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Galois action on special theta values

par Paloma BENGOECHEA

Résumé. On associe à un caractère de Dirichlet χ de conduc-
teur N la série thêta θχ(τ) =

∑
n∈Z n

ε χ(n) eπin2τ/N (où ε = 0 si
χ est pair et ε = 1 sinon). La valeur de la série en son point de
symétrie sous la transformation τ 7→ −1/τ est liée, par l’égalité
θχ(i) = W (χ)θχ̄(i), à la constante de l’équation fonctionnelle de la
série L de χ. Elle peut être ainsi utilisée pour calculer efficacement
la constante de l’équation fonctionnelle si celle-ci ne s’annule pas.
En utilisant la loi de réciprocité de Shimura, on calcule l’action
de Galois sur ces valeurs spéciales de fonctions thêta, avec N im-
pair, normalisées par la fonction êta de Dedekind. On démontre
des résultats expérimentaux de Cohen et Zagier et on obtient un
résultat partiel sur la non-annulation de ces valeurs spéciales avec
N premier.

Abstract. For a primitive Dirichlet character χ of conductor
N set θχ(τ) =

∑
n∈Z n

ε χ(n) eπin2τ/N (where ε = 0 for even χ,
ε = 1 for odd χ) the associated theta series. Its value at its point
of symmetry under the modular transformation τ 7→ −1/τ is re-
lated by θχ(i) = W (χ)θχ̄(i) to the root number of the L-series
of χ and hence can be used to calculate the latter quickly if it
does not vanish. Using Shimura’s reciprocity law, we calculate the
Galois action on these special values of theta functions with odd
N normalised by the Dedekind eta function. As a consequence,
we prove some experimental results of Cohen and Zagier and we
deduce a partial result on the non-vanishing of these special theta
values with prime N .

1. Introduction
Let χ be a primitive Dirichlet character with conductor N and order

m. The theta series associated to the character χ is defined on the upper
half-plane H by

(1.1) θχ(τ) =
∑
n∈Z

nε χ(n) qn2/2N (q = e(τ), τ ∈ H),
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where ε equals 0 if χ is even, or 1 if χ is odd. (Here and in the sequel
we use the notation e(x) = e2iπx for x ∈ C.) The theta series satisfies the
functional equation

(1.2) θχ̄(−1/τ) = W (χ) (τ/i)1/2+ε θχ(τ),

whereW (χ) is the algebraic number of module 1 called root number, defined
in an explicit way as the normalized Gauss sum associated to χ

(1.3) W (χ) = G(χ)/
√
N, G(χ) =

∑
nmodN

χ(n) e(n/N).

From equation (1.2) one deduces the analytic continuation and the func-
tional equation of the L-series L(s, χ) =

∑
n∈Z χ(n)n−s. For a given value s,

we cannot compute L(s, χ) with a big precision directly from its definition
because it is very slowly convergent or even not convergent at all. However,
we can use its approximative functional equation which arises from trun-
cating the series; in this case, we can compute L(s, χ) in O(

√
N) time if

the value of W (χ) is known. From definition (1.3), we compute W (χ) in
O(N) steps. In fact we can do better: considering equation (1.2) with the
value τ = i, we deduce the identity

W (χ) = θχ̄(i)
θχ(i) ,

from which we compute W (χ) in O(
√
N) steps when θχ(i) 6= 0. A natural

question arises then: does θχ(i) vanish for any χ?
Louboutin proved in [8] that there exists a constant c > 0 such that, for

every prime p, at least cp/ log p of the (p − 1)/2 values θχ(i), where χ is
odd with prime conductor p, do not vanish. Cohen and Zagier described
explicit computational results in [1] showing that θχ(i) 6= 0 for the first 500
millions of characters χ with N ≤ 52100, except for exactly (up to complex
conjugation) two even characters with respective conductor 300 and 600.

Moreover, they defined the functions

Aχ(τ) = θχ(τ/N)
η(τ/N)1+2ε , Bχ(τ) = |Aχ(τ)|2 = Aχ(τ)Aχ̄(τ),

where η is the Dedekind eta function defined by

η(τ) = q1/24
∞∏

n = 1
(1− qn),

and studied the algebraic numbers Aχ(ip) and Bχ(ip) when p is prime and
it is the conductor of χ. Indeed, since the functions above are modular func-
tions, they are algebraic on the points of complex multiplication. Because
of the algebraicity, the numbers Bχ(iN) are much easier to study than the
values θχ(i). Also is the product of the numbers Bχ(iN) for all characters



Galois action on special theta values 349

χ with fixed conductor N and fixed order m (up to complex conjugation).
We denote these products by

N (N,m) =
∏

order(χ)=m
χ≈χ̄

Bχ(iN).

Cohen and Zagier speculated that the values N (p,m)2 always belong
to Q(i, j(ip)). Moreover, if we denote by N (p,m)d the smallest power of
N (p,m) belonging to Q(i, j(ip)), then the experimental results led Cohen
and Zagier to conjecture that, for the special case of the trivial character,
d = 1 if p ≡ 1 (mod 4) and d = 2 if p ≡ 3 (mod 4); for Legendre’s character
(m = 2), it seems that d = 1.

Concerning the numbers Aχ(ip), Cohen and Zagier observed that the
degree drastically decreases for some powers. If we denote by ζm the m-
th root of unity e2πim and σs the element of Gal(Q(i, j(ip), ζm)/Q(i, j(ip))
sending ζm to ζsm, they speculated Aχ(ip)k ∈ Q(j(ip), ζm) for some k ∈ N
and Aχs(ip)k = σs(Aχ(ip)k) for all s ∈ (Z/mZ)∗.

We are able to calculate the Galois action on these algebraic numbers
and, using class field theory and Shimura’s reciprocity law, we prove Cohen
and Zagier’s experimental results mentioned above and the generalizations
to odd conductors. Concerning the non-vanishing of the special theta values,
we prove θχ(i) 6= 0 for all non-quadratic χ with prime and “big” conductor
p = 2l + 1, where l is also prime (so l is a Sophie Germain prime).

2. Modularity
Throughout the paper we denote by χ a primitive character with odd

conductor N and order m.
In this section we explicit the action of the group Γθ ∩ Γ0(N) on θχ(τ).

We can decompose the theta series in the following way:

(2.1) θχ(τ) =
∑

hmodN
χ(h) θ(ε)

N,h(τ),

where the coefficients χ(h) are m-th roots of unity and

(2.2) θ
(ε)
N,h(τ) =

∑
n∈Z

n≡h (mod N)

nε qn
2/2N .

We define the group

Γθ =
{(

a b
c d

)
∈ SL(2,Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
or
(

0 1
1 0

)
(mod 2)

}
.

In order to compute the action of Γθ ∩ Γ0(N) on the functions θ(ε)
N,h(τ),

we use Proposition 10.4 in [6], namely
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Proposition 2.1 (Iwaniec). We have

(2.3) θ
(ε)
N,h(−1/τ) = (i/N)1/2 (−τ)1/2+ε ∑

lmodN
e(hl/N) θ(ε)

N,l(τ).

Proposition 2.2. For γ =
(
a b
c d

)
∈ Γθ ∩ Γ0(N), we have

(2.4) θ
(ε)
N,h(γ(τ)) = e

(a2bdh2

2N
)
υ(γ,N) (cτ + d)1/2+ε θ

(ε)
N,ah(τ),

with

(2.5) υ(γ,N) =


ζbN8

(
d

|bN |

)
if d is even,

ζd−1
8

(−bN
d

)
if d is odd,

where
( ·
·
)
is the Kronecker symbol.

Proof. First we suppose d > 0. We write

γ′ =
(
a b
c d

)(
0 −1
1 0

)
=
(
b −a
d −c

)
.

Since dγ′(τ) = b− 1
dτ − c

, we have

(2.6) θ
(ε)
N,h(γ′(τ)) =

∑
n≡h (mod N)

nε e
( n2

2N
( b
d
− 1
d(dτ − c)

))
.

But e(bn2/2dN) only depends on n (mod dN). Indeed, if b ≡ 0 (mod 2),
then this assertion is obvious. Otherwise, d ≡ 0 (mod 2) and for n = kdN+
r with 1 ≤ r ≤ dN , k ∈ Z, we have n2 ≡ r2 (mod 2dN).

Hence we can split the sum (2.6) into classes modulo dN :

θ
(ε)
N,h(γ′(τ)) =

∑
mmod dN

m≡h (mod N)

e
( bm2

2dN
) ∑
n≡m (mod dN)

nε e
( n2

2dN
−1

dτ − c

)
.

The second sum is the theta function associated (in the sense (2.2)) to the
conductor dN and residual class m (mod dN) evaluated on −1

dτ − c
. By

applying Proposition 2.1 to this sum, we obtain( i

dN

)1/2
(c− dτ)1/2+ε ∑

lmod dN
e
( lm
dN

) ∑
n≡l (mod dN)

nε e
( n2

2dN (dτ − c)
)
.
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If d ≡ 0 (mod 2), then n2 ≡ l2 (mod 2dN). Otherwise, c ≡ 0 (mod 2). In
both situations, cn2 ≡ cl2 (mod 2dN). Thus
(2.7)

θ
(ε)
N,h(γ′(τ)) =

( i

dN

)1/2
(c− dτ)1/2+ε ∑

lmod dN
ϕ(h, l)

∑
n≡l (mod dN)

nεe
( n2

2N τ
)
,

where
ϕ(h, l) =

∑
mmod dN

m≡h (mod N)

e((bm2 + 2lm− cl2)/2dN).

We rewrite ϕ(h, l) after changing the variable m by m+ cl:

ϕ(h, l) =
∑

mmod dN
m≡h−cl (mod N)

e((b(m+ cl)2 + 2l(m+ cl)− cl2)/2dN)

=
∑

mmod dN
m≡h−cl (mod N)

e((bm2 + 2adlm+ acdl2)/2dN)

since ad− bc = 1. In the term 2adlm, we replace m by h− cl (mod N):

(2.8) ϕ(h, l) = e(2ahl − acl2/2N)ϕ(h− cl, 0).

This expression makes possible to replace in (2.7) l (mod dN) by l (mod N).
We obtain

(2.9) θ
(ε)
N,h(γ′(τ)) =

( i

dN

)1/2
(c− dτ)1/2+ε ∑

lmodN
ϕ(h, l) θ(ε)

N,l(τ).

Replacing τ by −1/τ and applying Proposition 2.1 to each θ(ε)
N,l(−1/τ),

we get

θ
(ε)
N,h(γ(τ)) = (−1)ε

d1/2N
(cτ + d)1/2+ε ∑

lmodN
φ(h, l) θ(ε)

N,l(τ),

where
φ(h, l) =

∑
gmodN

ϕ(h, g) e(gl/N).

Since c ≡ 0 (mod N) and ac ≡ 0 (mod 2), the formula (2.8) becomes

ϕ(h, l) = e(ahl/N)ϕ(h, 0).

Hence

φ(h, l) = ϕ(h, 0)
∑

gmodN
e(g(ah+ l)/N)

=
{
ϕ(h, 0)N if l ≡ −ah (mod N)
0 otherwise.
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Therefore

θ
(ε)
N,h(γ(τ)) = (−1)ε

d1/2 ϕ(h, 0) (cτ + d)1/2+ε θ
(ε)
N,−ah(τ)

= ϕ(h, 0)
d1/2 (cτ + d)1/2+ε θ

(ε)
N,ah(τ).

We still have to calculate

ϕ(h, 0) =
∑

mmod dN
m≡h (mod N)

e
( bm2

2dN
)
.

Since ad ≡ 1 (mod N), we can write m = adh+ nN with 1 ≤ n ≤ d. Thus
we get

ϕ(h, 0) = e
(a2bdh2

2N
)
SbN,d,

where
SbN,d =

∑
1≤n≤d

e
(bNn2

2d
)

is a well known Gauss sum, calculated for example in [10]:

SbN,d =


d1/2 ζbN8

(
d

|bN |

)
if d is even,

d1/2 ζd−1
8

(−bN
d

)
if d is odd.

Finally we obtain (2.4) for d > 0. When d < 0, we can change γ by −γ such
that the left-hand term of the equality (2.4) does not vary. It is easily shown
that the right-hand term does not vary either, i.e, υ(−γ,N)i = υ(γ,N). �

Meyer’s formula ([9]) gives, for γ =
(
a b
c d

)
∈ SL(2,Z), some functions

ε1(γ) and ε2(γ) such that

(2.10) η(γ(τ)) = ε1(γ) ε2(γ) (cτ + d)1/2 η(τ).
We can fix c > 0 or c = 0 and d > 0, changing γ by −γ if necessary; then
Im(cτ +d) ≥ 0 and we choose Re(cτ +d)

1
2 ≥ 0. If c > 0, we write c = 2r · c0

with c0 odd. If c = 0, we write c0 = r = 1. Then we have

ε1(γ) =
(
a

c0

)
and ε2(γ) = ζ

ab+cd(1−a2)−ca+3c0(a−1)+r 3
2 (a2−1)

24 .

Proposition 2.3. Let w = 24N
(12, N) . The functions

θ
(ε)
N,h(τ)

η1+2ε(τ) are Γ(w)-

invariant and the functions
θ

(ε)
N,h(τ/N)

η1+2ε(τ/N) are Γ(wN)-invariant.
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Proof. For γ =
(
a b
c d

)
∈ Γ(w), the multiplicative system υ(γ,N) in Propo-

sition 2.2 becomes simpler (see [6] Proposition 10.6): υ(γ,N) = ε1(γ). The
same happens with the second Meyer’s function: ε2(γ) = 1. Hence the func-
tions θ(ε)

N,h(τ)/η1+2ε(τ) are Γ(w)-invariant.

Let γ =
(
a b
c d

)
be an element in Γ(wN). We write

γ′ =
(

1 0
0 N

)(
a b
c d

)(
1 0
0 N

)−1
=
(
a b

N
cN d

)
,

such that γ′ ∈ Γ(w) and

θ
(ε)
N,h(γ(τ)/N)

η1+2ε(γ(τ)/N) =
θ

(ε)
N,h(γ′(τ/N))

η1+2ε(γ′(τ/N)) =
θ

(ε)
N,h(τ/N)

η1+2ε(τ/N) . �

3. Shimura’s reciprocity law
In this section we follow the interpretation of Shimura’s reciprocity law

(see [11]) by Gee and Stevenhagen (see [5], [4], [12]). Let K be an imaginary
quadratic field and O an order in K with basis [α, 1]. The first fundamental
theorem of complex multiplication states that the j-invariant j(α) is an
algebraic integer and K(j(α)) is the ring class field HO of O (see, for
example, [2]). For M ≥ 1, the field FM of modular functions with level
M is defined as the field of meromorphic functions on H ∪ {∞}, invariant
by Γ(M) and whose coefficients in the Fourier expansion in the variable
q1/M belong to the field Q(ζM ). It follows from the second fundamental
theorem of complex multiplication, stated for example in [2] and proved
in [7] and [3], that for a function f belonging to the field FM , the value
f(α) is an element of the ray class field HM,O with conductor M over the
ring class field HO.

Shimura’s reciprocity law gives the action of the group Gal(HM,O/HO)
on f(α) combining Artin’s reciprocity law arisen from class field theory,
and Galois theory on FM . Artin’s reciprocity law gives the exact sequence

O∗ −→ (O/MO)∗ A−→ Gal(HM,O/HO) −→ 1,

where A is the Artin map. The map

GL2(Z/MZ) −→ Gal(FM/F1)
µ = ( 1 0

0 det(µ) )γ 7−→ (
∑
ckq

k/M 7→ (
∑
σdet(µ)(ck)qk/M )|0γ),

where γ ∈ SL2(Z/MZ) and σdet(µ) ∈ Aut(Q(ζM )) sends ζM to ζdet(µ)
M , is

surjective. When D < −4, its kernel is {±1}.
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Then we have the following diagram, where all the sequences are exact:

O∗ −→ (O/MO)∗ A−→ Gal(HM,O/HO) −→ 1
↓ gα

{±1} −→ GL2(Z/MZ) −→ Gal(FM/F1) −→ 1.

The connection map gα sends x ∈ (O/MO)∗ to the matrix corresponding to
the multiplication by x with respect to the basis [α, 1] (gα(x)( α1 ) = ( xαx )).
If X2 +Bx+C is the irreducible polynomial of α over Q, we can explicitely
describe gα by

gα : (O/MO)∗ −→ GL2(Z/MZ)

x = sα+ t 7−→
(
t−Bs −Cs
s t

)
.

The map gα gives an action of (O/MO)∗ on FM and the reciprocity relation:
for x ∈ (O/MO)∗,

(f(α))x = (fgα(x−1))(α).
Moreover, denoting by F =

⋃
M≥1 FM the modular field, if the extension

F/Q(f) is Galois, then we have the fundamental equivalence:

(f(α))x = f(α) ⇐⇒ fgα(x) = f.

We denote by

WM,α =
{(

t−Bs −Cs
s t

)
∈ GL2(Z/MZ) | t, s ∈ Z/MZ

}
the image of (O/MO)∗ by gα when D < −4. The algebraic number f(α)
belongs to HO if f is invariant by the action of WM,α/ {±1}.

4. Galois action, proofs of the experimental results
Let χ be a primitive character with odd conductor N and order m.

By Proposition 2.3, the functions θ
(ε)
N,h

(τ)
η1+2ε(τ) belong to the field Fw, where

w = 24
(12,N) . Hence we deduce (see decomposition (2.1)) that the numbers

Aχ(iN) belong to the field Hw,OK (ζm), where OK is the ring of integers
of the field K = Q(i). In this section we use Shimura’s reciprocity law to
obtain more accurated statements about the algebraicity of the numbers
Aχ(iN) and Bχ(iN).

Let
v = χ(−1), M = 24mN2,

and n = m ifm is even and 2m otherwise. We consider the order O = Z[iN ]
in K = Q(i), and its ring class field HO = K(j(iN)).
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By Proposition 2.3, we know that the functions Aχ(τ) and Bχ(τ) belong
to the field FM . Following the notations of section 3,

WM,iN =
{(

t −N2s
s t

)
∈ GL2(Z/MZ) | t, s ∈ Z/MZ

}
.

Proposition 4.1. For µ =
(
t −N2s
s t

)
∈WM,iN , we have

(Bχ|µ)(τ) = (−1)
N−v

2 (t−1)Bχdet(µ)(τ)

and
(Aχ|µ)(τ)n = (−1)

(N−v)n
2 (t−1)Aχdet(µ)(τ)n.

Proof. Let µ =
(
t −N2s
s t

)
be an element in WM,iN . We write

µ =
(

1 0
0 det(µ)

)(
t −N2s

s(det(µ))−1 t(det(µ))−1

)
.

The first matrix transforms Bχ(τ) into Bχdet(µ)(τ). To explicit the action

of the second matrix we choose γ =
(
a b
c d

)
∈ SL(2,Z) a representant of(

t −N2s
s(det(µ))−1 t(det(µ))−1

)
∈ SL2(Z/MZ) with c > 0, or c = 0 and d > 0.

Since

(4.1) a ≡ ddet(µ) (mod M), b ≡ −cN2 det(µ) (mod M)

and N is odd, we have γ ∈ Γθ ∩ Γ0(N2).
We write

(4.2) γ′ =
(

1 0
0 N

)(
a b
c d

)(
1 0
0 N

)−1
=
(
a b

N
cN d

)
such that γ′ satisfies the conditions of Proposition 2.2 and

(4.3) Bχ(γ(τ)) =
θχ
(
γ′
( τ
N

))
θχ̄
(
γ′
( τ
N

))
η
(
γ′
( τ
N

))2(1+2ε) .

Meyer’s formula (2.10) gives

η
(
γ′
( τ
N

))2
= ε1(γ′)2 ε2(γ′)2 (cτ + d) η

( τ
N

)2

with ε1(γ′)2 = 1 and ε2(γ′)2 = ζ
a b
N

+cdN(1−a2)−acN+3c0N(a−1)
12 , where c =

2rc0 with c0 odd if c > 0, and c0 = 1 if c = 0.
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On the other hand, Proposition 2.2 gives the expression for the numerator
of (4.3):
(4.4)
υ(γ′, N)2 (cτ + d)2+4ε ∑

h1,h2 modN
χ(a−1h1) χ̄(a−1h2) θ(ε)

N,h1

( τ
N

)
θ

(ε)
N,h2

( τ
N

)
,

where

υ(γ′, N) = υ(γ, 1) =


ζb8

(
d

|b|

)
if d is even

ζd−1
8

(−b
d

)
if d is odd.

Since χ(t−1h1)χ̄(t−1h2) = χ(h1)χ̄(h2), the numerator of (4.3) becomes

θχ
(
γ′
( τ
N

))
θχ̄
(
γ′
( τ
N

))
= υ(γ, 1)2 (cτ + d)1+2ε θχ

( τ
N

)
θχ̄
( τ
N

)
.

Hence
Bχ(γ(τ)) = υ(γ, 1)2

ε2(γ′)2(1+2ε) Bχ(τ).

We use the congruences (4.1) to calculate υ(γ, 1)2/ε2(γ′)2(1+2ε).
On the one hand, cdN(1 − a2) ≡ 0 (mod 3) because either a2 ≡ 1

(mod 3), either a ≡ 0 (mod 3), in which case d ≡ 0 (mod 3).
On the other hand, a b

N − acN ≡ −acN(1 + det(µ)) ≡ 0 (mod 12). The
first congruence is clear, also is the second modulo 4. For the second con-
gruence modulo 3, either det(µ) ≡ −1 (mod 3), either det(µ) ≡ 1 (mod 3),
in which case a ≡ d (mod 3), so ad − bc = 1 implies bc ≡ 0 (mod 3), and
thus c ≡ 0 (mod 3) or N ≡ 0 (mod 3). Hence

(4.5) ε2(γ′)2 = ζ
3cdN(1−a2)+c0N(a−1)
4 .

We distinguish two cases.
(1) If d is odd, then, the congruences (4.1) and the equation ad− bc = 1

imply that ad ≡ 1 (mod 4), so the exponent of ζ4 in (4.5) becomes
c0N(a− 1) ≡ c0N(d− 1) (mod 4).

Therefore
υ(γ, 1)2

ε2(γ′)2(1+2ε) = ζd−1
4

ζ
c0N(d−1)(1+2ε)
4

= ζ
(d−1)(1−c0N(1+2ε))
4 = 1.

(2) If d is even, then, because of congruences (4.1), the exponent of ζ4
in (4.5) becomes

3cdN + cN(a− 1) ≡ cN(3d+ a− 1) ≡ −cN (mod 4),
so

υ(γ, 1)2

ε2(γ′)2(1+2ε) = ζb4

ζ
−cN(1+2ε)
4

= ζ
c((1+2ε)N−1)
4 = (−1)

N−v
2 .
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The second equality can be deduced from the congruences b ≡ c ≡ 1
(mod 2) and bc ≡ −1 (mod 4).

Thus
(Bχ|µ)(τ) = (−1)

N−v
2 (t−1)Bχdet(µ)(τ).

We can explicit the action of WM,iN on Aχ(τ)n in a similar way. The
expression (4.4) becomes in this case

υ(γ′, N)n (cτ + d)n/2+nε ∑
h1,...,hn modN

n∏
j=1

χ(a−1hj) θ(ε)
N,hj

( τ
N

)
,

with υ(γ′, N) = υ(γ, 1). Since χ(a−1)n = 1, following the previous nota-
tions (4.2), we have

θχ
(
γ′
( τ
N

))n
= υ(γ, 1)n (cτ + d)n/2+nε θχ

( τ
N

)n
,

so

Aχ(γ(τ))n = υ(γ, 1)n

(ε1(γ′)ε2(γ′))(1+2ε)n Aχ(τ)n = (−1)
(N−v)n

2 (d−1)Aχ(τ)n

and

(Aχ|µ)(τ)n = (−1)
(N−v)n

2 (t−1)Aχdet(µ)(τ)n. �

From now on we suppose N = p > 2 is prime and we denote by X(p,m)
the set of characters with conductor p and order m up to complex conju-
gation. All characters with fixed prime conductor and fixed order have the
same parity; as before v = 1 if they are even and v = −1 if they are odd.

Theorem 4.2. The following sets are orbits for the action of the group
Gal(HM,O/HO) on the field HM,O:

(i)
{
Bχ(ip)2 | χ ∈ X(p,m)

}
,

(ii)
{
Bχ(ip) | χ ∈ X(p,m)

}
if p ≡ v (mod 4),

(iii)
{
Aχ(ip)2n, Aχ̄(ip)2n | χ ∈ X(p,m)

}
,

(iv)
{
Aχ(ip)n, Aχ̄(ip)n | χ∈X(p,m)

}
ifm≡ 0(mod 4) or p≡ v (mod 4).

The proof follows from the two lemmas below.

Lemma 4.3. Given χ ∈ X(p,m), we have
X(p,m) = {χσ, χ̄σ | σ ∈ (Z/mZ)∗} .

Proof. The inclusion of the right-hand set into X(p,m) is clear. We should
see that given χ and χ′ in X(p,m), the character χ′ is in the (Z/mZ)∗-orbit
of χ.

The group (Z/pZ)∗ is cyclic; let h be a generator. The groups Im(χ)
and Im(χ′) are contained in the group of the m-th roots of unity, which
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is also cyclic and from which χ(h) and χ′(h) are generators. We write
χ′(h) = χ(h)σ with σ ∈ (Z/mZ)∗.

For hσ′ ∈ (Z/pZ)∗, we have

χ′(hσ′) = χ′(h)σ′ = χ(h)σσ′ = χ(hσ′)σ,

so χ′ = χσ. �

Lemma 4.4. The following sets equality is satisfied:

(4.6) (Z/mZ)∗ =
{
±(t2 + s2) (mod m) : (t2 + p2s2, 6mp) = 1

}
.

Proof. Let u ∈ Z be coprime with m. By Dirichlet’s Theorem, there exists
a prime number q 6= 3, p such that

q ≡


u (mod 4m) if u ≡ 1 (mod 4)
−u (mod 4m) if u ≡ 3 (mod 4)
u+m (mod 4m) if u ≡ 0 (mod 2) and u+m ≡ 1 (mod 4)
−(u+m) (mod 4m) otherwise.

In all cases q ≡ 1 (mod 4) and we can write q = t2 +s2 with t, s ∈ Z. Hence

u ≡ ±(t2 + s2) (mod m).

We want to show (t2 +p2s2, 6pm) = 1. Since all the expressions above are
symmetric in t and s, we can suppose p - t. Then (t2 + p2s2, p) = 1. When
p 6= 3, the integers s2 and p2s2 are the same modulo 2, and also modulo
3, so t2 + p2s2 ≡ q (mod 6). Since q 6= 2, 3, (t2 + p2s2, 6) = 1. (If p = 3,
also (t2 + p2s2, 6) = 1 because p - t). Since p ≡ 1 (mod m), t2 + p2s2 ≡ ±u
(mod m). We choose u coprime with m, so (t2 + p2s2, 6pm) = 1. Therefore
±(t2 + s2) (mod m) belongs to the set on the right hand side of (4.6). �

By Lemmas 4.3 and 4.4,

X(p,m) =
{
χdet(µ) | µ ∈WM,ip

}
.

Then Theorem 4.2 follows from Proposition 4.1.

Corollary 4.5. We have
(i) N (p,m)2 ∈ HO,
(ii) N (p,m) ∈ HO if |X(p,m)| ≡ 0 (mod 2) or p ≡ v (mod 4).

Corollary 4.6. For all χ ∈ X(p,m),

[HO(Bχ(ip)) : K] ≤


|X(p,m)|(p− v)

2 if p ≡ v (mod 4),

|X(p,m)|(p+ v) if p ≡ −v (mod 4).
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Proof. Denoting by h(O) the class number of O = Z[ip],

[HO : K] = |Gal(HO/K)| = |Cl(O)| = h(O).

Applying the general formula for the class number of an imaginary qua-
dratic order (see [2]), we have

h(O) =


p− 1

2 if p ≡ 1 (mod 4)

p+ 1
2 if p ≡ 3 (mod 4).

We deduce from the statements (i) and (ii) of Theorem 4.2

[HO(Bχ(ip)) : HO] ≤

2|X(p,m)| if p ≡ −v (mod 4)
|X(p,m)| if p ≡ v (mod 4).

�

Theorem 4.7. There is a constant c > 0 such that for all non-quadratic
χ with prime conductor p = 2l + 1, where l is prime, satisfying p > c, we
have θχ(i) 6= 0.

Proof. Louboutin proved in [8] that there is a constant c > 0 such that
θχ(i) 6= 0 for at least cp/ log(p) characters of the (p− 1)/2 odd characters
with conductor p and of the (p− 1)/2 even ones. When p = 2l+ 1, there is
one odd character having order 2, (p−3)/2 odd characters having order 2l,
(p − 1)/2 even characters having order l and the trivial (even) character.
By Theorem 4.2, if Bχ(ip) 6= 0 for some χ ∈ X(p,m), then Bχ(ip) 6= 0
for all χ ∈ X(p,m). Thus θχ(i) 6= 0 for all non-quadratic characters with
conductor p satisfying log(p)/p < c. �

Remark 4.8. For odd but maybe not prime N , Theorem 4.2 does not
apply, but we have

(4.7)
∏

χ∈X(N,m)
(X −Bχ(iN)2) ∈ HO[X].

If N |X(N,m)| ≡
∑
χ∈X(N,m) χ(−1) (mod 4), then the square in (4.7) is

not necessary.
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