitely many, |x| is the usual
supremum norm of a vector x ∈ Rn and p/q is shorthand notation for the
rational vector (p1/q, . . . , pn/q), where p = (p1, . . . , pn) ∈ Zn.

Jarník in [11] and Besicovitch in [5] proved independently that the Haus-
dorff dimension dimWτ,n(N) of the set Wτ,n(N) is equal to (n + 1)/τ as
soon as τ > 1 + 1/n. Subsequently, Borosh and Fraenkel generalized this
result in [6] to the case of any infinite subset Q ⊂ N by showing that
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dimWτ,n(Q) = (n + ν(Q))/τ when τ > 1 + ν(Q)/n, where ν(Q) is the
exponent of convergence of Q defined as

(1.2) ν(Q) := inf

ν > 0 :
∑
q∈Q

q−ν <∞

 ∈ [0, 1].

On the other hand, the corresponding liminf set
(1.3) W ∗τ,n(Q) := Wτ,n(N) \Wτ,n (N\Q) = Wτ,n(Q) \Wτ,n (N\Q)
has received much less attention. Explicitly, this is the set of all those
vectors x in Rn which admit infinitely many approximations at order τ as
in (1.1) by rational vectors (p, q) whose denominators q lie in Q, but only
finitely many approximations by rational vectors whose denominators do
not lie in Q. The author considered in [2] the case where the set Q is a
so–called N\Q–free set (that is, a set Q whose elements are divisible by no
integer in the complement of Q) and exhibited a non–trivial lower bound
for dimW ∗τ,n(Q) when n ≥ 2 and τ > 1 + 1/(n − 1). He also provided
a construction, explicit in terms of the continued fraction expansion, of
uncountably many Liouville numbers lying in the setW ∗τ,1(dN), where d ≥ 2
is any integer and τ > 2.

It is not clear that the set W ∗τ,n(Q) should be non–empty for a general
infinite subset Q ⊂ N. This is in particular implied by the following much
stronger statement which is the main result of this paper :

Theorem 1.1. Let Q ⊂ N be infinite. Assume that n ≥ 1 is an integer and
that τ > 2 + 1/n is a real number. Then

dimW ∗τ,n(Q) = n+ ν(Q)
τ

·

Thus, when τ > 2+1/n, the limsup setWτ,n(Q) and the associated liminf
setW ∗τ,n(Q) actually share the same Hausdorff dimension. This leaves a gap
corresponding to the case where τ lies in the interval (1+ν(Q)/n , 2+1/n].
The nature of this restriction shall clearly appear in the course of the proof
and shall then be discussed. It is however worth mentioning at this stage
that the underlying difficulty does not seem easy to overcome and may be
linked to some deep problems in the metric theory of numbers.

Notation. In addition to those already introduced, the following pieces of
notation shall be used throughout :

• x� y (resp. x� y, where x, y ∈ R) : there exists a constant c > 0
such that x ≤ cy (resp. x ≥ cy).
• x � y (x, y ∈ R) means both x� y and x� y.
• [[x, y]] (x, y ∈ R, x ≤ y) : interval of integers, i.e. [[x, y]] =
{n ∈ Z : x ≤ n ≤ y}.
• λn : the n–dimensional Lebesgue measure (for simplicity, λ := λ1).
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• #X : the cardinality of a finite set X.
• |U | : the diameter of a bounded set U ⊂ Rn.
• δn (S) := # (S ∩ [[1, n]]) for any subset S ⊂ N.
• Iτ

(
p
q

)
:=
(
p
q −

1
qτ ,

p
q + 1

qτ

)
, where p

q ∈ Q.

• Cτ
(
p
q

)
:=
∏n
i=1 Iτ

(
pi
q

)
, where p = (p1, . . . , pn) ∈ Zn and q ∈ N (note

that with this convention, Cτ
(

2p
2q

)
is strictly contained in Cτ

(
p
q

)
).

2. Auxiliary lemmas

In this section, S denotes an arbitrary infinite set of natural numbers.

2.1. On the logarithmic density of a subset of integers. As is well–
known, the exponent of convergence, as defined by (1.2), of the set S is
related to its logarithmic density in the following way (see for instance [10]
for a proof) :

(2.1) ν(S) = lim sup
n→+∞

( log δn (S)
logn

)
.

The next lemma provides a similar formula for ν(S).

Lemma 2.1. The following equation holds :

ν(S) = lim sup
n→+∞

( log (δ2n (S)− δn (S))
logn

)
.

Proof. First note that, for n ∈ N,
log (δ2n (S)− δn (S))

logn ≤ log δ2n (S)
logn ∼

n→+∞

log δ2n (S)
log 2n ·

Taking the limsup on both sides of this inequality, it is easily seen that (2.1)
implies

lim sup
n→+∞

( log (δ2n (S)− δn (S))
logn

)
≤ ν(S).

This suffices to prove the result in the case ν(S) = 0 since, the set S being
infinite, δ2n (S) − δn (S) ≥ 1 for infinitely many n ∈ N. Therefore, assume
from now on that ν(S) > 0. Then (2.1) shows the existence of a sequence
(nk)k≥0 of positive integers such that

(2.2) log δnk (S) ∼
n→+∞

ν (S) lognk.

For a fixed k ∈ N, consider the following partition of the interval [[2, nk]]
into uk := blognk/ log 2c subintervals :

[[2, nk]] =
uk⋃
r=0

[
[ nk2r+1 + 1, nk2r

]
].
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From the definition of the integer δnk (S), at least one of these intervals
contains more than (δnk (S)− 1)/(uk + 1) elements of S, which determines
a rational number lk of the form nk/2a+1 (0 ≤ a ≤ uk − 1) such that

(2.3) δnk (S)− 1
uk + 1 ≤ 2lk − (lk + 1) + 1 = lk ≤

nk
2

and δnk (S)− 1
uk + 1 ≤ δ2lk (S)− δlk (S) .

From (2.2) and from the definition of uk, one deduces on the one hand
that the first inequality in (2.3) implies that the sequence (lk)k≥1 tends to
infinity and that, on the other,

log (δnk (S)− 1)− log (uk + 1)
lognk

∼
n→+∞

log δnk (S)
lognk

∼
n→+∞

ν(S).

Furthermore, it follows from (2.3) that
log (δnk (S)− 1)− log (uk + 1)

lognk
≤ log (δ2lk (S)− δlk (S))

log lk
·

Combining these last two inequalities leads to the relationship

ν (S) ≤ lim sup
n→+∞

( log (δ2lk (S)− δlk (S))
log lk

)
,

which completes the proof. �

One key–step in the proof of Theorem 1.1 is to approximate an infinite set
of positive integers by arbitrarily large subsets, the size of a subset being
measured by its exponent of convergence. In this respect, the following
proposition will turn out to be very useful.

Proposition 2.2. Assume that ν (S) > 0 and let ν ∈ (0, ν (S)). Further-
more, let (αn)n≥0 be a sequence of positive reals such that the sequence
(nναn)n≥0 is increasing and such that (logαn/ logn)n≥2 tends to 0 as n
goes to infinity.

Then, there exists a subset Sν ⊂ S such that :
• for all n ≥ 1, δ2n (Sν)− δn (Sν) ≤ nναn.
• there exists a strictly increasing sequence of positive integers (nk)k≥0
satisfying

δ2nk (Sν)− δnk (Sν) ∼
k→+∞

nνk αnk .

In particular, ν (Sν) = ν.

Proof. The fact that ν (Sν) = ν follows immediately from Lemma 2.1. Note
that this lemma applied to the set S amounts to claiming the existence
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of a sequence of real numbers (βn)n≥0 tending to zero and of a strictly
increasing sequence of positive integers (pk)k≥0 satisfying

(2.4) δ2n (S)− δn (S) ≤ nν(S)+βn for all n ∈ N

and δ2pk (S)− δpk (S) ∼
k→+∞

p
ν(S)+βpk
k .

Note also that the assumption that logαn/ logn tends to zero amounts to
the fact that αn = o (nε) for all ε > 0. Thus, the second relationship in (2.4)
and the fact that ν < ν (S) guarantee the existence of a smallest positive
integer n1 such that

bnν1 αn1c < δ2n1 (S)− δn1 (S) := r1.

Now remove r1 − bnν1 αn1c elements of S from the interval [[n1 + 1, 2n1]] to
define a subset S(1)

ν ⊂ S satisfying the following properties :
• S(1)

ν and S coincide on the intervals [[1, n1]] and N\[[1, 2n1]],
• for all n ∈ [[1, n1]], δ2n

(
S(1)
ν

)
− δn

(
S(1)
ν

)
≤ nναn,

• δ2n1

(
S(1)
ν

)
− δn1

(
S(1)
ν

)
= bnν1 αn1c.

Consider then the smallest integer n2 > n1 such that

bnν2 αn2c < δ2n2

(
S(1)
ν

)
− δn2

(
S(1)
ν

)
:= r2.

Since for n ≥ 2n1+1, δ2n
(
S(1)
ν

)
−δn

(
S(1)
ν

)
= δ2n (S)−δn (S) , the existence

of n2 is guaranteed in the same way as for n1.
Defining u2 := max {n2, 2n1}, remove r2 − bnν2 αn2c elements of S from

the interval [[u1 + 1, 2n2]]. This is clearly possible if n2 ≥ 2n1 as there is no
overlap in this case between the intervals [[n1, 2n1]] and [[u1 + 1, 2n2]]. But
this is also possible if n1 < n2 < 2n1 : indeed, if the interval [[u1 +1, 2n2]] =
[[2n1 +1, 2n2]] contained strictly less than r2−bnν2 αn2c elements, one would
have :

r2 := δ2n2

(
S(1)
ν

)
− δn2

(
S(1)
ν

)
= δ2n2

(
S(1)
ν

)
− δ2n1

(
S(1)
ν

)
+ δ2n1

(
S(1)
ν

)
− δn2

(
S(1)
ν

)
= δ2n2 (S)− δ2n1 (S) + δ2n1

(
S(1)
ν

)
− δn2

(
S(1)
ν

)
(
as S(1)

ν ∩ {n ≥ 2n1 + 1} = S ∩ {n ≥ 2n1 + 1}
)

≤ δ2n2 (S)− δ2n1 (S) + δ2n1

(
S(1)
ν

)
− δn1

(
S(1)
ν

)
< r2 − bnν2 αn2c+ bnν1 αn1c
≤ r2
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since the sequence (nναn)n≥0 is increasing. This contradiction shows that
one can find a subset S(2)

ν ⊂ S(1)
ν such that :

• S(1)
ν and S(2)

ν coincide on the intervals [[1, n2]] and N\[[1, 2n2]],
• for all n ∈ [[1, n2]], δ2n

(
S(2)
ν

)
− δn

(
S(2)
ν

)
≤ nναn,

• δ2n2

(
S(2)
ν

)
− δn2

(
S(2)
ν

)
= bnν2 αn2c.

By induction, one can thus construct a decreasing sequence
(
S(k)
ν

)
k≥1

of
subsets of S and a strictly increasing sequence of natural integers (nk)k≥1
such that, for all k ≥ 2,

• S(k−1)
ν and S(k)

ν coincide on [[1, nk]] and N\[[1, 2nk]],
• for all n ∈ [[1, nk]], δ2n

(
S(k)
ν

)
− δn

(
S(k)
ν

)
≤ nναn,

• δ2nk

(
S(k)
ν

)
− δnk

(
S(k)
ν

)
= bnνk αnkc.

By construction, the set Sν := ∩+∞
k=1S

(k)
ν satisfies the conclusion of the

proposition. �

2.2. Steps to the construction of a Cantor set. Theorem 1.1 will be
proved by exhibiting nice Cantor sets contained in the liminf set under con-
sideration. To this end, a few auxiliary results are gathered in this subsec-
tion. They are preceded by two definitions which shall be used throughout
this paper.

Definition. A vector p = (p1, . . . , pn) ∈ Zn is q–primitive (where q ∈ N)
if at least one of the components pi of p is coprime to q. The vector p is
absolutely q–primitive if all its components are coprime to q.

Definition. Given τ > 1, p0 ∈ Zn and q0 ∈ N, a hypercube of new
generation in Cτ

(
p0
q0

)
is a hypercube of the form Cτ

(
p
q

)
contained in Cτ

(
p0
q0

)
such that p ∈ Zn is absolutely q–primitive (q ∈ N) and such that for any
q1 ∈ [[q0 + 1, q − 1]] and any p1 ∈ Zn,

Cτ

(
p1
q1

)
∩ Cτ

(
p

q

)
= ∅.

Thus, the concept of a hypercube of new generation renders the idea that
such a polytope covers a volume inside a given hypercube which has been
covered by no other. The next proposition counts the number of such hyper-
cubes and constitutes a problem specific to the liminf setup in Diophantine
approximation. It is preceded by a well–known lemma on the repartition of
integers coprime to a given natural number.

Lemma 2.3. Let q be a positive integer and η be any positive real number.
Denote by ϕη(q) the number of integers less than ηq and coprime to q.
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Then, for any ε > 0,

ϕη(q) = ϕ(q)
(
η + o

(
q−1+ε

))
,

where ϕ denotes Euler’s totient function.
In particular, if ε ∈ (0, 1), η > q−1+ε and q is large enough, then for any

γ ≥ 0,
# { p ∈ [[γq, (γ + η)q]] : gcd(p, q) = 1 } � ηϕ(q),

where the implicit constants depend only on ε.

Proof. This follows easily from the inclusion–exclusion principle and some
standard estimates of arithmetical functions. See for instance [8, Lemma III]
for details. �

Proposition 2.4. Let τ > 2 + 1/n, p0 ∈ Zn and q0 ∈ N. Assume that
Cτ
(
p0
q0

)
⊂ (0, 1)n and that q > qτ

3
0 has been chosen large enough. Denote

furthermore by N
(
q, p0

q0
, τ
)
the cardinality of the set of hypercubes of new

generation in Cτ
(
p0
q0

)
of the form Cτ

(
p
q

)
for some p ∈ Zn.

Then, provided that q0 is larger than some constant (independent of q),

N
(
q,
p0
q0
, τ

)
≥

ϕ(q)n λn
(
Cτ
(
p0
q0

))
2n+1 ·

Proof. Set C̃τ
(
p0
q0

)
:= Cτ

(
p0
q0

)∖
Cτ
(

2p0
2q0

)
. If q > q0 is large enough, the

number of absolutely q–primitive vectors p ∈ Zn such that Cτ
(
p
q

)
⊂ C̃τ

(
p0
q0

)
is certainly bigger than

(2.5) 2n
(

1− 1
2τ
)n ϕ(q)n

2n λn

(
Cτ

(
p0
q0

))
≥

(τ>1)

ϕ(q)n

2n λn

(
Cτ

(
p0
q0

))
(this follows for instance from Lemma 2.3).

Assume now that there exist an integer q1 > q0 and p1 ∈ Zn such that
C̃τ
(
p0
q0

)
∩ Cτ

(
p1
q1

)
6= ∅. In particular, p1/q1 6= p0/q0, whence

1
q0q1

≤
∣∣∣∣p0
q0
− p1
q1

∣∣∣∣ < 2
qτ0
·

This means that, when computing the number of hypercubes Cτ
(
p
q

)
of new

generation in C̃τ
(
p0
q0

)
(p ∈ Zn), it suffices to consider those hypercubes of

this form which have no overlap with any hypercube of the form Cτ
(
p1
q1

)
,

where p1 ∈ Zn and q1 > qτ−1
0 /2.
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Given this, let us now count the number of integer vectors p ∈ Zn such
that Cτ

(
p
q

)
has a non–empty intersection with a hypercube Cτ

(
p1
q1

)
con-

tained in Cτ
(
p0
q0

)
, where p1 ∈ Zn and qτ−1

0
2 < q1 < q.

∗First case : qτ−1
0
2 < q1 ≤

qτ0
4 . Fix an integer q1 in this range. Then there

exists at most one integer vector p1 ∈ Zn such that Cτ
(
p1
q1

)
∩ Cτ

(
p0
q0

)
6= ∅.

Indeed, should there exist another one p′1 ∈ Zn, one would have
1
q1
≤
∣∣∣∣p1
q1
− p

′
1
q1

∣∣∣∣ ≤ ∣∣∣∣p1
q1
− p0
q0

∣∣∣∣+ ∣∣∣∣p0
q0
− p

′
1
q1

∣∣∣∣ < 4
qτ0
,

contradicting the assumption on q1.
Suppose now that there does exist p1 = (p1,i)1≤i≤n ∈ Zn satisfying

Cτ
(
p1
q1

)
∩Cτ

(
p0
q0

)
6= ∅. If, furthermore, p = (p1, . . . , pn) ∈ Zn is an absolutely

q–primitive vector such that Cτ
(
p
q

)
∩ Cτ

(
p1
q1

)
6= ∅, then, for any i ∈ [[1, n]],

(2.6)
∣∣∣∣pi − p1,i

q1
q

∣∣∣∣ < 2q
qτ1
·

Under the assumption that q ≥ qτ
3

0 and q1 ≤ qτ0/4, it follows from
Lemma 2.3 that, if q0 is chosen large enough, the number of such abso-
lutely q–primitive vectors p ∈ Zn is less than

K
ϕ(q)n

qnτ1
for some constant K > 0 depending on n.

Summing over all the possible values of q1, the number of hypercubes
Cτ
(
p
q

)
with p ∈ Zn absolutely q–primitive having a non–empty intersection

with a hypercube of the form Cτ
(
p1
q1

)
is seen to be less that

Kϕ(q)n
∑

qτ−1
0 /2<q1≤qτ0 /4

q−nτ1 ≤ Kϕ(q)n
∑

q1>q
τ−1
0 /2

q−nτ1(2.7)

≤ c1
ϕ(q)n

q
(τ−1)(nτ−1)
0

for some c1 > 0 depending on τ and n.
∗ Second case : qτ0

4 < q1 < q. Fix an integer q1 in this range and assume
that Cτ

(
p1
q1

)
∩Cτ

(
p
q

)
6= ∅ for some p ∈ Zn absolutely q–primitive and some

p1 ∈ Zn. Then

(2.8) 1
qq1
≤
∣∣∣∣pq − p1

q1

∣∣∣∣ < 2
qτ1
, whence qτ−1

1 < 2q.

Furthermore, inequalities (2.6) still hold true.
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Given ε > 0 and i ∈ [[1, n]], it follows from Lemma 2.3 that the number
of solutions in pi to (2.6) is

(2.9) ϕ(n)
( 4
qτ1

+ o

( 1
q1−ε

))
≤

(2.8)

6ϕ (q)
q

(τ−1)(1−ε)
1

for q0 (and so q1 and q) large enough depending on the choice of ε > 0
(note that the error term in Lemma 2.3 is independent of η > 0). Now, if
there is an overlap between Cτ

(
p1
q1

)
and Cτ

(
p0
q0

)
, it is easily seen that p1,i

can assume at most 8q1 λ
(
Iτ
(
p0,i
q0

))
values (where p0 = (p0,i)1≤i≤n), so the

number of solutions to (2.6) in p ∈ Zn absolutely q–primitive is at most

8n
(

6ϕ (q)
q

(τ−1)(1−ε)−1
1

)n
λn

(
Cτ

(
p0
q0

))
for q0 large enough.

Summing over all the possible values for q1, the number of hypercubes
Cτ
(
p
q

)
with p ∈ Zn absolutely q–primitive having a non–empty intersection

with a hypercube of the form Cτ
(
p1
q1

)
is seen to be less that

(2.10) 48nϕ(q)n λn
(
Cτ

(
p0
q0

)) ∑
qτ0 /4<q1≤(2q)1/(τ−1)

q
−n((τ−1)(1−ε)−1)
1

≤ 48nϕ(q)n λn
(
Cτ

(
p0
q0

)) ∑
q1>qτ0 /4

q
−n((τ−1)(1−ε)−1)
1

≤
c2ϕ(q)n λn

(
Cτ
(
p0
q0

))
q
τ(n((τ−1)(1−ε)−1)−1)
0

for q0 large enough depending on the choice of an arbitrarily small ε > 0
and for some c2 > 0 depending on τ and n.
∗Conclusion. Taking into account (2.5), (2.7) and (2.10), for q > qτ

3
0 large

enough,

N
(
q,
p0
q0
, τ

)
≥ ϕ(q)n

2n λn

(
Cτ

(
p0
q0

))[
1−2n q

nτ
0
2n

c1

q
(τ−1)(nτ−1)
0

− 2nc2

q
τ(n((τ−1)(1−ε)−1)−1)
0

]

(we used the fact that λn
(
Cτ
(
p0
q0

))
= 2n/qnτ0 ). This holds provided that q0

satisfies the assumptions of (2.5), (2.7) and (2.10).
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Now if ε > 0 has been chosen small enough, this last quantity is bigger
than ϕ(q)n λn

(
Cτ
(
p0
q0

))
/2n+1 for q0 large enough if τ > 1+(1+1/n)/(1−ε).

The result follows on letting ε tend to zero. �

Proposition 2.4 imposes the constraint τ > 2 + 1/n in the statement of
Theorem 1.1. The nature of this constraint appears to be twofold : on the
one hand, one could expect to improve inequalities (2.7) by restricting the
summation over only those integers q1 for which there exists, in the first
case of the proof, an overlap between Cτ

(
p0
q0

)
and Cτ

(
p1
q1

)
for some p1 ∈ Zn.

On the other hand, in the second case of the proof, Lemma 2.3 does not
give enough information about the distribution of integers coprime to q in
very short intervals, so that estimate (2.9) leads to some loss of accuracy.

It is not clear however whether improvements on these inequalities will
extend the result of Theorem 1.1 to the case where τ lies in the interval
(1 + ν (Q) /n , 2 + 1/n). Indeed, one could also expect the Hausdorff di-
mension of liminf sets such as those under consideration to admit a “phase
transition” at the critical value τ = 2 + 1/n, that is to say the value of
this dimension will be given by different expressions depending on whether
τ is bigger or smaller than 2 + 1/n. Such a phenomenon has already been
conjectured in other situations — see for instance [7, Conjecture 1].

In any case, restricting to the case n = 1 for simplicity, the main under-
lying difficulty with the proof of Theorem 1.1 turns out to be the control
of the intersections of the intervals Iτ

(
p
q

)
and Iτ

(
p1
q1

)
. This is also the noto-

rious issue in proving the Duffin–Schaeffer conjecture : as pointed out (and
explained in more detail) in [4], this happens not just to be a deficiency
in our knowledge but a real problem in the sense that the intersection
Iτ
(
p
q

)
∩ Iτ

(
p1
q1

)
may be empty or it may well have a measure much bigger

than the expected value λ
(
Iτ
(
p
q

))
× λ

(
Iτ
(
p1
q1

))
depending on the values

taken by p/q and p1/q1. It is likely that any further improvement on the
bound for τ > 1 + ν (Q) /n in Theorem 1.1 would require the use of ideas
very closely related to the problem of Duffin and Schaeffer.

The last result of this subsection contains the main feature of the proof
of Theorem 1.1 and should be compared with [6, Lemma 4].

Lemma 2.5. Let τ > 2 + 1/n, p0 ∈ Zn and q0 ∈ N such that Cτ
(
p0
q0

)
⊂

(0, 1)n and such that Proposition 2.4 applies. Assume furthermore that
ν (S) > 0 and that δ2k (S)− δk (S) = o

(
kν(S)

(log log k)n
)
.

Then for any k > q0 sufficiently large, there exists a set Eτ
(
p0
q0

)
of rational

vectors contained in Cτ
(
p0
q0

)
such that :
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(i) for any p
q ∈ Eτ

(
p0
q0

)
, p ∈ Zn is absolutely q–primitive, q ∈ S and

k < q ≤ 2k ;
(ii) for any two distinct elements p1

q1
and p2

q2
in Eτ

(
p0
q0

)
such that q1 ≤ q2,∣∣∣∣p1

q1
− p2
q2

∣∣∣∣ ≥ 1
q

1+ν(S)/n
1

;

(iii) for any p
q ∈ Eτ

(
p0
q0

)
, Cτ

(
p
q

)
is a hypercube of new generation in

Cτ
(
p0
q0

)
;

(iv) the following holds true :

#Eτ
(
p0
q0

)
≥

λn
(
Cτ
(
p0
q0

))
2n+2

∑
k<q≤2k
q∈S

ϕ(q)n

� λn

(
Cτ

(
p0
q0

))
kn (δ2k (S)− δk (S))

(log log k)n ,

where the implicit constant depends only on n.

Proof. For the sake of simplicity, let C denote the hypercube Cτ
(
p0
q0

)
in

this proof only. Let F (C) be the set of rational vectors p
q such that :

(1) q ∈ S and k < q ≤ 2k;
(2) p ∈ Zn is absolutely q–primitive;
(3) Cτ

(
p
q

)
is a hypercube of new generation in C.

If pq and p′

q′ are two rational vectors satisfying 1) and 2), and if furthermore
Cτ
(
p
q

)
∩ Cτ

(
p′

q′

)
6= ∅, then

1
4k2 ≤

∣∣∣∣pq − p
′

q′

∣∣∣∣ ≤ 1
kτ
,

which cannot happen if τ > 2 and k > q0 is chosen large enough. This
shows together with Proposition 2.4 that for such an integer k,

(2.11) #F (C) ≥ λn(C)
2n+1

∑
k<q≤2k
q∈S

ϕ(q)n.

Let E (C) be the subset of F (C) from which one excludes all the rational
vectors pq for which there exists an integer q1 ∈ [[k+1, q−1]] and an element
p1
q1
∈ F (C) satisfying ∣∣∣∣p1

q1
− p
q

∣∣∣∣ < 1
(q1)1+ν(S)/n ·
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It should be clear that E (C) defined this way satisfies the conclusions (i)
to (iii) of the lemma. It remains to evaluate its cardinality.

Let q1, q ∈ S, k < q1 < q ≤ 2k. When q is fixed, denote by Ni (q, q1)
(1 ≤ i ≤ n) the number of integers pi such that there exists an integer p1,i
satisfying

(2.12) |p1,iq − piq1| <
q

q
ν(S)/n
1

·

Let furthermore N(q) be the number of elements in F (C) \E (C) : it should
be clear that

N(q) ≤
∑

k<q1<q
q∈S

n∏
i=1

Ni (q, q1) .

From a familiar argument in elementary number theory (see for instance
Lemma I in [8]), the number of solutions Ni (q, q1) in pi to (2.12) is bounded
above by 2q/qν(S)/n

1 , whence

N(q) ≤ 2nqn
∑

k<q1<q
q∈S

1
(q1)ν(S) ≤ 2nqn δ2k (S)− δk (S)

kν(S) ·

Using the well–known equation

(2.13) lim inf
m→+∞

(
ϕ(m) log logm

m

)
= e−γ ,

where γ is Euler–Mascheroni constant, this also leads to the estimate valid
for k large enough

N(q) ≤ 2neγn2nϕ (q)n (log log k)n δ2k (S)− δk (S)
kν(S) ·

Now, by assumption on the sequence (δ2k (S)− δk (S))k≥1, for k large
enough, 2neγn (log log k)n (δ2k (S)− δk (S)) k−ν(S) ≤ λn(C) /22n+2, so that

(2.14) N(q) ≤ ϕ(q)nλn(C)
2n+2 ·
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For such an integer k, from (2.11) and (2.14),
#E (C) = #F (C)−# (F (C) \E (C))

≥
∑

k<q≤2k
q∈S

(
ϕ(q)nλn(C)

2n+1 −N(q)
)

≥ λn(C)
2n+2

∑
k<q≤2k
q∈S

ϕ(q)n

�
(2.13)

λn(C) kn

(log log k)n (δ2k (S)− δk (S)) . �

3. Proof of the main Theorem

Theorem 1.1 will now be proved for a given infinite set of positive inte-
gers Q. As should be clear, it is enough to establish the result for the set
W ∗τ,n(Q) ∩ [0, 1]n.

3.1. The upper bound. Proving that dimW ∗τ,n(Q) ≤ (1 + ν(Q)) /τ is
almost trivial : for any N ≥ 1,⋃

q≥N
q∈Q

⋃
p∈[[0,q]]n

Cτ

(
p

q

)

is a cover of the limsup set Wτ,n(Q), so in particular of the liminf set
W ∗τ,n(Q). Consequently, for any N ≥ 1, the s–dimensional Hausdorff mea-
sure Hs

(
W ∗τ,n(Q)

)
of the set W ∗τ,n(Q) satisfies

Hs
(
W ∗τ,n(Q)

)
≤
∑
q≥N
q∈Q

(q + 1)n

qsτ
·

The right–hand side of this inequality is finite as soon as s > (n+ν (Q))/τ ,
hence dimW ∗τ,n(Q) ≤ (n+ ν (Q))/τ for any τ > 1 + ν (Q) /n.

3.2. The lower bound. The core of the proof of Theorem 1.1 consists of
establishing the correct lower bound for dimW ∗τ,n(Q). The ideas developed
here are inspired by [9, Chap. 1 & 4] and by [6] (which is based itself on
the pioneer work of Jarník [11]).

Recall first the construction of a level set E in [0, 1]n : let
[0, 1]n = E0 ⊃ E1 ⊃ E2 ⊃ . . .

be a decreasing sequence of sets such that each Ek is a finite union of
disjoint and closed hypercubes. Assume furthermore that each hypercube of
Ek contains mk ≥ 2 hypercubes from Ek+1 and that the maximal diameter
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of the hypercubes of level k (i.e. in Ek) tends to 0 as k goes to infinity.
Then

(3.1) E :=
+∞⋂
k=0

Ek

is a totally disconnected subset of [0, 1]n — a Cantor set — referred to as
a level set.

It is possible to equip such a level set E with a measure µ supported on it
in the following way : let µ0 be the uniform distribution on E0 = [0, 1]n. If
µk−1 is a measure supported on Ek−1, let µk be the measure supported on
Ek assigning a mass of (m1 . . .mk)−1 to each of the m1 . . .mk hypercubes
of Ek, the distribution of µk on each of these hypercubes being uniform.
Denote by E the set of hypercubes of all levels used to construct E. For
any U ∈ E of level k, let µ (U) := µk (U) = (m1 . . .mk)−1. If one sets, for
any A ⊂ Rn,

(3.2) µ (A) := inf
{+∞∑
l=0

µ (Ul) : A ∩ E ⊂
+∞⋃
l=0

Ul and Ul ∈ E
}
,

then µ defines a probability measure supported on E (see [9, Chap. 1] for
details).

Such a measure often turns out to be useful when establishing a lower
bound for dimE by virtue of the well–known Mass Distribution Principle
which is now recalled (cf. for instance [9] for a proof).

Theorem 3.1 (Mass Distribution Principle). Let E be a level set as de-
scribed above supporting a probability measure µ. Assume furthermore that
for some s ≥ 0, there exist numbers c, κ > 0 such that

(3.3) µ (U) ≤ c |U |s

for all hypercubes U ∈ Rn satisfying |U | ≤ κ (recall that |U | denotes the
diameter of U).

Then
dimE ≥ s.

This principle shall now be used to compute the Hausdorff dimension of
sufficiently large level sets contained in W ∗τ,n(Q).

3.2.1. The case ν(Q) > 0. Assume first that ν (Q) > 0 and let δ ∈
(0, ν (Q) /2).

Since the sequence
(
nν(Q)−δ/ logn

)
n≥2

is increasing for n large enough,
Proposition 2.2 guarantees the existence of a subset Qδ ⊂ Q for which one
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can find a strictly increasing sequence of natural integers (nk)k≥1 satisfying

δ2nk (Qδ)− δnk (Qδ) ∼
k→+∞

n
ν(Qδ)
k

lognk
,

where ν(Qδ) = ν(Q)− δ.
In the general construction of a level set, let E0 := [0, 1]n and, for q1 ∈ Qδ,

q1 ≥ 2,
E1 =

⋃
p1∈[[1,q1−1]]n

Cτ

(
p1
q1

)
.

If Ek−1 (k ≥ 2) has been defined, let Cτ
(
pk−1
qk−1

)
be one of its connected

components contained in (0, 1)n. From Lemma 2.5, there exists an element
qk > qk−1 in the sequence (nk)k≥1 and

(3.4) mk � λn

(
Cτ

(
pk−1
qk−1

)) ∑
qk<q≤2qk

q∈S

ϕ(q)n � q
n+ν(Qδ)
k

qnτk−1 (log qk) (log log qk)n

hypercubes of new generation in Cτ
(
pk−1
qk−1

)
of the form Cτ

(
p
q

)
with qk <

q ≤ 2qk and q ∈ Qδ. Furthermore, the distance between these hypercubes
is at least

(3.5) εk := 1
2 (qk)1+ν(Qδ)/n

(by convention, ε0 := 1).
Let then Ek be defined as the union of all these hypercubes over all the

connected components of Ek−1 and let E be as in (3.1). By construction,
E ⊂ W ∗τ,n (Qδ) ⊂ W ∗τ,n(Q) and E supports a probability measure µ as
mentioned in (3.2).

Remark. The connected components of Ek (k ≥ 1) are of the form Cτ
(
p
q

)
for some p ∈ Zn and q ∈ Q and so are not closed as in the definition of a
level set. This difficulty can easily be overcome by redefining them as the
closure of the same hypercubes whose side lengths are shrunk by a factor
1− η for some η < 1/2. It is then readily checked that Proposition 2.4 and
Lemma 2.5 remain true up to an additional multiplicative constant which
will not cause any trouble at all in the rest of the proof. For the sake of
simplicity of notation, such detail will be omitted in what follows.

Letting

ρ := n+ ν (Qδ)− δ
τ

= n+ ν (Q)− 2δ
τ

,

it will now be shown by induction on k ≥ 0 that the sequence (qk)k≥0 may
be chosen in such a way that, for any hypercube U ⊂ Rn, (3.3) holds true
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with s = ρ for some real c > 0 to be defined later. The following simplifies
a great deal the method of [6].

Let U be a hypercube in Rn and let k ≥ 0 be such that εk+1 ≤ |U | < εk
(this comes down to taking κ = ε0 = 1 in Theorem 3.1). Then U inter-
sects at most one connected component of Ek and, since the measure µ is
supported on E, there is no loss of generality in assuming that it is ac-
tually contained in this connected component. Furthermore, it may also
be assumed that U intersects Ek+1 (otherwise µ (U) = 0 again from (3.2)
and the result to prove is trivial). Thus, under these conditions, it follows
from (3.2) that

µ (U) ≤ µk+1 (U) ,

where µk+1 is the uniform distribution on Ek+1.
All this shows that it is enough to prove by induction on k ≥ 0 the fol-

lowing statement :
(Hk) : For any hypercube U contained in a connected component of Ek,
having a non–empty intersection with Ek+1 and satisfying furthermore
εk+1 ≤ |U | < εk,

µk+1 (U)
|U |ρ

≤ c.

Note that for any hypercube U ⊂ [0, 1]n,

µ0 (U)
|U |ρ

= λn(U)
|U |ρ

< |U |n−ρ ≤ 1.

Therefore, it will be assumed that c ≥ 1.
Consider now an integer k ≥ 0 and a hypercube U satisfying the as-

sumptions of (Hk). Let Ck be the connected component of Ek containing
U and let NU denote the number of connected components of Ek+1 having
a non–empty intersection with U . By assumption, NU ≥ 1. The conclusion
of (Hk) is proved by distinguishing two subcases.
∗First subcase : |U | ≥ (qk+1)−1/2 . Under this assumption, if q1 is chosen
large enough so that Lemma 2.3 applies with ε = 1/2, then, for all k ≥ 0,

(3.6) NU � |U |n
∑

qk+1<q≤2qk+1
q∈Qδ

ϕ(q)n,
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hence
µk+1 (U)
|U |ρ

≤ µk+1 (Ck)
|U |ρ

= µk (Ck)
mk+1

1
|U |ρ

≤ µk (Ck)
mk+1

NU

|U |ρ

�
(3.4)& (3.6)

µk (Ck)
|U |ρ

|U |n

|Ck|n

 ∑
qk+1<q≤2qk+1

q∈Qδ

ϕ(q)n


 ∑
qk+1<q≤2qk+1

q∈Qδ

ϕ(q)n


−1

= µk (Ck)
|Ck|ρ

( |U |
|Ck|

)n−ρ
≤ µk (Ck)
|Ck|ρ

·

If k = 0, this means that there exists a constant K ≥ 1 such that

µ1 (U)
|U |ρ

≤ K
µ0 (C0)
|C0|ρ

,

where C0 = [0, 1]n. Choosing c bigger than this last quantity proves the
result in this case.

If k ≥ 1, then, denoting by Ck−1 the connected component of Ek−1
containing Ck,

µk (Ck)
|Ck|ρ

= µk−1 (Ck−1)
mk |Ck|ρ

�
µk−1 (Ck−1) qnτk−1 (log qk) (log log qk)n

qδk
,

the last inequality following from (3.4) and the fact that |Ck| � q−τk . Choos-
ing qk large enough in the previous step, this quantity can be made arbi-
trarily small.
∗ Second subcase : |U | ≤ (qk+1)−1/2 . By assumption, εk+1 ≤ |U |.
Since two connected components of Ek+1 are distant from at least εk+1,
inequality (3.5) implies that

NU � |U |n (qk+1)n+ν(Qδ) .

Therefore, denoting by Ck+1 any connected component of Ek+1,

µk+1 (U)
|U |ρ

≤ µk+1 (Ck+1)NU

|U |ρ
� µk (Ck)

mk+1
q
n+ν(Qδ)
k+1 q

−(n−ρ)/2
k+1

�
(3.4)

µk (Ck) qnτk (log qk+1) (log log qk+1)n

q
(n−ρ)/2
k+1

(for the second inequality, we used the fact that Ck+1 ⊂ Ck). Choosing
qk+1 large enough, this quantity can be made arbitrarily small.
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∗ Conclusion : From the Mass Distribution Principle (Theorem 3.1), for
any δ ∈ (0, ν(Q) /2),

dimW ∗τ,n(Q) ≥ dimE ≥ n+ ν(Q)− 2δ
τ

·

Letting δ tend to zero completes the proof of Theorem 1.1 in the case
ν(Q) > 0.

3.2.2. The case ν(Q) = 0. The proof in the case ν(Q) = 0 is a simplified
version of the previous one. We only mention here the changes to make in
the latter : in the construction of the level set E, assume that Ek−1 (k ≥ 2)
has been defined and let Cτ

(
pk−1
qk−1

)
be one of its connected components. For

qk > qk−1 large enough, qk ∈ Q, Proposition 2.4 guarantees the existence
of at least

mk � ϕ (qk)n λn
(
Cτ

(
pk−1
qk−1

))
�

(2.13)

qnk
qnτk−1 (log log qk)n

hypercubes of new generation in Cτ
(
pk−1
qk−1

)
of the form Cτ

(
p
qk

)
(p ∈ Zn)

which are furthermore at least

εk := 1
2qnk

apart (as should be obvious). The set Ek is then defined as the union of all
these hypercubes over all the connected components of Ek−1.

The level set E obtained this way may again be equipped with a prob-
ability measure supported on it. Given δ > 0, the same argumentation as
in the case ν(Q) > 0 shows that the sequence (qk)k≥0 may be chosen in
such a way that the Mass Distribution Principle (Theorem 3.1) leads to the
estimate

(3.7) dimE ≥ ρ := n− 2δ
τ
·

It should however be mentioned that inequality (3.6) must now be replaced
with the following one :

NU � |U |n ϕ (qk+1)n .

Letting δ tend to zero in (3.7) completes the proof of Theorem 1.1 in
this case also.
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4. A p–adic version of the main Theorem

Let p be an arbitrary but fixed prime.
An analogue of Theorem 1.1 is now studied in Qp. Consider first the

p–adic version of the set of τ–well approximable numbers (τ > 0) in Qp,
namely

(4.1) Wτ,n(p) :=
{
x ∈ Qn

p :
|qx− r|p < max (|r| , q)−τ

for i.m. (r, q) ∈ Zn × N

}
.

Here, |x|p denotes the supremum of the p–adic norms of the components
of x ∈ Qn

p .
Note that, unlike in (1.1), the approximating function depends now both

on |r| and q rather than simply q. This is due to the fact that, in the p–adic
setup, given x ∈ Zp, a quantity of the form |qx− r|p can be made arbitrarily
small by taking r to be a rational integer with the appropriate number of
leading terms taken from the p–adic expansion of qx. Thus the set of x ∈ Qn

p

such that |qx− r|p < q−τ for infinitely many (r, q) ∈ Zn × N contains the
whole of Znp and has therefore full Hausdorff dimension regardless of the
value of τ > 0.

Another difference with (1.1) is that, in the p–adic setup, there is no
“normalizing” factor q on the right–hand side of |qx− r|p. This is due to
the fact that the p–adic norm is an ultra metric. For more details, the
limsup set Wτ,n(p) is studied in full generality in [3].

Let W ∗τ,n(p) be the liminf set obtained from (4.1) by imposing the con-
straint that all the integers q should be divisible by p, namely

(4.2) W ∗τ,n(p) :=

x ∈ Qn
p :

|qx− r|p < max (|r| , q)−τ

for i.m. (r, q) ∈ Zn × pN
and f.m. (r, q) 6∈ Zn × pN

 ,
where f.m. stands for finitely many. The set W ∗τ,n(p) may be seen as an
analogue of at least two different real liminf sets as introduced in (1.3) : on
the one hand, it is defined as the set of elements in Qn

p which are τ–well
approximable only by integer vectors (r, q) such that q is a multiple of the
integer p provided it is large enough. On the other, since the the gcd of two
p–adic integers is the highest power of p dividing both of them (it is defined
up to an invertible element), W ∗τ,n(p) is also the set of all elements in Qn

p

τ–well approximable only by integer vectors (r, q) such that, provided it is
large enough, q is not coprime to a given non unit s ∈ Zp.

The structure of the liminf setW ∗τ,n(p) exhibits very different behaviours
depending on whether it is restricted to Zp or not.
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Theorem 4.1. If τ > 1 + 1/n, then

dimW ∗τ,n(p) = n+ 1
τ
·

Furthermore, W ∗τ,n(p) ∩ Znp = ∅ as soon as τ ≥ 1.

Thus, the situation is quite original : the liminf set W ∗τ,n(p) has the same
Hausdorff dimension as the limsup set Wτ,n(p) when τ > 1 + 1/n (cf. [3,
p. 82]) but it contains no p–adic integers. This is in contrast with the fact
that, when considering the limsup set Wτ,n(p) from a metric point of view,
it generally suffices to study its intersection with Znp as the space Qn

p can
be written as a countable union of translates of Znp .

The proof of Theorem (4.1) rests on the following lemma which uses
Definition 2.2.

Lemma 4.2. If τ ≥ 1, then the limsup set Wτ,n(p) is also the set

Wτ,n(p) =
{
x ∈ Qn

p :
|qx− r|p < max (|r| , q)−τ

for i.m. p–primitive (r, q) ∈ Zn × N

}
.

Proof. Given x ∈ Wτ,n(p), let (uk := (rk, qk))k≥1 be the sequence strictly
increasing in qk of elements of Zn × N satisfying
(4.3) |qkx− rk|p < max (|rk| , qk)−τ .

Note that if k0 and m are positive integers, muk0 satisfies (4.3) if, and
only if,

1 ≤
(τ≥1)

|m|p |m|
τ < |qk0x− rk0 |

−1
p max (qk0 , |rk0 |)

−τ .

The first of these inequalities shows that uk0 is a multiple of a p–primitive
vector ũk0 and the second one proves that the number of multiples of uk0
satisfying (4.3) is finite. �

Corollary 4.3. Assume that τ ≥ 1. Then
W ∗τ,n(p) ∩ Znp = ∅.

Proof. Let x = (x1, . . . , xn) ∈ W ∗τ,n(p) ∩ Znp and let (r, q) ∈ Zn × N be a
vector of approximation of x, i.e. a vector satisfying (4.3). From Lemma 4.2,
(r, q) may be assumed to be p–primitive which, from the definition of the
liminf set W ∗τ,n(p) and provided that q is large enough, implies on the one
hand that p|q and on the other that |ri0 |p = 1 for some component ri0 ∈ Z
of the vector r := (r1, . . . , rn) ∈ Zn. In particular,
(4.4) |qxi0 − ri0 |p < max (q, |ri0 |)

−τ .

Now if 1 = |ri0 |p > |qxi0 |p, (4.4) implies that |qxi0 − ri0 |p = |ri0 |p = 1 <
|ri0 |

−τ
p , which is impossible. If 1 = |ri0 |p < |qxi0 |p, then it follows from (4.4)
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that 1 < |qxi0 |p = |qxi0 − ri0 |p < q−τ , which cannot happen. Finally, if
|ri0 |p = 1 = |qxi0 |p, then, since p|q, 1 > |q|p = |xi0 |

−1
p ≥

(x0∈Zp)
1, which

gives again a contradiction. This completes the proof of the corollary. �

Completion of the proof of Theorem 4.1. From the proof of Corollary 4.3,
it also follows that if (r, q) is a p–primitive vector of approximation of
x = (x1, · · · , xn) ∈W ∗τ,n(p) such that p|q and p does not divide a component
ri0 ∈ Z of r, then, necessarily, |ri0 |p = 1 = |qxi0 |p. This implies in particular
that xi0 ∈ Qp\Zp. Note also that the condition |qxi0 |p = 1 alone is sufficient
to guarantee that |ri0 |p = 1 : indeed, if one had |ri0 |p < 1 = |qxi0 |p, then
one would also have |qxi0 |p = |qxi0 − ri0 |p = 1 < q−τ , which cannot be.

Thus, each p–primitive vector of approximation (r, q) of x ∈ W ∗τ,n(p)
determines at least one component xi0 of x such that xi0 ∈ Qp\Zp. Since
there are only finitely many components, it follows that

W ∗τ,n(p) =

x ∈ Qn
p :

∃i0 ∈ [[1, n]], xi0 ∈ Qp\Zp ,

and
|qx− r|p < max (|r| , q)−τ

|qxi0 |p = |ri0 |p = 1
i.o.

 ,
where i.o. stands for infinitely often. Therefore,

W ∗τ,n(p) =
n⋃

i0=1

x ∈ Qn
p :

xi0 ∈ Qp\Zp ,

and
|qx− r|p < max (|r| , q)−τ

|qxi0 |p = 1
i.o.

 .
For any f ∈ N, denote by Wτ,n (p, i0, f) the set

Wτ,n (p, i0, f) :=

x ∈ Qn
p :

|xi0 |p = pf

and
|qx− r|p < max (|r| , q)−τ

|qxi0 |p = 1
i.o.

 .
Then

W ∗τ,n(p) =
n⋃

i0=1

+∞⋃
f=1

Wτ,n (p, i0, f)

and it suffices to establish the dimensional result in Theorem 4.1 for any of
the sets Wτ,n (p, i0, f).

Fix f ≥ 1 and i0 ∈ [[1, n]]. Given (r, q) ∈ Zn×N, let ν(r, q) := max (q, |r|)
and let

B (x, ρ) :=
{
a ∈ Qn

p : |x− a|p < ρ
}



482 Faustin Adiceam

denote the open ball of radius ρ > 0 centered at x ∈ Qn
p . It should then be

clear that a cover for Wτ,n (p, i0, f) is given by
+∞⋂
N=1

⋃
ν>N

⋃
ν(r,q)∈Aν(i0,f)

B

(
r

q
, ν−τpf

)
,

where

Aν (i0, f) :=
{

(r, q) ∈ Zn × N : |q|p = p−f , |ri0 |p = 1 and ν(r, q) = ν
}
.

Furthermore, it is readily checked that #Aν (i0, f) � vn, where the implicit
constants depend on n and p. Hence, for any N > 0,

Hs(Wτ,n (p, i0, f))) �
∑
ν>N

∑
ν(r,q)∈Aν(i0,f)

ν−τs �
∑
ν>N

ν−τs+n,

which is finite as soon as s > (n + 1)/τ , so that dim (Wτ,n (p, i0, f)) ≤
(n+ 1)/τ .

The proof that dim (Wτ,n (p, i0, f)) ≥ (n + 1)/τ is very similar to the
corresponding result for the limsup set Wτ,n(p) as defined in (4.1) and will
therefore not be given : this is due to the fact that Wτ,n (p, i0, f) is itself a
limsup set. For further details, the reader is referred to [1] and [3].

This completes the proof of Theorem 4.1. �
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