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Continuity of the Hausdorff Measure of
Continued Fractions and Countable Alphabet

Iterated Function Systems

par Mariusz URBAŃSKI et Anna ZDUNIK

Résumé. Nous montrons que, si Jn(G) est l’ensemble des réels
dans [0, 1] dont la fraction continue infinie est constituée de nom-
bres entiers compris entre 1 et n, alors limn→∞ Hhn

(Jn(G)) =
1 = H1(J(G)), où hn est la dimension de Hausdorff de Jn(G),
Hhn est la mesure de Hausdorff correspondant et où J(G) est l’en-
semble de tous les nombres irrationnels de [0, 1], i.e. ceux dont la
fraction continue est infinie. Nous montrons aussi que cette pro-
priété n’est pas générale en construisant une classe de systèmes de
fonctions itérées S sur [0, 1], formés de similarités, pour lesquels
limF →E HhF

(JF ) < HhS (JS); cette limite inférieure s’étend sur
les sous-ensembles finis de l’alphabet infini E.

Abstract. We prove that if by Jn(G) we denote the set of all
numbers in [0, 1] whose infinite continued fraction expansions have
all entries in the finite set {1, 2, . . . , n}, then limn→∞ Hhn

(Jn(G))=
1 = H1(J(G)), where hn is the Hausdorff dimension of Jn(G), Hhn

is the corresponding Hausdorff measure, and J(G) denotes the
set of all irrational numbers in [0, 1], i .e. those whose contin-
ued fraction expansion is infinite. We also show that this prop-
erty is not too common by constructing a class of infinite iterated
function systems S on [0, 1], consisting of similarities, for which
limF →E HhF

(JF ) < HhS (JS); the lower limit is taken over finite
subsets of the countable infinite alphabet E.

1. Introduction
Let (X, ρ) be metric space and let A ⊂ X. Given t ≥ 0 we define

Ht(A) := lim
δ→0

inf
{ ∞∑
n=1

diamt(Un) :
∞⋃
n=1

Un ⊃ A,diam(Un) ≤ δ ∀ n ≥ 1
}
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and Ht(A) is called the t-dimensional (outer) Hausdorff measure of A. The
function A 7→ Ht(A) restricted to the σ-algebra of Borel sets of X is (an
ordinary non-negative σ-additive) measure. The number

HD(A) = inf{t > 0 : Ht(A) = 0}
is called the Hausdorff dimension of A. Frequently, especially in dynamics,
if 0 < Ht(X) < +∞, one considers also normalized Hausdorff measure, i.e.
the function

A 7→ H1
t (A) := Ht(A)/Ht(X).

In order to avoid any confusion as to which Hausdorff measure we mean,
we frequently refer to Ht(A) as the numerical value of the Hausdorff mea-
sure of A. In this paper we always consider the Hausdorff measure (and
dimension) with respect to the standard (Euclidean) metric on the ambi-
ent space which is with no exception Rq with some integer q ≥ 1.

Passing to a number theoretical context, in agreement with notation of
Section 3 by Jn(G) we denote the set of all numbers in [0, 1] whose infinite
continued fraction expansions have all entries in the finite set {1, 2, . . . , n}.
It is well-known (see [1], comp. [3] and [4], where an analogous statement
is proved for all conformal iterated function systems), that
(1.1) lim

n→∞
HD

(
Jn(G)

)
= 1.

D. Hensley was even able to show in [1] that

lim
n→∞

n(1−HD
(
Jn(G)

)
) = 6

π2 .

Motivated by such results and some continuity properties of the numeri-
cal value of the Hausdorff measure of the limit sets in conformal dynamics
(see [5] and [6]), we asked ourselves whether a continuity like in (1.1) holds
on a deeper level of Hausdorff measures. Armed with the theory of iter-
ated function systems it can be relatively easy to show that the continuity
holds for normalized Hausdorff measures in the weak∗ topology on Borel
probability measures on the unit interval [0, 1]. For the numerical values
of Hausdorff measures the positiver answer is given in Section 3 below; see
Theorem 3.1. Its proof is in its majority number theoretical slightly touching
on iterated function systems. However, this result fits well into the context
of both: number theory and iterated function systems. Section 4 briefly
describes the latter and recalls Bowen’s formula expressing the Hausdorff
dimension of the limit set in dynamical terms. If S = {φe}e ∈ E is a con-
formal iterated function systems satisfying the Open Set Condition, then
(see [4])

sup{HD(JF ) : F ⊂ E} = HD(JS)
where the supremum is taken over all finite subsets F of E and JF is the
limit set of the iterated function system {φe}e∈F . Motivated by this fact
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and Theorem 3.1 we asked ourselves whether
lim
F→E

HhF (JF ) = HhS (JS)

for all conformal iterated function systems satisfying the Open Set Con-
dition; in here hF = HD(JF ), hS = HD(JS) and Ht denotes always t-
dimensional Hausdorff measure. We show in Section 6 that the answer is in
general negative. It is negative already in the simplest possible situation to
think about: linear (similarity), so no distortion of derivative, IFS on [0, 1]
whose limit set is all of [0, 1] but a countable set (as is also the case for
continued fractions). This shows that being of number theoretical origin,
continued fractions are rather special amongst IFSs on [0, 1]. It also shows
that bounded distortion of derivative, one of the main technical issues in
the proof of Theorem 3.1, is by no means all what counts for the proof of
this theorem. As a convenient tool to prove discontinuity in the counterex-
ample constructed in Section 6, we derived in Section 5 a simple formula
to express the Hausdorff measure of iterated function systems consisting of
similarities; this formula is of interest on its own.

2. Selected Preliminaries from Geometric Measure Theory
In this section we collect some well-known general density theorems

which ultimately express the numerical value of Hausdorff measures in the
form suitable for our continuity considerations in the following sections. We
start with the following density theorem for Hausdorff measures (see [2] for
example).

Fact 2.1. Let X be a metric space, with HD(X) = h, such that Hh(X) <
+∞. Then (see p. 91 in [2]),

lim
r→0

sup
{

Hh(F )
diamh(F )

: x ∈ F, F = F, diam(F ) ≤ r
}

= 1

for Hh–a.e. x ∈ X.

As an immediate consequence of this, we get the following, fundamental
for us, fact, which was extensively explored in [5] and [6].

Theorem 2.2. If X is a metric space and 0 < Hh(X) < +∞, then

Hh(X) = lim
r→0

inf
{
diamh(F )
H1
h(F )

: x ∈ F, F = F, diam(F ) ≤ r
}

for H1
h–a.e. x ∈ X.

Since in all Euclidean metric spaces the diameter of the closed convex
hull of every set A is the same as the diameter of A, as an immediate
consequence of this theorem, we get the following.
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Corollary 2.3. If X is a subset of a Euclidean metric space Rd and 0 <
Hh(X) < +∞, then for H1

h–a.e. x ∈ X we have that

Hh(X) = lim
r→0

inf
{
diamh(F )
H1
h(F )

}
where, given r > 0, the supremum is taken over all closed and convex sets
F ⊂ Rd such that x ∈ F and diam(F ) ≤ r.

Being even more specific, we get the following consequence.

Corollary 2.4. If X is a subset of an interval ∆ ⊂ R and 0 < Hh(X) <
+∞, then for H1

h–a.e. x ∈ X we have that

Hh(X) = lim
r→0

inf
{
diamh(F )
H1
h(F )

}
,

where, given r > 0, the supremum is taken over all closed intervals F ⊂ Rd
such that x ∈ F and diam(F ) ≤ r.

3. Continued Fractions
For every integer n ≥ 1 let gn : [0, 1]→ [0, 1] be given by the formula

(3.1) gn(x) = 1
n+ x

.

Note that there exists ξ > 0 such that for all n ≥ 1,

(3.2) gn

(
BC

(1
2 ,

1
2 + ξ

))
⊂ BC

(1
2 ,

1
2 + ξ

)
and gn : BC

(
1
2 ,

1
2 + ξ

)
→ BC

(
1
2 ,

1
2 + ξ

)
is a univalent map. The collection

of maps G := {gn}∞n=1, acting on both [0, 1] and BC
(

1
2 ,

1
2 + ξ

)
, forms a

conformal iterated function system in the sense of [4] and [3]. It is called
the Gauss system. In view of (3.2), for every ω ∈ N∗1 :=

⋃
n≥1 Nn, say

ω ∈ Nn, the composition
gω := gω1 ◦ gω2 ◦ . . . ◦ gωn

is a well-define self-map of both BC
(

1
2 ,

1
2 + ξ

)
and [0, 1]. The map G :

(0, 1]→ (0, 1], defined by the formula,

G(x) = 1
x
− n if x ∈

( 1
n+ 1 ,

1
n

]
,

is called the Gauss map. Of course
G ◦ gn|[0,1) = Id|[0,1),

and iterating this formula,
G|ω| ◦ gω|[0,1) = Id|[0,1)
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for every finite word ω ∈ N∗, where the latter throughout this section
includes the symbol “0” and g0 := Id. So, for every k ≥ 0, and every
irrational number x ∈ [0, 1],

Gk(x) ∈
[ 1
ω(x)k+1 + 1 ,

1
ω(x)k+1

]
,

where ω(x)k+1 is the (k+ 1)th digit of the continued fraction expansion of
x. Given an arbitrary non-empty subset E of N we denote by JE(G) the set
of all numbers in [0, 1] whose infinite continued fraction expansions have all
entries in E. Of course

gω
(
JE(G)

)
⊂ JE(G)

for all ω ∈ E∗, and moreover

JE(G) =
⋃

ω∈En
gω
(
JE(G)

)
.

Anticipating the terminology of the next section we call JE(G) the limit
set of the system GE := {gn : n ∈ E}, which is also a conformal iterated
function system in the sense of [4] and [3]. In this section we exclusively con-
sider only those systems where the set E is of the form Nn := {1, 2, . . . , n},
n ∈ N. We then abbreviate GNn and JNn(G) to Gn and Jn(G) respectively.
We also write J(G) for JN(G), i. e. the set of all irrational numbers in the
interval [0, 1]. Let

hn := HD(Jn(G))
be the Hausdorff dimension of the limit set Jn(G). It follows from Theorem 1
(formula 7.11) in [1], comp. [4], that

(3.3) lim
n→∞

hn = HD(J(G)) = 1,

In fact Theorem 1 in [1] provides the rate of convergence of the sequence
(hn)∞n=1 to 1:

(3.4) lim
n→∞

n(1− hn) = 6
π2 .

Since each Gn, n ≥ 2, is a finite conformal iterated function system con-
sisting of at least two elements, we have (see [1] or [4] for instance) the
following well-known result.

0 < Hhn(Jn(G)) < +∞.

The main, number theoretical, result of this section is this.

Theorem 3.1.
lim
n→∞

Hhn(Jn(G)) = 1 = H1(J(G)).
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Of course H1(J(G)) = H1([0, 1]) = 1. So, only the first equality is to be
proved. We start it with a long series of lemmas.

If g : ∆1 → ∆2 is a differentiable diffeomorphism, we define

κ(g) := sup
{ |g′(y)|
|g′(x)| : x, y ∈ ∆1

}
and call this number the distortion of the map g : ∆1 → ∆2. We say that
g has bounded distortion if κ(g) < +∞. The following lemma collects the
basic, straightforward to prove, properties of the concept of distortion.

Lemma 3.2. Let ∆i, i = 1, 2, 3, be some three intervals in R. Let also
Diff(∆i,∆j), 1 ≤ i, j ≤ 3 be the set of all diffeomorphisms from ∆i onto
∆j. Then

(a) If g ∈ Diff(∆i,∆j), then κ(g) = κ(g−1)
(b) If g ∈ Diff(∆i,∆j), then κ(g) ≥ 1
(c) If g1 ∈ Diff(∆1,∆2) and g2 ∈ Diff(∆2,∆3), then κ(g2 ◦ g1) ≤

κ(g1)κ(g2)
(d) If g ∈ Diff(∆i,∆j) and ∆ is an interval contained in ∆1, then

κ−1(g)|g′(x)| · |∆| ≤ |g(∆)| ≤ κ(g)|g′(x)| · |∆|
for every x ∈ ∆i. In particular

κ−1(g) sup{|g′|} · |∆| ≤ |g(∆)| ≤ κ(g) inf{|g′|} · |∆|.

It follows from (3.2) and (3.1) that

gω

(
B

Ĉ

(1
2 ,

1
2 + ξ

))
⊂ B

Ĉ

(1
2 ,

1
2 + ξ

)
for all ω ∈ N∗, and that all maps gω

(
B

Ĉ

(
1
2 ,

1
2 + ξ

))
→ C are 1-to-1 and

holomorphic. As an immediate consequence of Koebe’s Distortion Theorem
we get therefore the following.

Lemma 3.3.
lim
t→0+

sup{κ(gω|∆) : ω ∈ N∗, intervals ∆ ⊂ [0, 1] with |∆| ≤ t} = 1.

Since
(3.5) lim

n→∞
sup{|gω([0, 1])| : ω ∈ Nn} = 0

(the convergence is even exponentially fast), as an immediate consequence
of this lemma we get the following.

Lemma 3.4.
lim
q→∞

sup{κ(gω|gτ ([0,1])) : ω ∈ N∗, |τ | = q} = 1.

We shall prove the following.
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Lemma 3.5.
lim
n→∞

κ(gn) = 1.

Proof. We have
|g′n(x)| = 1

(x+ n)2 ,

and therefore,

κ(gn) = (n+ 1)2

n2 → 1 as n→∞.
�

Since |gn([0, 1])| = 1
n(n+1) → 0 as n→∞, as an immediate consequence

of this lemma, Lemma 3.3, and Lemma 3.2, we get the following.

Lemma 3.6.
lim
n→∞

sup{κ(gω ◦ gn) : ω ∈ N∗} = 1.

We now pass to examine normalized Hausdorff measures. For every n ≥ 2
let

mn := H−1
hn

(Jn(G)) ·Hhn |Jn(G).

We also frequently consider mn as a Borel probability measure on [0, 1], i.e.
mn(A) = H−1

hn
(Jn(G)) ·Hhn

(
Jn(G) ∩A

)
for Borel subsets A of [0, 1]. It follows from [4] that mn is the unique
(probability) hn-conformal measure on Jn(G), meaning that

mn(gω(A)) =
∫
A
|g′ω|hndmn

for every Borel set A ⊂ [0, 1] and all ω ∈ N∗n.

We start with the following definition.

Definition 3.7. A familyR of closed subintervals of [0, 1] is called extremal
if

lim inf
n→∞

inf
{
|∆|hn
mn(∆) : ∆ ∈ R

}
≥ 1.

Lemma 3.8. For every δ > 0 the family Rδ of all closed intervals ∆ ⊂ [0, 1]
with |∆| ≥ δ is extremal.

Proof. Suppose on the contrary that for some δ > 0 the family Rδ is not
extremal. This means that there exist η ∈ [0, 1), an increasing sequence
(nj)∞1 of positive integers, and a sequence (∆j)∞1 of closed intervals in Rδ
such that

(3.6) lim
j→∞

|∆j |hnj
mnj (∆j)

= η.
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Passing to a subsequence we may assume that the left-hand endpoints and
the right-hand endpoints of ∆j converge respectively to a and b in [0, 1]
with b− a ≥ δ. Let ∆ := [a, b] ∈ Rδ. Since the sequence

(
mnj

)∞
1 converges

weakly to m, the Lebesgue measure on [0, 1], we get from (3.6) that

1 = |∆|
m(∆) ≤

limj→∞ |∆j |hnj
lim supj→∞mnj (∆j)

= lim inf
j→∞

|∆j |hnj
mnj (∆j)

= η < 1.

This contradiction finishes the proof. �

Lemma 3.9.
lim inf
n→∞
r→0

{
rhn

mn([0, r])

}
≥ 1.

Proof. Fix N ≥ 2 so large that hN ≥ 3/4 and keep always n ≥ N . For
every r ∈ (0, 1/2) let sr ≥ 1 be the unique integer such that

1
sr + 1 < r ≤ 1

sr
.

We then have

mn([0, r]) ≤
∞∑
j=sr

mn(gj([0, 1]))

≤
∞∑
j=sr
||g′j ||hn∞mn([0, 1])

≤
∞∑
j=sr

j−2hn

≤
∫ ∞
sr−1

x−2hndx

= (2hn − 1)−1(sr − 1)1−2hn .

Therefore,

(3.7)

mn([0, r])
rhn

≤ (2hn − 1)−1(sr + 1)hn(sr − 1)1−2hn

= (2hn − 1)−1
(
sr + 1
sr − 1

)hn
(sr − 1)1−hn

= (2hn − 1)−1
(

1 + 2
sr − 1

)hn
(sr − 1)1−hn

≤ (2hn − 1)−1(1 + 4r)hn(sr − 1)1−hn

Of course if 0 < r ≤ 1
n+1 , then

mn([0, r])
rhn

= 0.
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Hence, we can continue (3.7) assuming that r > 1
n+1 . Then sr < n + 1,

and (3.7) along with (3.4) yield for all n ≥ 2 large enough the following.
mn([0, r])

rhn
≤ (2hn − 1)−1(1 + 4r)n1−hn

≤ (2hn − 1)−1(1 + 4r)n
7
π2n

= (2hn − 1)−1(n 1
n
) 7
π2 (1 + 4r).

Since limn→∞ hn = 1 and limn→∞ n
1
n = 1, this formula gives

lim sup
n→∞
r→0

{
mn([0, r])

rhn

}
≤ 1.

The proof is complete. �

For every ω ∈ N∗ let
B∗(gω(0), r) = [gω(0), gω(0) + r] and B∗(gω(0), r) = [gω(0)− r, gω(0)]

respectively if |ω| is even or odd. Let
B∗(ω) := {B∗(gω(0), r) : r ∈ (0, 1]}

We shall prove the following.

Lemma 3.10. For every ω ∈ N∗ the family B∗(ω) is extremal.

Proof. For all r ∈ (0, |gω([0, 1])|] there exists a unique r̂ ∈ (0, 1] such that
B∗(gω(0), r) = gω([0, r̂]).

By virtue of Lemma 3.2(d) this gives,
κ−1(gω|[0,r̂])|g′ω(0)|r̂ ≤ r ≤ κ

(
gω|[0,r̂]

)
|g′ω(0)|r̂.

Hence,

(3.8)

rhn

mn(B∗(gω(0), r)) ≥
κ−hn

(
gω|[0,r̂]

)
|g′ω(0)|hn r̂hn

κhn
(
gω|[0,r̂]

)
|g′ω(0)|hnmn([0, r])

= κ−2hn(gω|[0,r̂]) r̂hn

mn([0, r]) .

Since limr→0 r̂ = 0, as an immediate consequence of both, Lemma 3.9 and
Lemma 3.3, we get the following.

lim inf
n→∞
r→0

rhn

mn(B∗(gω(0), r)) ≥ 1.

This means that for every ε > 0 there exist an integer Nε ≥ 2 and a radius
Rε ∈ (0, 1] such that

rhn

mn(B∗(gω(0), r)) ≥ 1− ε
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for all n ≥ Nε and all 0 < r ≤ Rε. Invoking now Lemma 3.8, we therefore
get

lim
n→∞

inf
r∈(0,1]

{
rhn

mn(B∗(gω(0), r))

}

= lim
n→∞

min
{

inf
r∈(0,Rε]

{
rhn

mn(B∗(gω(0), r))

}
,

inf
r∈(Rε,1]

{
rhn

mn(B∗(gω(0), r))

}}

≥ min
{

lim
n→∞

inf
r∈(0,Rε]

{
rhn

mn(B∗(gω(0), r))

}
,

lim
n→∞

inf
r∈(Rε,1]

{
rhn

mn(B∗(gω(0), r))

}}
≥ min{1− ε, 1} = 1− ε.

Letting now ε→ 0+ our lemma follows. �

Now consider an arbitrary finite word ω ∈ N∗. Put k = |ω|. Since

gω(0) = gω|k−1(ωk−1)1(0)

if ωk ≥ 2, and
gω(0) = gω|k−2(ωk−1+1)(0)

if ωk = 1, and since |ω|k−1(ωk−1)1| = |ω|+1 and |ω|k−2(ωk−1+1)| = |ω|−1,
as an immediate consequence of Lemma 3.10, we get the following.

Corollary 3.11. For every ω ∈ N∗ let Re(ω) be the collection of all closed
intervals ∆ in [0, 1] having gω(0) as one of its endpoints. Then each family
Re(ω), ω ∈ N∗, is extremal.

If R and S are two families of closed subintervals of [0, 1], then

R ∗ S := {∆ ∪ Γ : ∆ ∈ R,Γ ∈ S, and #(∆ ∩ Γ) = 1}.

Of course the operation “∗” is is associative and commutative. Generalizing
Definition 3.7 we introduce the following.

Definition 3.12. A sequence (Rk)∞1 of families of closed subintervals of
[0, 1] is called extremal if

lim inf
n→∞
k→∞

inf
{
|∆|hn
mn(∆) : ∆ ∈ Rk

}
≥ 1.

The first obvious observations are these.
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Lemma 3.13. If for every k ≥ 1, Rk ⊂ Sk and the sequence (Sk)∞1 is
extremal, then the sequence (Rk)∞1 is also extremal.

Lemma 3.14. A sequence (Rk)∞1 is extremal if and only if the sequence
(
⋃
l=kRl)

∞
k=1 is extremal.

Lemma 3.15. If (Rk)∞1 and (Sk)∞1 are two extremal sequences, then the
sequence (Rk ∪ Sk)∞1 is also extremal.

Lemma 3.16. If
(
Rk
)∞
k=1 is an extremal sequence of extremal families of

sets, then the family
⋃∞
n=1Rk is extremal.

Now we shall prove the following slightly more involved lemma.

Lemma 3.17. If (Rk)∞1 and (Sk)∞1 are two extremal sequences, then the
sequence (Rk ∗ Sk)∞1 is also extremal.

Proof. Fix ε > 0. By our hypothesis there exists Nε ≥ 2 such that

(3.9) |Γ|hn
mn(Γ) ≥ 1− ε

for all n, k ≥ Nε and all Γ ∈ Rk ∪Sk. Fix n, k ≥ Nε and ∆ ∈ Rk ∗ Sk. This
means that

∆ = ∆− ∪∆+

with some ∆− ∈ Rk and ∆+ ∈ Sk such that D− ∩∆− is a singleton. Now
the standard calculus argument shows that

xt + (1− x)t ≤ 21−t

for all t, x ∈ [0, 1]. Therefore we get

|∆−|hn + |∆+|hn
(|∆−|+ |∆+|)hn

=
( |∆−|
|∆−|+ |∆+|

)hn
+
( |∆−|
|∆+|+ |∆+|

)hn
≤ 21−hn .

Hence, using also (3.9), we get

|∆|hn
mn(∆) = (|∆−|+ |∆+|)hn

mn(∆−) +mn(∆+)

≥ 2hn−1 |∆−|hn + |∆+|hn
mn(∆−) +mn(∆+)

≥ 2hn−1 min
{
|∆−|hn
mn(∆−) ,

|∆+|hn
mn(∆+)

}
≥ (1− ε)2hn−1

Invoking (3.3) this completes the proof. �
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If R and S are two families of closed subintervals of [0, 1], we define
R⊗ S := R∪ (R ∗ S) ∪ S.

As an immediate consequence of Lemma 3.15 and Lemma 3.17 we get the
following.

Corollary 3.18. If (Rk)∞1 and (Sk)∞1 are two extremal sequences, then the
sequence (Rk ⊗ Sk)∞1 is also extremal.

An immediate induction then yields the following.

Lemma 3.19. If T is a finite set and for every t ∈ T a sequence (Rk(t))∞k=1
is extremal, then the sequence

(
⊗t∈TRk(t)

)∞
k=1 is also extremal.

Applying this lemma to a constant sequence we get the following.

Corollary 3.20. If T is a finite set and for every t ∈ T a family R(t) is
extremal, then the family ⊗t∈TR(t) is also extremal.

For every ω ∈ N∗ let R(ω) be the collection of all closed intervals ∆ in
[0, 1] containing gω(0). We can now easily upgrade Corollary 3.11 to the
following.

Lemma 3.21. For every ω ∈ N∗ the family R(ω), ω ∈ N∗, is extremal.

Proof. It suffices to notice that R(ω) = Re(ω)⊗Re(ω) and to apply Corol-
lary 3.11 along with Lemma 3.19. �

Now for every integer k ≥ 1 let S−k be the family of all intervals of the
form [1

k
− r, 1

k

]
, r ∈

[
0, 1
k(k + 1)

]
.

We shall prove the following.

Lemma 3.22. The sequence (S−k )∞1 is extremal.

Proof. We start the proof in the same way as the proof of Lemma 3.10 with
ω = k. Formula (3.8) then says that

rhn

mn

([
1
k − r,

1
k

]) ≥ κ−2(gk|0,r̂]) r̂hn

mn([0, r̂]) ≥ κ
−2(gk)

r̂hn

mn([0, r̂])

for all r ∈
[
0, 1

k(k+1)

]
. Invoking now Lemma 3.10 and Lemma 3.5 completes

the proof. �

Now for every integer k ≥ 1 let S+
k be the family of all intervals of the

form [ 1
k + 1 ,

1
k + 1 + r

]
, r ∈

[
0, 1
k(k + 1)

]
.

We shall prove the following.
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Lemma 3.23. The sequence (S+
k )∞1 is extremal.

Proof. Observe that for every r ∈
[
0, 1

k(k+1)

]
there exists a unique r̃ ∈ [0, 1]

such that [ 1
k + 1 ,

1
k + 1 + r

]
= gk([1− r̃, 1]).

Proceeding now in the same way as that leading to (3.8), we get the fol-
lowing.

rhn

mn

([
1

k+1 ,
1

k+1 + r
]) ≥ κ−2(gk|[1−r̃,1]

) r̃hn

mn([1− r̃, 1])

≥ κ−2(gk)
r̃hn

mn([1− r̃, 1]) .

Invoking now Lemma 3.5 and Corollary 3.11 (with ω = 1), completes the
proof. �

Now we shall prove a purely computational lemma.

Lemma 3.24.

lim
k→∞

sup
{

(k − 1)−a − (k − 1 + q)−a

k−a − (k + q)−a : α ∈ [1/2, 1], q ≥ 1
}
≤ 1.

Proof. We have for all α ∈ [1/2, 1] all q ≥ 1, and all k ≥ 2 that

(k − 1)−a − (k − 1 + q)−a

k−a − (k + q)−a =
(
k − 1
k

)−α (1−
(
k−1+q
k−1

)−α)
(

1−
(
k+q
k

)−α)

=
(

k

k − 1

)α (1−
(
1 + q

k−1

)−α)
(
1−

(
1 + q

k

)−α)
≤
(

k

k − 1

) 1−
(
1 + q

k−1

)−α
1−

(
1 + q

k

)−α .

Since limk→∞
k
k−1 = 1, it is therefore enough to show that

(3.10) lim
k→∞

sup


1−

(
1 + q

k−1

)−α
1−

(
1 + q

k

)−α : α ∈ [1/2, 1], q ≥ 1

 ≤ 1.

With α ∈ [1/2, 1] let

ψα(t) = 1− (1 + t)−α, t ≥ 0.
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The Mean Value Theorem then gives

(3.11)

ψα

(
q

k − 1

)
− ψα

(
q

k

)
= α

(
q

k − 1 −
q

k

)
(1 + ξ)−(1+α)

≤ q

k(k − 1)(1 + ξ)−(1+α)

≤ 2q
k2 (1 + ξ)−(1+α)

≤ 2q
k2

(
1 + q

k

)−(1+α)

for some ξ ∈
[
q
k ,

q
k−1

]
and all k ≥ 2. Now, if q ≥ k, then ψα(q/k) ≥

1− 2−α ≥ 1− 2−
1
2 = 1−

√
2

2 > 0. Hence,

ψα
(

q
k−1

)
− ψα

( q
k

)
ψα
( q
k

) ≤ 2
(

1−
√

2
2

)−1
q

k2

(
q

k

)−(1+α)

= 2
(

1−
√

2
2

)−1

q−αkα−1

≤ 2
(

1−
√

2
2

)−1

q−α

≤ 2
(

1−
√

2
2

)−1

k−α

≤ 2
(

1−
√

2
2

)−1

k−
1
2 .

Equivalently,

(3.12)
ψα
(

q
k−1

)
ψα
( q
k

) ≤ 1 + 2
(

1−
√

2
2

)−1

k−
1
2 .

So, assume that q ≤ k. Applying the Mean Value Theorem once more, we
get

ψα

(
q

k

)
= α

q

k
(1 + γ)−(1+α) ≥ αq

k
2−(1+α) ≥ 1

22−2a
q

k
= 1

8
q

k

for some γ ∈ [0, q/k] ⊂ [0, 1]. Therefore, using also (3.11), we get

ψα
(

q
k−1

)
− ψα

( q
k

)
ψα
( q
k

) ≤ 16 q
k2

(
1 + q

k

)−(1+α) k

q
≤ 16

k
.
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Equivalently,
ψα
(

q
k−1

)
ψα
( q
k

) ≤ 1 + 16
k
.

Along with (3.12) this shows that (3.10) holds, and the proof is complete.
�

Now for every k ≥ 2 let

M+
k =

{[ 1
l + q

,
1
l

]
: k ≤ l, q ≥ 1

}
.

We shall prove the following.

Lemma 3.25. The sequence (M+
k )∞k=2 is extremal.

Proof. Since mn

([
0, 1

n+1

])
= 0 we are to show that

lim
k→∞
n→∞

inf


(

1
l −

1
l+q

)hn
mn

([
1
l+q ,

1
l

]) : q ≥ 1, k ≤ l ≤ l + q ≤ n+ 1

 ≥ 1.

Equivalently,

lim
k→∞
n→∞

sup


mn

([
1
l+q ,

1
l

])
(

1
l −

1
l+q

)hn : q ≥ 1, k ≤ l ≤ l + q ≤ n+ 1

 ≤ 1.

But

mn

([ 1
l + q

,
1
l

])
=

l+q−1∑
j=l

mn

([ 1
j + 1 ,

1
j

])

≤
l+q−1∑
j=l

1
j2hn

≤
∫ l+q−1

l−1
x−2hndx

= 1
2hn − 1

(
(l − 1)1−2hn − (l − 1 + q)1−2hn

)
.

So, it is enough to show that
(3.13)

lim
k→∞
n→∞

sup

(l − 1)1−2hn − (l − 1 + q)1−2hn(
1
l −

1
l+q

)hn : q ≥ 1, k ≤ l ≤ l + q ≤ n+ 1


≤ 1.
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Since 1/2 ≤ 2hn−1 ≤ 1 for all n ≥ 2 large enough, by virtue of Lemma 3.24,
it thus suffices to show that

lim
k→∞
n→∞

sup

 l
1−2hn − (l + q)1−2hn(

1
l −

1
l+q

)hn : q ≥ 1, k ≤ l ≤ l + q ≤ n+ 1

 ≤ 1.

We have

l1−2hn − (l + q)1−2hn(
1
l −

1
l+q

)hn =
(l + q)1−2hn

((
l
l+q

)1−2hn
− 1

)
(l + q)−hn

(
l
l+q − 1

)hn
= (l + q)1−hn

(
l+q
l

)2hn−1
− 1(

l+q
l − 1

)hn
≤ (l + q)1−hn

l+q
l − 1(

l+q
l − 1

)hn
= (l + q)1−hn

(
l + q

l
− 1

)1−hn

= (l + q)1−hn
(
q

l

)1−hn

≤ (q(l + q))1−hn

≤ (l + q)2(1−hn)

≤ (n+ 1)2(1−hn)

≤
(
(n+ 1)

1
n

) 14
π2
,

where the last inequality holds for all n ≥ 2 large enough due to (3.4).
Since limn→∞(n + 1)

1
n = 1, formula (3.13) is established and the proof is

complete. �

For every k ≥ 1 let N+
k be the family of all closed intervals contained

in [0, 1/k] that intersect the set {1/l : l ∈ N} or equivalently, the set
{1/l : l ≥ k} . We shall prove the following.
Lemma 3.26. The sequence (N+

k )∞1 is extremal.

Proof. Since N+
k ⊂

⋃∞
k=l S−l ⊗ M

+
l ⊗ S

+
l , the proof is concluded by

invoking Lemma 3.25, Lemma 3.22, Lemma 3.23, and Lemma 3.19 and
Lemma 3.14. �

Along with Lemma 3.21, restricted to the subfamily generated by words
of length one, and Lemma 3.16, Lemma 3.26 yields the following.
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Lemma 3.27. The family N :=
⋃∞
k=1N+

k precisely consisting of all those
closed intervals that intersect the set {1/n : n ∈ N}, is extremal.

Let F be the family of all closed intervals in [0, 1]. We shall prove the
following.

Proposition 3.28. The family F is extremal.

Proof. Proceeding by contradiction suppose that the family F is not ex-
tremal. This means that there are η ∈ (0, 1) and two sequences, (nj)∞1 of
strictly increasing positive integers, and (Fj)∞1 of closed intervals in [0, 1]
such that

(3.14) |Fj |hnj
mnj (Fj)

< η

for all j ≥ 1. For every j ≥ 1 let ω(j) ∈ N∗ be the longest word such that
(3.15) Fj ⊂ gω(j)([0, 1]).
Denote

lj := |ω(j)|.
Fix

η < ξ < 1.
Formula (3.15) means that

(3.16) Glj (Fj) ∩ {1/n : n ≥ 2} 6= ∅.
By Lemma 3.27, formula (3.16) implies that

(3.17) lim
j→∞

|Glj (Fj)|hnj
mnj (Glj (Fj))

≥ 1.

By Lemma 3.3 there exists s ∈ (0, 1] so small that
(3.18) κ(gω|∆) < ξ/η

for all ω ∈ N∗ and all intervals ∆ ⊂ [0, 1] with |∆| ≤ s. Now we shall show
that
(3.19) lim

j→∞
|Glj (Fj)| = 0.

Indeed, assume on the contrary that this lower limit is positive. This means
that there exist θ > 0 and an integer P1 ≥ 1 such that

|Glj (Fj)| > θ

for all j ≥ P1. This in turn implies that for every j ≥ P1 there exists a least
qj ∈ {0, . . . , lj} such that
(3.20) |Gqj (Fj)| > min{θ, s}.
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By Lemma 3.8 and by (3.14),
lim
j→∞

|Fj | = 0.

Therefore there exists P2 ≥ P1 such that qj ≥ 1 for all j ≥ P2. It then
follows from the definition of qj (the least one) that either
(3.21) γ ≤ |Gqj−1(Fj)| ≤ min{θ, s} ≤ s

for all j ≥ P2 and some γ > 0 or limj→∞ ω
(j)
qj+1 = ∞. In the former case

denote qj − 1 by pj , while in the latter case denote qj by pj . In either case,
respectively by (3.18) or Lemma 3.6, for infinitely many js large enough
(3.22) κ

(
Gpj |Fj

)
< ξ/η.

On the other hand, in view of Lemma 3.8 again and of (3.20) along with
(3.21), we have for all j ≥ P2 large enough that

|Gpj (Fj)|hnj
mnj (Gpj (Fj))

> ξ.

Making use of this formula, along with (3.14) and (3.22), we get for infinitely
many js that

(3.23)
η = η

ξ
· ξ < κ−1(Gpj |Fj )

|Gpj (Fj)|hnj
mnj (Gk(Fj))

≤
|Fj |hnj inf{|(Gpj )′||Fj}
mnj (Fj) inf{|(Gpj )′||Fj}

= |Fj |hnj
mnj (Fj)

< η.

This contradiction finishes the proof of (3.19).
Now, because of (3.16), Lemma 3.27 implies that

lim
j→∞

|Glj (Fj)|hnj
mnj (Glj (Fj))

≥ 1.

So there exists P3 ≥ P2 so large that

(3.24) |Glj (Fj)|hnj
mnj (Glj (Fj))

> ξ

for all j ≥ P3. On the other hand, formula (3.19) entails
κ
(
Glj |Fj

)
< ξ/η

for infinitely many js . Having this, (3.24) and (3.14)), we get a contradic-
tion in the same way as in the one involving (3.23). We are done. �

As an immediate consequence of this proposition and Corollary 2.4, we
get the following.
(3.25) lim

n→∞
Hhn(Jn(G)) ≥ 1.
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In order to complete the proof Theorem 3.1, we also need the following,
much easier to prove, formula.

(3.26) lim
n→∞

Hhn(Jn(G)) ≤ 1.

Indeed, let σ : NN → NN be the shift map, i.e. σ(ω) is uniquely defined be
declaring that for every n ∈ N the nth coordinate of ω is equal to ωn+1.
We denote by π(ω) the unique element of [0, 1] whose continued fraction
representation is equal to ω. So, we have defined an injective Borel map
π : NN → [0, 1]. Its restriction to NN

n is then a Borel bijection onto Jn(G).
Denote by m̃n the image of mn under the inverse of π|NN

n
. It is known

from [4] that there exists µ̃n, a unique Borel probability measure σ-invariant
measure on NN

n , absolutely continuous with respect to m̃n. In addition, µ̃n
is ergodic with respect to σ : NN

n → NN
n and equivalent to m̃n. Now for

every ω ∈ {1, 2, . . . , n}N let

Z(ω) := {j ≥ 1 : ωj = (σj−1(ω))1 = n}.

Because of Birkhoff’s Ergodic Theorem, ergodicity of the measure µ̃n, and
positivity of µ̃n

([
1

n+1 ,
1
n

])
, there exists a Borel set Γn ⊂ {1, 2, . . . , n}N with

µ̃n(Γn) = 1 (equivalently m̃n(Γn) = 1) such that for every ω ∈ Γn the set

Zn(ω) := {j ≥ 1 : ωj = (σj−1(ω))1 = n}

is infinite. Now fix ε > 0. By virtue of Lemma 3.6 there exists Nε ≥ 1 such

κ(gω|j ) ≤ 1 + ε

for n ≥ Nε, all ω ∈ Γn, and all j ∈ Zn(ω). But then, using Lemma 3.2(d),
we get

diamhn(gω|j ([0, 1]))
mn(gω|j ([0, 1])) ≤

κhn(gω|j ) infhn{|g′|ω|j |}
infhn{|g′|ω|j |}

= κhn(gω|j )

≤ κ(gω|j )
≤ 1 + ε.

Along with (3.5) this implies that

lim
r→0

inf
{
diamhn(F )
mn(F ) : ω ∈ Γn, π(ω) ∈ F, diam(F ) ≤ r

}
≤ 1 + ε.

Asmn(π(Γn)) ≥ m̃n(Γn) = 1 by Corollary 2.4, this gives that Hhn(Jn(G)) ≤
1 + ε for all n ≥ Nε. The formula (3.26) is proved.

Now, formulas (3.25) and (3.26) taken together, prove Theorem 3.1.
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4. Short Preliminaries on Conformal Iterated Function Systems
Let (X, ρ) be a compact metric space. Let E be a countable set, either

finite or infinite, called in the sequel an alphabet. Fix a number s ∈ (0, 1).
Suppose that for every e ∈ E there is given an injective contraction φi :
X → X. with a Lipschitz constant ≤ s. The collection

S = {φe : X → X}e∈E
is called an iterated function system; briefly an IFS. Our main object of
interest is the limit set of the system S. We will now define it. For each
ω ∈ E∗, say ω ∈ En, we consider the map coded by ω:

φω := φω1 ◦ · · · ◦ φωn : X → X.

For every ω ∈ EN, the sets {φω|n
(
X
)
}n≥1 form a descending sequence of

non-empty compact sets and therefore
⋂
n≥1 φω|n

(
X
)
6= ∅. Since for every

n ≥ 1,
diam

(
φω|n

(
X
))
≤ sndiam

(
X
)
,

we conclude that the intersection⋂
n≥1

φω|n
(
X
)

is a singleton and we denote its only element by π(ω). In this way we have
defined the coding map π the coding map from the coding space to the
limit set π:

π : EN → X

from EN to X. The set
J := JS = π(EN)

will be called the limit set of the IFS S. An IFS S is called conformal if the
following conditions are satisfied.

(a) X is a compact connected subset of a Euclidean space Rd and X =
Int(X).

(b) (Cone Condition) There exist α, l > 0 such that for every x ∈ ∂X ⊂
Rd there exists an open cone Con(x, u, α) ⊂ Int(X) with vertex x,
the symmetry axis determined by the vector u ∈ Rd of length l and
a central angle of Lebesgue measure α. Here Con(x, u, α, l) = {y :
0 < (y − x, u) ≤ cosα||y − x|| ≤ l}.

(c) (Open set Condition; OSC). For all a, b ∈ E, a 6= b, it holds

φa(Int(X) ∩ φb(Int(X) = ∅.

(d) There exists an open connected set Rd ⊃ W ⊃ X such that for
every e ∈ E, the map φe extends to a C1 conformal diffeomorphism
of W into W .
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(e) (Bounded Distortion Property) There exist a constant K ≥ 1 and
α ∈ (0, 1]such that∣∣∣∣ |φ′ω(y)|

|φ′ω(x)| − 1
∣∣∣∣ ≤ K||y − x||α

and

K−1 ≤ |φ
′
ω(y)|
|φ′ω(x)| ≤ K

for every ω ∈ E∗ and every pair of points x, y ∈ X.

Remark 4.1. Observe that the Cone condition is automatically satisfied if
d = 1. Also, (see [4]) the Bounded Distortion Property is satisfied if either
d ≥ 2, or else if d = 1 and the alphabet E is finite. It is also trivially satisfied
whenever the system S consists of similarities only. Finally, decreasing a
constant K if necessary, the latter property in (e) follows from the former.

For every t ≥ 0 define

P(t) := lim
n→∞

1
n

log
∑
ω∈En

‖φ′ω‖t∞.

The limit exists indeed since the corresponding sequence is subadditive. It
is called the topological pressure of t. If the system S consists of similarities
only, then the pressure is easy to calculate. We have,

P(t) = log
∑
e∈E
|φ′e|t.

The following formula, called Bowen’s formula, was proved in [4].

(4.1) HD(JS) = inf{t ≥ 0 : P(t) ≤ 0} = sup{HD(JF ) : F ⊂ E is finite}.

JF in here is the limit set of the iterated function system {φe : X → X}e∈F .
If all elements of the system S are similarities, then this formula simplifies
to read the following.
(4.2)

HD(JS) = inf
{
t ≥ 0 :

∑
e∈E
|φ′e|t ≤ 1

}
= sup{HD(JF ) : F ⊂ E is finite}.

Remark 4.2. If there exists a parameter t ≥ 0 such that P(t) = 0, meaning
that ∑

e∈E
|φ′e|t = 1

in case of similarities, then this t is unique and is equal to HD(JS). The
system S is then called regular. All finite alphabet systems are obviously
regular.
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5. Hausdorff Measures for Similarity IFSs
In this section we prove a considerably simplified formulas for the numer-

ical value of the Hausdorff measure of the limit set of a conformal (either
finite or infinite) IFS consisting of similarities only. It will be extensively
used in the next section, where a counterexample for continuity of Hausdorff
measure is constructed.

Theorem 5.1. If S = {φe : X → X}e∈E is a conformal (either finite or
infinite) IFS consisting of similarities only, and Hh(JS) > 0, then

Hh(JS) = inf
{
diamh(F )
H1
h(F )

: F ⊂ X, F = F

}
.

Proof. Since

inf
{
diamh(F )
H1
h(F )

: F ⊂ X, F
}

≤ lim
r→0

inf
{
diamh(F )
H1
h(F )

: x ∈ F, F = F, diam(F ) ≤ r
}

for every x ∈ X, as an immediate consequence of Theorem 2.2, we get that

(5.1) inf
{
diamh(F )
H1
h(F )

: F ⊂ X, F = F

}
≤ Hh(JS).

In order to prove the opposite inequality fix ε > 0. Denote the left-hand
side of (5.1) by L. Fix a closed subset F of X such that

(5.2) diamh(F )
H1
h(F )

≤ L+ ε

and
H1
h(F ) > 0.

Given ω ∈ EN let

Z(ω) := {j ≥ 0 : σj(ω) ∈ π−1(F )}.

Since µ̃h(π−1(F )) = µh(F ) > 0, it follows from Birkhoff’s Ergodic Theorem
(and ergodicity of µ̃h with respect to the the shift map σ : EN → EN) that
µ̃h(Γ) = 1, where

Γ := {ω ∈N: Z(ω) is infinite}.
Let ω ∈ Γ and j ∈ Z(ω). Then

π(ω) = φω|j (π(σj(ω)) ∈ φω|j (F )
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and, using (5.2),

diamh(φω|j (F )
)

H1
h

(
φω|j (F )

) =
|φ′ω|j |

hdiamh(F )
|φ′ω|j |

hH1
h(F )

= diamh(F )
H1
h(F )

≤ L+ ε.

Since Z(ω) is unbounded and since H1
h(π(Γ)) ≥ H̃1

h(Γ) ≥ 1, the last two
formulas, in conjunction with Theorem 2.2 (π(ω) plays the role of x ap-
pearing there), imply that Hh(JS) ≤ L + ε. Letting ε → 0+, this yields
Hh(JS) ≤ L. Along with (5.1) this completes the proof. �

Since in all Euclidean metric spaces the diameter of the closed convex
hull of every set A is the same as the diameter of A, as an immediate
consequence of this theorem, we get the following.

Corollary 5.2. If S = {φe : X → X}e∈E is a conformal (either finite
or infinite), IFS consisting of similarities only, Hh(JS) > 0, and X is a
convex set, then

Hh(JS) = inf
{
diamh(F )
H1
h(F )

: F ⊂ X is closed and convex
}
.

Being even more specific, we get the following consequence.

Corollary 5.3. If S = {φe : X → X}e∈E is a conformal (either finite or
infinite) IFS consisting of similarities only, Hh(JS) > 0, and X is a closed
bounded subinterval of R, then

Hh(X) = inf
{
diamh(F )
H1
h(F )

: F ⊂ X is a closed interval
}
.

6. One Dimensional Linear Counterexample
One of the major technical issues in the proof of Theorem 3.1 was to have

the derivative distortion so close to one as desired. As the counterexample,
for continuity of the Hausdorff measure, described below shows, this was
not the only problem.

Example 6.1. We will construct by induction an infinite iterated function
system S = {φn : X → X}n∈N with the following properties.

(a) X = [0, 1].
(b) S consists of decreasing similarities only.

(c)
∞⋃
n=0

φn([0, 1]) = (0, 1]

and, consequently,
JS = [0, 1] \

⋃
ω∈N∗

φω(0).
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(d) lim
n→∞

Hhn(Jn) = 0 < 1 = H1(JS),

where Jn = JSn is the limit set of the iterated function system
Sn := {φ0, φ1, . . . , φn}, and hn := HD(Jn).

We define I1 := {1} and φ1 : [0, 1] → [0, 1] to be the unique linear
(decreasing) map such that

φ1(0) = 1 and φ1(1) = 1/2.
Proceeding inductively suppose that n ≥ 2 and In−1, an initial finite block
of N has been defined along with the linear decreasing maps φi : [0, 1] →
[0, 1], i ∈ In−1, satisfying the following properties

(e)
[ 1
n− 1 , 1

]
⊂

⋃
i∈In−1

φi([0, 1]) ⊂
( 1
n
, 1
]

(f) φi(0) = φi−1(1) for all i ∈ In−1 \ {1}.
Let Nn−1 be the largest number in In−1. Fix a point ξn ∈

(
1

n+1 ,
1
n

)
, for

example 1
2

(
1

n+1 + 1
n

)
. Let φNn−1+1 : [0, 1] → [0, 1] be the unique linear

(decreasing) map such that
(g) φNn−1+1(1) = ξn and φNn−1+1(0) := φNn−1(1) is the left-hand end-

point of
⋃
i∈In−1 φi([0, 1]).

Let
R∗n := {φj : 1 ≤ j ≤ Nn−1 + 1}

and let
s∗n := HD

(
JR∗n

)
.

Fix
γn ∈ (s∗n, 1).

Take an integer kn ≥ 1 so large that
(6.1) (1− γn) log kn ≥ logn.
Since, by Remark 4.2 ,

Nn−1+1∑
i=1

|φ′i|s
∗
n = 1,

there exists an ∈ (0, 1) so small that

(6.2)
Nn−1+1∑
i=1

|φ′i|γn + kna
γn
n =

∑
i∈In−1∪{Nn−1+1}

|φ′i|γn + kna
γn
n < 1.

Let
I∗n := {Nn−1 + 2, Nn−1 + 3, . . . , Nn−1 + kn + 2}

and let
In := In−1 ∪ {Nn−1 + 1} ∪ I∗n = {1, 2 . . . , Nn−1 + kn + 2}.
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Now, for every Nn−1 + 2 ≤ i ≤ Nn−1 + kn + 2, let φi : [0, 1] → [0, 1] be a
linear (decreasing) map with the following properties:

(h) The scaling factor of φi is equal to an for all i = Nn−1+2, . . . , Nn−1+
kn + 2,

(i) φNn−1+2(0) = φNn−1+1(1),
(j) φi+1(0) = φi(1) for all i = Nn−1 + 2, . . . , Nn−1 + kn + 1.

We set
Rn := {φi}i∈In .

Formula (6.2) implies that

(6.3) sn := HD
(
JRn

)
< γn.

Now let
∆n :=

⋃
i∈In

φi([0, 1]).

By our construction ∆n ⊂ (0, 1] is a closed interval and we have
diamsn(∆n)
m̂n(∆n) = (knan)sn

kna
sn
n

= ksn−1
n ,

where m̂n is the only sn-conformal measure for the system Rn. By (6.3)
and (6.1), we get

log
(
ksn−1
n

)
= (sn − 1) log kn < (γn − 1) log kn < − logn = log(1/n),

and therefore,

(6.4) diamsn(∆n)
m̂n(∆n) <

1
n
.

By construction, (In)∞1 is an ascending sequence of initial blocks of N,⋃∞
n=1 In = N, Rn+1|In = Rn, and we define

S =
∞⋃
n=1
Rn.

The required properties (a) and (b) then trivially hold for the system S.
The property (c) holds by virtue of (e), and (d) holds because of (6.2),
which because of Theorem 5.1, implies that H

(
JRn

)
< 1/n.
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