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Explicit primality criteria for h · 2n ± 1

par Yingpu DENG et Dandan HUANG

Résumé. Soit {(T 1
k , . . . , T

f
k )}k≥0 une suite de f -uplets de nom-

bres rationnels définie à partir d’une valeur initiale: une semence
(T 1

0 , . . . , T
f
0 ), par f relations de récurrence qui sont des polynômes

à f variables déduisant le (k+ 1)-ième terme par le k-ième terme,
k ≥ 0. Nous obtenons un algorithme ayant besoin de deux suites
avec des semences convenables pour déterminer la primalité des
nombres h · 2n ± 1, si h 6≡ 0 (mod 17), et cela en temps quasi-
quadratique déterministe. En particulier, quand h = 16m−1 avec
m impair, nous avons un test avec deux semences dépendant seule-
ment de h, et pas de n, alors que les résultats de Berrizbeitia et
Berry (2004) impliquent qu’aucune famille finie de semences dans
leur test lucasien de primalité n’est suffisante pour tester la pri-
malité de h · 2n ± 1 pour tous n. Les techniques utilisées sont les
lois de réciprocité octique et bi-octique.

Abstract. Let {(T 1
k , . . . , T

f
k )}k≥0 be a sequence of f -tuples

of rational numbers defined from a seed (T 1
0 , . . . , T

f
0 ), which is

a given initial value, by f recurrences which are polynomials in
f variables from the k-th term to deduce the (k + 1)-th term,
k ≥ 0. We describe an algorithm which needs two such sequences
with two suitable seeds to determine the primality of numbers
h · 2n ± 1, provided h 6≡ 0 (mod 17), and it runs in deterministic
quasi-quadratic time. In particular, when h = 16m−1, m odd, we
have a test with two seeds depending only on h, not on n, while
the result of Berrizbeitia and Berry (2004) implied that no finite
family of seeds for their Lucasian primality test would suffice to
test the primality of h · 2n ± 1 for all n. The techniques which we
used are Octic and Bioctic Reciprocity Laws.

Manuscrit reçu le 1er août 2013, révisé le 21 janvier 2015, accepté le 11 octobre 2015.
Mathematics Subject Classification. 11A51, 11Y11.
Mots-clefs. Primality test, Generalized Lucasian sequence, Reciprocity Law, Computational

complexity.
We would like to thank the referee for their kind comments. The work of this paper was sup-

ported by the NNSF of China (Grant No. 11471314), NSFC (No. 11401312), NSF of the Jiangsu
Higher Education Institutions (No. 14KJB110012), and the National Center for Mathematics
and Interdisciplinary Sciences, CAS.



56 Yingpu Deng, Dandan Huang

1. Introduction
Fast deterministic primality tests for numbers of the form h · 2n ± 1, h

odd, have been studied by Lucas [6], Lehmer [5], Bosma [3], Berrizbeitia
and Berry [2] and many others. What this paper mainly concerns is that
for fixed odd positive integer h, how to obtain explicit primality criteria for
the family of numbers h · 2n ± 1 with n increasing. Actually, this problem
was also proposed by Bosma in [3], who dealt with the case h · 2n + 1 and
the case h · 2n − 1 separately.

The earliest result related to the above problem could date back to Lu-
cas and Lehmer. Before introducing their result, we give several relevant
definitions. A generalized Lucasian sequence with seed (T 1

0 , . . . , T
f
0 ) is a se-

quence {(T 1
k , . . . , T

f
k )}k≥0 of f -tuples of rational numbers defined from the

given initial value (T 1
0 , . . . , T

f
0 ) by f recurrences which are polynomials in

f variables from the k-th term (T 1
k , . . . , T

f
k ) to deduce the (k + 1)-th term

(T 1
k+1, . . . , T

f
k+1), k ≥ 0. A generalized Lucasian primality test is a primality

test involving finitely many generalized Lucasian sequences. In particular,
if we take f = 1, T 1

k+1 = (T 1
k )2−2 in previous definitions, then one can get

the Lucasian sequence and Lucasian primality test, which are exactly the
ones defined in [2].

The following theorem is the celebrated Lucas-Lehmer test for Mersenne
primes, which are the special case of numbers h · 2n− 1, that is, the case of
h = 1 (see [5, 6] for details).

Theorem 1.1 (Lucas-Lehmer). Let Mp = 2p − 1 be a Mersenne number,
where p is an odd prime. Let {uk}k≥0 be the Lucasian sequence with seed
u0 = 4. Then Mp is prime if and only if up−2 ≡ 0 (mod Mp).

In [3], Bosma generalized the Lucas-Lehmer test to a Lucasian primality
test for numbers h · 2n− 1, provided that h is not divisible by 3, as follows:

Theorem 1.2 ([3]). Let M = h · 2n − 1, where h < 2n is odd, h 6≡ 0
(mod 3) and n ≥ 3. Let {uk}k≥0 be the Lucasian sequence with seed u0 =
−((2 +

√
3)h + (2 −

√
3)h). Then M is prime if and only if un−2 ≡ 0

(mod M).

One can see that the seed of this test is no longer a constant, but it
depends only on h, not on n. Hence, for fixed h, h 6≡ 0 (mod 3), Theorem 1.2
leads to explicit primality criteria for all numbers h·2n−1 with n increasing
by using only one seed. Bosma [3] also produced explicit primality criteria
for numbers of the form h · 2n + 1 with h 6≡ 0 (mod 3), as follows:

Theorem 1.3 ([3]). LetM = h·2n+1, where h < 2n is odd, h 6≡ 0 (mod 3),
and n ≥ 2. Then M is prime if and only if 3(M−1)/2 ≡ −1 (mod M).
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We can rewrite Theorem 1.3 as a form of generalized Lucasian primality
test defined above. For that, let {Tk}k≥0 be a generalized Lucasian se-
quence with seed T0 = 3h and the recurrence Tk+1 = T 2

k for k ≥ 0. Hence,
3(M−1)/2 ≡ −1 (mod M) if and only if Tn−1 ≡ −1 (mod M). In other
words, for fixed h, h 6≡ 0 (mod 3), Theorem 1.3 leads to a generalized Lu-
casian primality test for the family of numbers h · 2n + 1 with n varying by
using a single seed T0 = 3h. In [2], Berrizbeitia and Berry first treated the
cases h · 2n ± 1 simultaneously in the following way:

Theorem 1.4 ([2]). Let M = h · 2n ± 1, where h < 2n−2 − 1 is odd,
h 6≡ 0 (mod 5), and n ≥ 4. Let α = −1 + 2i ∈ Z[i] and let {uk}k≥0 be
the Lucasian sequence with seed u0 = (α/ᾱ)h + (ᾱ/α)h, where i =

√
−1

is a fourth complex primitive root of unity and a bar denotes the complex
conjugation. Set M∗ = (−1)(M−1)/2M . Then M is prime if and only if

(1) either M∗ ≡ ±2 (mod 5) and un−2 ≡ 0 (mod M)
(2) or M∗ ≡ −1 (mod 5) and un−3 ≡ 0 (mod M).

For any odd integer k, we set k∗ = (−1)(k−1)/2k in this paper. Theo-
rem 1.4 is a Lucasian primality test, which leads to explicit primality crite-
ria for all numbers h · 2n± 1 with fixed h, h 6≡ 0 (mod 5), by using a single
seed. When h = 4m − 1, m ∈ Z, m > 0, Theorem 3.3 (resp. Theorem 3.4)
of [3] proved by Bosma implies that his test needs infinitely many seeds to
test primality of h · 2n + 1 (resp. h · 2n − 1) for these h. Nevertheless, for
h = 4m− 1 with odd m (implying that h ≡ −2 6≡ 0 (mod 5)), Theorem 1.4
allows the use of only one seed u0, which improves the results of Bosma [3].

Until now we see that, for fixed h 6≡ 0 (mod 15), Theorem 1.4, together
with the results known to Bosma, imply that a generalized Lucasian pri-
mality test can test the primality of h · 2n ± 1 with at most two sequences
with two seeds. While for h = 15, this is the first case for which both the
primality tests of [2] and [3] need infinitely many seeds. We will prove this
later in Propositions 3.2 and 3.3.

The results of [2] or [3] are mainly based on the Quadratic or Biquadratic
Reciprocity Law. In this paper, we make use of higher order reciprocity
laws, that is Eisenstein’s Reciprocity Laws of order 8 and 16, to deduce a
generalized Lucasian primality test for the cases h · 2n ± 1 simultaneously,
provided h 6≡ 0 (mod 17), by means of two generalized Lucasian sequences
with two seeds. Moreover, the two seeds depend only on h, not on n. Thus,
for h = 16m − 1 with odd m, such as h = 15, our test implies that finitely
many seeds (actually only two seeds) are needed to test the primality of
h · 2n ± 1 for all n large enough. Hence, our test improves the results of
Berrizbeitia and Berry [2] and Bosma [3].

Bosma [3] proved Theorem 1.2 (or Theorem 1.3) by finding an integer
D = 12 (or D = 3), such that the quadratic symbol ( D

h·2n−1) 6= 1 (or
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( D
h·2n+1) 6= 1) for all odd h 6≡ 0 (mod 3) and for all n ≥ 3. Berrizbeitia and
Berry [2] proved Theorem 1.4 by finding a primary irreducible element π
in Z[i] of norm 5, such that the biquadratic symbol ( π

h·2n±1)4 6= 1 for all
odd h 6≡ 0 (mod 5) and for all n ≥ 4. To obtain the suitable seeds in our
primality test, we exploit the knowledge of algebraic number theory to find
a primary irreducible element π1 ∈ Z[ζ8], of norm 17, and an irreducible
element π2 ∈ Z[ζ16], also of norm 17, such that for all odd h 6≡ 0 (mod 17)
and for all n ≥ 7, either the 8−th power residue symbol ( π1

h·2n±1)8 6= 1 or
the 16−th power residue symbol

(
µπ2

h·2n±1

)
16
6= 1, where µ is a 16-th root of

unity such that µπ2 is a primary element in Z[ζ16].
The paper is organized as follows. In Section 2, we introduce the high

order power residue symbol and recall Eisenstein’s Reciprocity Laws, es-
pecially for the Octic and Bioctic Reciprocity Laws. In Section 3, we first
state the facts we need from the arithmetic of the eighth and sixteenth
cyclotomic fields, then we describe the main result of this paper. We prove
this result in Section 4. Computational complexity of the generalized Lu-
casian primality test related to our main result is analyzed in Section 5.
We end this paper with an opened problem.

2. Octic and Bioctic reciprocity
What we state in this section can be found in [4, Chapter 14] and [1,

Chapter 14].
For a positive integer m, let ζm = e2π

√
−1/m be a complex primitive m-th

root of unity, and let D = Z[ζm] be the ring of integers of the cyclotomic
field Q(ζm). Let p be a prime ideal of D lying over a rational prime p with
gcd(p,m) = 1. For every α ∈ D, the m-th power residue symbol

(
α
p

)
m

is
defined by:

(1) If α ∈ p, then
(
α
p

)
m

= 0.

(2) If α /∈ p, then
(
α
p

)
m

= ζim with i ∈ Z, where ζim is the unique m-th
root of unity in D such that

α(Nm(p)−1)/m ≡ ζim (mod p),
where Nm(p) is the absolute norm of the ideal p.

(3) If a ⊂ D is an arbitrary ideal and a =
∏

pnii is its factorization as a
product of prime ideals, then(

α

a

)
m

=
∏(

α

pi

)ni
m

.

We set
(
α
D

)
m

= 1.
(4) If β ∈ D and β is prime to m define

(
α
β

)
m

=
(
α
βD

)
m
.
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Suppose that m = 4, then D = Z[i] with i =
√
−1. A nonunit α ∈ D

is called primary if α ≡ 1 (mod (1 + i)3). The next two propositions of
biquadratic residue are used in Section 3. For the proofs, see Proposi-
tions 9.8.4, 9.9.6 and 9.9.7 in [4].
Proposition 2.1. Let q be a rational prime with q ≡ 3 (mod 4). Then(
a
q

)
4

= 1 for a ∈ Z, q - a.

Proposition 2.2 (Biquadratic Reciprocity Law). Let q be an odd rational
prime and let α ∈ Z[i], α 6∈ Z, be irreducible and primary. Then(

α

q

)
4

=
(
q∗

α

)
4
.

Let m = ln (6= 2, 4), where l is a prime and n is a positive integer.
An element α ∈ D is said to be primary if α is coprime with m and
εc(α) = (−1)M , where M = (N(αD) − 1)/m, c is some given integer, and
εc(α) is a power of ζm of which the definition can be found in [1, Chapter
14]. The following crucial theorem originates from [1, Th. 14.3.1, p. 474].
Theorem 2.3 (Eisenstein’s Reciprocity Law). Let m = ln ( 6= 2, 4), where
l is a prime and n is a positive integer. Let a be a rational prime and prime
to m, and let α be a primary integer in L = Q(ζm). Then

(1)
(
α
a

)
m

=
(
a
α

)
m
, if l > 2,

(2)
(
α
a

)
m

=
(
a∗

α

)
m
, if l = 2.

Remark.
(1) When m = 8, let α ∈ Z[ζ8] be prime to 8, then α is primary if and

only if α ≡ 1 or 1 + ζ8 + ζ3
8 (mod 2) (see [1, Th. 14.2.1] for details).

(2) Let m = 2n with n ≥ 3 and let α ∈ Z[ζm] be prime to 2. There
are exactly two m-th roots of unity µi such that µiα is primary,
i = 1, 2 (see [1, Th. 14.6.2]).

(3) It is sufficient to apply Theorem 2.3 with the cases m = 8 and
m = 16 in this paper, that is, Octic and Bioctic Reciprocity Laws.

3. Explicit primality test
From now on we will deduce explicit primality criteria for numbers M =

h · 2n ± 1 with n ≥ 2, provided that h 6≡ 0 (mod 17). First, we introduce
some notations which are used through the full text.

Let ζ8 = e2π
√
−1/8 and ζ16 = e2π

√
−1/16, and let L1 = Q(ζ8), L2 = Q(ζ16)

be the eighth, sixteenth cyclotomic fields respectively. Let D1 = Z[ζ8],
D2 = Z[ζ16] be the corresponding cyclotomic rings. Let G be the Galois
group of Q(ζ16) over Q, i.e., G = Gal(Q(ζ16)/Q). Then use the fact of
algebraic number theory,

Gal(Q(ζ16)/Q) = {σ±i | i = 1, 3, 5, 7}
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where σc is the element of G that sends ζ16 to ζc16 for every odd integer
c. We can also denote the element of Gal(Q(ζ8)/Q), which sends ζ8 to ζc8,
by σc. Thus Gal(Q(ζ8)/Q) = {σ±i | i = 1, 3}. Let K1 = Q(ζ8 + ζ−1

8 ),
K2 = Q(ζ16 + ζ−1

16 ) be the maximal real subfield of L1 and L2 respectively.
Then we have

Gal(K1/Q) = {σi|K1 | i = 1, 3}, Gal(K2/Q) = {σi|K2 | i = 1, 3, 5, 7}

For τ in the group ring Z[G] and α in L2 with α 6= 0, we denote by ατ
to the action of the element τ of Z[G] on the element α of L2, and

ατ =
∏
σ∈G

σ(α)kσ , if τ =
∑
σ∈G

kσσ where kσ ∈ Z.

If τ ∈ G, we will either write ατ or τ(α). Set σ1 = 1 in Z[G].
Next we define two generalized Lucasian sequences which are used to

testing primality of M = h · 2n ± 1 in our explicit test. The definition of a
generalized Lucasian sequence is as in the introduction.

(1) {(Tk, Nk)}k≥0 with seed (T0, N0). For k ≥ 0 define (Tk+1, Nk+1)
recursively by the formulas:

Tk+1 = T 2
k − 2Nk − 4,(3.1)

Nk+1 = N2
k − 2T 2

k + 4Nk + 4.(3.2)

(2) {(Xk, Yk, Zk,Wk)}k≥0 with seed (X0, Y0, Z0,W0). For k ≥ 0 define
(Xk+1, Yk+1, Zk+1, Wk+1) recursively by the formulas:

Xk+1 = X2
k − 2Yk − 8,(3.3)

Yk+1 = Y 2
k − 2XkZk + 2Wk − 6X2

k + 12Yk + 24,(3.4)
Zk+1 = Z2

k − 2WkYk − 4Y 2
k + 8XkZk − 8Wk + 12X2

k − 24Yk − 32,(3.5)
Wk+1 =W 2

k −2Z2
k +4WkYk+4Y 2

K−8XkZk+8Wk−8X2
k +16Yk+16.(3.6)

The reader will see the underlying reason for the appearance of gener-
alized Lucasian sequences {(Tk, Nk)}k≥0 and {(Xk, Yk, Zk,Wk)}k≥0, by the
later Propositions 4.3 and 4.4. The elementary symmetric polynomials in
variables x1, . . . , xm, written Sk(x1, . . . , xm) for k = 1, . . . ,m, are defined
by

Sk(x1, . . . , xm) =
∑

1≤j1<...<jk≤m
xj1 . . . xjk .

We will need the cases of m = 2, 4 later. Finally, our explicit primality test
is described as follows, which treats the cases h · 2n ± 1 simultaneously.

Theorem 3.1. Let M = h · 2n ± 1, n ≥ 7, where h 6≡ 0 (mod 17), and
0 < h < 2n−6 is odd. Let π1 = 1 + 2ζ3

8 and π2 = 1 − ζ16 + ζ5
16. Let
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{(Tk, Nk)}k≥0 and {(Xk, Yk, Zk,Wk)}k≥0 be two generalized Lucasian se-
quences defined as (3.1), (3.2) and (3.3), (3.4), (3.5), (3.6) respectively,
with seeds

(T0, N0) = (TrK1/Q(αh1 + ᾱ1
h),NmK1/Q(αh1 + ᾱ1

h)),
and

(X0, Y0, Z0,W0) = (TrK2/Q(η), S2(η, σ3(η), σ5(η), σ7(η)),
S3(η, σ3(η), σ5(η), σ7(η)),NmK2/Q(η)),

where α1 = (π1/π̄1)1+3σ3, α2 = (π2/π̄2)1+3σ−5+5σ−3+7σ7, η = αh2 + ᾱ2
h, and

a bar indicates the complex conjugation.
Then M is prime if and only if M is not divisible by any of the solutions

of the equation x4 ≡ 1 (mod 2n−3) in the range 1 < x < 2n−3, and one of
the followings holds:

(1) M∗≡±4 (mod 17), and Tn−3 ≡−Nn−3 ≡−4 (mod M)
(2) M∗≡±2, ±8 (mod 17), and Tn−3 ≡Nn−3 ≡ 0 (mod M)
(3) M∗≡±3, ±5, ±6, ±7 (mod 17), and Tn−3 ≡ 0 (mod M), Nn−3 ≡
−2 (mod M)

(4) M∗≡−1 (mod 17), and Xn−4 ≡−8 (modM), Yn−4 ≡ 24 (modM),
Zn−4 ≡−32 (modM), Wn−4 ≡ 16 (modM).

We will show Theorem 3.1 in the next section. Note that, the two seeds
((T0, N0) and (X0, Y0, Z0,W0)) of Theorem 3.1 depend only on h, not on n.
Especially when h = 16m − 1 with odd m, we have h ≡ −2 6≡ 0 (mod 17),
so Theorem 3.1 implies that only two seeds are needed to test the primality
of h · 2n ± 1 for all n large enough. Nevertheless, the following Proposi-
tions 3.2 and 3.3 show that no finite family of seeds for the biquadratic test
in [2] would suffice to test primality of h · 2n ± 1 for all n large enough.
Besides, Theorems 3.3 and 3.4 in [3] imply that Bosma’s quadratic test
needs infinitely many seeds to test primality of h · 2n ± 1, provided that
h = 4k − 1, k ≥ 1. Thereby, our generalized Lucasian primality test im-
proves the results of Berrizbeitia and Berry [2] and Bosma [3].

Proposition 3.2. Let m be a positive integer. Then, for every finite set of
primary elements S ⊂ Z[i] with i =

√
−1, there exists n ≥ 2 such that(

α

(16m − 1) · 2n + 1

)
4

= 1 for every α ∈ S.

Proof. Let P be the finite set of primary irreducibles dividing at least one
α ∈ S:

P = {π | π primary irreducible, ∃ α ∈ S such that π | α}.
Employing the fact that a primary element can be written as the product
of primary irreducibles and the multiplicativity of the biquadratic symbol,
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it suffices to prove that there exists n ≥ 2 such that(
π

(16m − 1) · 2n + 1

)
4

= 1 for every π ∈ P.

Let P be the finite set of prime numbers being divided by at least one
π ∈ P in the ring Z[i]:

P = {p | p prime, ∃ π ∈ P such that π | p}.
Clearly, 2 6∈ P . Next we choose n ≥ 2 such that n is a multiple of ordp(2) for
every p ∈ P , where ordp(2) denotes the multiplicative order of 2 modulo p.
Thus for every π ∈ P, there exists a unique p ∈ P such that π | p. Suppose
that p ≡ 3 (mod 4), then π = −p. By Biquadratic Reciprocity Law, we
have(

π

(16m − 1) · 2n + 1

)
4

=
((16m − 1) · 2n + 1

π

)
4

=
((16m − 1) · 2n + 1

p

)
4

=
((16m − 1) · 1 + 1

p

)
4

=
(16m

p

)
4

= 1.

The last equality holds because gcd(p, 16m) = 1 and Proposition 2.1 applies.
Suppose now that p ≡ 1 (mod 4), then p = ππ̄. By Biquadratic Reci-

procity Law, we have(
π

(16m−1) · 2n + 1

)
4

=
((16m−1) · 2n + 1

π

)
4
≡ ((16m−1) · 2n + 1)(p−1)/4

≡ ((16m − 1) · 1 + 1)(p−1)/4 = 2m(p−1) ≡ 1 (mod π).

The last congruence holds since 2p−1 ≡ 1 (mod p). Therefore,(
π

(16m − 1) · 2n + 1

)
4

= 1

in all cases. This proves the proposition. �

Proposition 3.3. Let m be a positive integer. Then, for every finite set of
primary elements S ⊂ Z[i] with i =

√
−1, there exists n ≥ 2 such that(

α

(16m − 1) · 2n − 1

)
4

= 1 for every α ∈ S.

Proof. Let P be the finite set of primary irreducibles dividing at least one
α ∈ S:

P = {π | π primary irreducible, ∃ α ∈ S such that π | α}.
By multiplicativity of the biquadratic symbol, it suffices to prove that there
exists n ≥ 2 such that(

π

(16m − 1) · 2n − 1

)
4

= 1 for every π ∈ P.
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Let P be the finite set of prime numbers being divided by at least one
π ∈ P in the ring Z[i]:

P = {p | p prime, ∃ π ∈ P such that π | p}.

Clearly, 2 6∈ P . Next we can choose n ≥ 2 such that n ≡ −4m (mod ordp(2))
for every p ∈ P , where ordp(2) denotes the multiplicative order of 2 modulo
p. Thus for every π ∈ P, there exists an unique p ∈ P such that π | p. Sup-
pose that p ≡ 3 (mod 4), then π = −p. By Biquadratic Reciprocity Law,
we have(

π

(16m−1) · 2n − 1

)
4

=
(−(16m−1) · 2n + 1

π

)
4

=
(−(16m−1) · 2n + 1

p

)
4

=
(
−(16m − 1) · 16−m + 1

p

)
4

=
(

16−m

p

)
4

= 1.

The last equality holds since gcd(p, 16m) = 1 and Proposition 2.1 applies.
Suppose now that p ≡ 1 (mod 4), then p = ππ̄. By Biquadratic Reci-

procity Law, we have(
π

(16m − 1) · 2n − 1

)
4

=
(−(16m − 1) · 2n + 1

π

)
4

≡ (−(16m − 1) · 2n + 1)(p−1)/4

≡ (−(16m − 1) · 16−m + 1)(p−1)/4

≡ 2−m(p−1) ≡ 1 (mod π).

The last congruence makes use of the fact that 2p−1 ≡ 1 (mod p). There-
fore, (

π

(16m − 1) · 2n − 1

)
4

= 1

in all cases. This proves the proposition. �

4. Proof of Theorem 3.1
The proof of Theorem 3.1 consists of several steps. Firstly, the next two

Lemmas 4.1 and 4.2 derive two congruent relations of 8−th and 16−th
power residue symbols, which are crucial to the proof of necessity of Theo-
rem 3.1. Secondly, the proof of sufficiency of the congruences on the gener-
alized Lucasian sequences is mainly based on Lemmas 4.5 and 4.6. Besides,
we will use the Octic and Bioctic Reciprocity Laws in the proof, which need
primary elements of Z[ζ8] and Z[ζ16] respectively. Corollary 4.8 is used in
the final proof, instead of Lemma 4.2, since that we need not verify if the
element π2 = 1− ζ16 + ζ5

16 is primary or not.
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Lemma 4.1. Let q be an odd prime such that q∗ ≡ 1 (mod 8), and let
π 6= 0 be an integer in L1 = Q(ζ8). Then(

π

q

)
8
≡ α

q∗−1
8 (mod q)

where α = (π/π̄)1+3σ3.

Proof. Suppose q∗ = q, that is, q ≡ 1 (mod 8). Then the ideal qD1 fac-
torizes into a product of 4 distinct prime ideals in the ring D1, written as
qD1 = (pp̄)1+σ3 . By the definition of 8−th residue symbol, we have(

π

q

)
8

=
(

π

(pp̄)1+σ3

)
8

=
(

π

pp̄(pp̄)σ3

)
8

=
(
π/π̄

p

)
8

(
(π/π̄)3σ3

p

)
8

=
(
α

p

)
8
≡ α

q−1
8 (mod p).

Since p is an arbitrary prime ideal lying over q, we have(
π

q

)
8
≡ α

q∗−1
8 (mod q).

Suppose now q∗ = −q, that is, q ≡ −1 (mod 8). Then the ideal qD1 fac-
torizes into a product of 2 distinct prime ideals, written as qD1 = ppσ3 .
Thus (

π

q

)
8

=
(

π

ppσ3

)
8

=
(
π

p

)
8

(
π

pσ3

)
8

=
(
π1+3σ3

p

)
8
≡ (π1+3σ3)

q2−1
8 ≡ ᾱ

q+1
8 (mod p).

The last congruence holds because of πq ≡ π̄ (mod p), which can be seen
by observing that the complex conjugation coincides with the Frobenius
automorphism of D1/p. Hence(

π

q

)
8
≡ ᾱ

−q∗+1
8 = α

q∗−1
8 (mod q).

The last equality makes use of the fact αᾱ = 1. This ends the proof. �

Lemma 4.2. Let q be an odd prime such that q∗ ≡ 1 (mod 16), and let
π 6= 0 be an integer in L2 = Q(ζ16). Then(

π

q

)
16
≡ α

q∗−1
16 (mod q)

where α = (π/π̄)1+3σ−5+5σ−3+7σ7.

Proof. Suppose q∗ = q, i.e., q ≡ 1 (mod 16), Thus the ideal qD2 factorizes
into the product of 8 distinct prime ideals in the ring D2, written as qD2 =
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(pp̄)1+σ3+σ5+σ7 . According to the definition of 16-th residue symbol, we
have (

π

q

)
16

=
(

π

(pp̄)1+σ3+σ5+σ7

)
16

=
(

(π/π̄)1+3σ−5+5σ−3+7σ7

p

)
16

=
(
α

p

)
16
≡ α

q−1
16 (mod p).

Since p is an arbitrary prime ideal lying over q, we get(
π

q

)
16
≡ α

q∗−1
16 (mod q).

Suppose now q∗ = −q, i.e., q ≡ −1 (mod 16). Then the ideal qD2 could
be written as a product of 4 distinct prime ideals, written as qD2 =
p1+σ3+σ5+σ7 . Thus we have(

π

q

)
16

=
(
π

p

)
16

(
π

pσ3

)
16

(
π

pσ5

)
16

(
π

pσ7

)
16

=
(
π1+3σ−5+5σ−3+7σ7

p

)
16

≡
(
π1+3σ−5+5σ−3+7σ7

)(q2−1)/16
≡ ᾱ(q+1)/16 (mod p).

The last congruence uses the fact that πq ≡ π̄ (mod p), which can be seen
by observing that the complex conjugation coincides with the Frobenius
automorphism of D2/p. Therefore(

π

q

)
16
≡ ᾱ(−q∗+1)/16 = α(q∗−1)/16 (mod q).

The last equality holds since αᾱ = 1. �

The following two propositions explain the appearance of generalized
Lucasian sequences {(Tk, Nk)} and {(Xk, Yk, Zk,Wk)} in Theorem 3.1.

Proposition 4.3. Let α be an element satisfying αᾱ = 1 in the field
L1 = Q(ζ8). Let {(Tk, Nk)}k≥0 be the generalized Lucasian sequence defined
as (3.1) and (3.2) with seed (T0, N0) = (TrK1/Q(α + ᾱ),NmK1/Q(α + ᾱ)).
Then Tk = TrK1/Q(α2k + ᾱ2k) and Nk = NmK1/Q(α2k + ᾱ2k), for k ≥ 0.

Proof. It suffices to prove that Tk := TrK1/Q(α2k + ᾱ2k) and Nk :=
NmK1/Q(α2k + ᾱ2k) satisfy the recurrent relations given by (3.1) and (3.2).
To see this, let Ak = α2k + ᾱ2k and Bk = σ3(Ak). Thus Tk = Ak + Bk,
Nk = AkBk.
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Since αᾱ = 1, we get Ak+1 = A2
k − 2, Bk+1 = B2

k − 2. Substituting them
in Tk+1 and Nk+1, one may obtain

Tk+1 = A2
k +B2

k − 4 = T 2
k − 2Nk − 4,

Nk+1 = (A2
k − 2)(B2

k − 2) = N 2
k − 2(T 2

k − 2Nk) + 4
= N 2

k − 2T 2
k + 4Nk + 4.

This is exactly what we want. �

Proposition 4.4. Let α be an element satisfying αᾱ = 1 in the field L2 =
Q(ζ16) and η = α+ᾱ. Let {(Xk, Yk, Zk,Wk)}k≥0 be the generalized Lucasian
sequence defined as (3.3), (3.4), (3.5) and (3.6) with seed X0 = TrK2/Q(η),
Y0 = S2(η, σ3(η), σ5(η), σ7(η)), Z0 = S3(η, σ3(η), σ5(η), σ7(η)) and W0 =
NmK2/Q(η). Then Xk = TrK2/Q(ηk), Yk = S2(ηk, σ3(ηk), σ5(ηk), σ7(ηk)),
Zk = S3(ηk, σ3(ηk), σ5(ηk), σ7(ηk)) and Wk = NmK2/Q(ηk), where ηk =
α2k + ᾱ2k , for k ≥ 0.

Proof. It suffices to prove that Xk = TrK2/Q(ηk), Wk = NmK2/Q(ηk),
Yk = S2(ηk, σ3(ηk), σ5(ηk), σ7(ηk)), and Zk = S3(ηk, σ3(ηk), σ5(ηk), σ7(ηk))
satisfy the recurrences (3.3), (3.4), (3.5) and (3.6).

To see this, let Ak = ηk, Bk = σ3(ηk), Ck = σ5(ηk) and Dk = σ7(ηk). As
in Proposition 4.3, we have Ak+1 = A2

k − 2, Bk+1 = B2
k − 2, Ck+1 = C2

k − 2
and Dk+1 = D2

k − 2. Substituting all of them in Xk+1, Yk+1, Zk+1 and
Wk+1, one may obtain

Xk+1 = A2
k +B2

k + C2
k +D2

k − 8
= X 2

k − 2Yk − 8,

Yk+1 = (AkBk)2 + (AkCk)2 + (AkDk)2 + (BkCk)2 + (BkDk)2 + (CkDk)2

− 6(A2
k +B2

k + C2
k +D2

k) + 24
= Y2

k − 2(XkZk −Wk)− 6(X 2
k − 2Yk) + 24,

Zk+1 = (AkBkCk)2 + (AkBkDk)2 + (AkCkDk)2 + (BkCkDk)2

− 4[(AkBk)2 + (AkCk)2 + (AkDk)2 + (BkCk)2 + (BkDk)2

+ (CkDk)2] + 12(A2
k +B2

k + C2
k +D2

k)− 32
= Z2

k − 2WkYk − 4Y2
k + 8(XkZk −Wk) + 12X 2

k − 24Yk − 32,

Wk+1 = (A2
k − 2)(B2

k − 2)(C2
k − 2)(D2

k − 2)
=W2

k − 2Z2
k + 4WkYk + 4Y2

k − 8(XkZk −Wk)− 8X 2
k + 16Yk + 16.

This is exactly what we want. �
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By Proposition 4.3, we obtain Tk = S1(ηk, σ3(ηk)), Nk = S2(ηk, σ3(ηk)),
where ηk = α2k + ᾱ2k . Thereby, Tk and Nk are the coefficients of the char-
acteristic polynomial of ηk with respect to the field extension K1/Q. Also,
applying Proposition 4.4, we get Xk = S1(ηk, σ3(ηk), σ5(ηk), σ7(ηk)), Yk =
S2(ηk, σ3(ηk), σ5(ηk), σ7(ηk)), Zk = S3(ηk, σ3(ηk), σ5(ηk), σ7(ηk)) and Wk =
S4(ηk, σ3(ηk), σ5(ηk), σ7(ηk)). Thus Xk, Yk, Zk and Wk are exactly the co-
efficients of the characteristic polynomial of ηk with respect to the field
extension K2/Q.

After we made clear these generalized Lucasian sequences, we need the
following two lemmas for the proof of sufficiency of Theorem 3.1.
Lemma 4.5. Let fields L1 and K1 be as before, let q be an odd prime and
let π ∈ D1 be prime to q. Set α = π/π̄. Let {(Tk, Nk)}k≥0 be the gener-
alized Lucasian sequence defined as (3.1) and (3.2) with seed (T0, N0) =
(TrK1/Q(α+ ᾱ),NmK1/Q(α+ ᾱ)). Suppose that for some j ≥ 0, one of the
followings holds:

(1) Tj ≡ −Nj ≡ −4 (mod q),
(2) Tj ≡ Nj ≡ 0 (mod q),
(3) Tj ≡ 0 (mod q) and Nj ≡ −2 (mod q).

Then q2 ≡ 1 (mod 2j+1).

Proof. We have Tj = TrK1/Q(α2j + ᾱ2j ), Nj = NmK1/Q(α2j + ᾱ2j ) using
Proposition 4.3. Let q be a prime ideal of the ring of integers of K1 lying
over q, and Q be a prime ideal of D1 lying over q. Let β = α2j + ᾱ2j .

Suppose (1) holds, that is, TrK1/Q(β) ≡ −4 ≡ −NmK1/Q(β) (mod q).
Using the property of the characteristic polynomial of β, we get

β2 + 4β + 4 ≡ 0 (mod q), i.e., α2j + ᾱ2j ≡ −2 (mod Q),
since αᾱ = 1 and π is prime to q. Multiplying both sides of the above
congruence by α2j = ᾱ−2j , we have

α2j ≡ −1 (mod Q).
That is to say, the image of α has order 2j+1 in the multiplicative group
(D1/Q)∗. We already know the order of this group is N(Q)−1 which divides
q2 − 1. Thus q2 ≡ 1 (mod 2j+1).

Suppose (2) holds, that is, TrK1/Q(β) ≡ 0 ≡ NmK1/Q(β) (mod q). Simi-
larly, we get

β2 ≡ 0 (mod q), i.e., α2j + ᾱ2j ≡ 0 (mod Q).

Multiplying both sides of the last congruence by α2j = ᾱ−2j , we have

α2j+1 ≡ −1 (mod Q).
That is to say, the image of α has order 2j+2 in the group (D1/Q)∗, so
q2 ≡ 1 (mod 2j+2).
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Suppose now (3) holds, that is, TrK1/Q(β)≡ 0 (mod q) and NmK1/Q(β)≡
−2 (mod q). Thus

β2 − 2 ≡ 0 (mod q), i.e., α2j+1 + ᾱ2j+1 ≡ 0 (mod Q).

Multiplying both sides of the above congruence by α2j+1 = ᾱ−2j+1 , we get

α2j+2 ≡ −1 (mod Q).
In this case the order of the image of α in (D1/Q)∗ is 2j+3. Hence we have
q2 ≡ 1 (mod 2j+3). This ends the proof. �

Lemma 4.6. Let fields L2 and K2 be as before, let q be an odd prime and
let π ∈ D2 be prime to q. Set α = π/π̄. Let {(Xk, Yk, Zk,Wk)}k≥0 be the
generalized Lucasian sequence defined as (3.3), (3.4), (3.5) and (3.6) with
seed

(X0, Y0, Z0,W0) = (TrK2/Q(η), S2(η, σ3(η), σ5(η), σ7(η)),
S3(η, σ3(η), σ5(η), σ7(η)),NmK2/Q(η)),

where η = α + ᾱ. Suppose that for some j ≥ 0, Xj ≡ −8 (mod q),
Yj ≡ 24 (mod q), Zj ≡ −32 (mod q) and Wj ≡ 16 (mod q). Then q4 ≡ 1
(mod 2j+1).

Proof. We have Xj = NmK2/Q(β), Yj = S2(β, σ3(β), σ5(β), σ7(β)), Zj =
S3(β, σ3(β), σ5(β), σ7(β)), and Wj = NmK2/Q(β) using Proposition 4.4,
where β = α2j + ᾱ2j ∈ K2. Let q be a prime ideal of the ring of integers
of K2 lying over q, and Q be a prime ideal of D2 lying over q. Thus the
assumption tells us that the characteristic polynomial of β has the following
property:

(β + 2)4 = β4 + 8β3 + 24β2 + 32β + 16 ≡ 0 (mod q),
i.e.,

α2j + ᾱ2j ≡ −2 (mod Q).
Multiplying both sides of the above congruence by α2j = ᾱ−2j , we have

α2j ≡ −1 (mod Q).
That is to say, the image of α has order 2j+1 in the multiplicative group
(D2/Q)∗. Since this group is of order N(Q) − 1 which divides q4 − 1, we
obtain q4 ≡ 1 (mod 2j+1) as desired. �

From now on, we set π1 = 1 + 2ζ3
8 and π2 = 1− ζ16 + ζ5

16. Since π1 ≡ 1
(mod 2), π1 is a primary element in D1 = Z[ζ8] by Remark 2 (i). Note that
2− ζ8 = −π1 · ζ8 implies 2 ≡ ζ8 (mod π1). According to the definition of a
primary element, it may be troublesome to verify if π2 is primary or not in
the ring D2 = Z[ζ16]. But we know that there exists a 16-th root of unity
µ such that µπ2 is primary in D2 by Remark 2 (ii). It is enough to deduce
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our main result (Theorem 3.1) with the choice of the element π2 because
of this fact and the following key proposition, no matter π2 is primary or
not.

Proposition 4.7. Let q be an odd prime such that q∗ ≡ 1 (mod 27), and
let τ1, τ2 be two nonzero elements in D2 with τ1 = µτ2, where µ is a 16-th
root of unity. Then

α
q∗−1

16
1 = α

q∗−1
16

2
where α1 = τ1/τ̄1, α2 = τ2/τ̄2.

Proof. Under direct computation, we have

α
q∗−1

16
1 =

(
τ1
τ̄1

) q∗−1
16

=
(
µ

µ̄

) q∗−1
16

(
τ2
τ̄2

) q∗−1
16

= µ
q∗−1

8 α
q∗−1

16
2 = α

q∗−1
16

2 .

The last two equalities hold since µµ̄= 1 and 16 | q
∗−1
8 , that is, µ

q∗−1
8 = 1. �

Combining Lemma 4.2 with Proposition 4.7, it is easy to deduce the
following corollary.

Corollary 4.8. Let q be an odd prime with q∗ ≡ 1 (mod 27), and let τ1, τ2
be two nonzero elements in D2 with τ1 = µτ2, where µ is a 16-th root of
unity. Then (

τ1
q

)
16
≡ α

q∗−1
16

2 (mod q)

where α2 = (τ2/τ̄2)1+3σ−5+5σ−3+7σ7.

Observe also that, NmL1/Q(π1) = NmL2/Q(π2) = 17, thus any congruence
mod 17 in D1 or D2 implies the same congruence mod π1 or mod π2. In
fact, using a little knowledge of algebraic number theory, and the important
fact that both of D1 and D2 are principal ideal domains (see [8, Th. 11.1]),
we can factorize the number 17 as follows:
17 = (1+4i)(1−4i) = (1+2ζ3

8 )(1−2ζ3
8 )(1+2ζ8)(1−2ζ8), where i =

√
−1.

And 1 + 2ζ3
8 ,
√

2 can be expressed as 1 + 2ζ3
8 = (1 +

√
2ζ7

16)(1−
√

2ζ7
16) and√

2 = ζ8 + ζ−1
8 . Thereby, we obtain the possible choices of π1 and π2.

Remark. Let M = h · 2n ± 1, where n ≥ 2 and h 6≡ 0 (mod 17), thus
M∗ 6≡ 1 (mod 17). Moreover, if M∗ 6≡ −1 (mod 17), then

(π1
M

)
8 6= 1. If

M∗ ≡ −1 (mod 17), then
(
π
M

)
16 6= 1 but

(π1
M

)
8 = 1, where π = µπ2 is

primary in D2 and µ is a 16-th root of unity, for details see the proof below.
That is why the use of the 8-th power residue and octic reciprocity is not
sufficient. Also, it is that single class −1 (mod 17) that makes necessary
the 16-th power residue and bioctic reciprocity, provided h 6≡ 0 (mod 17).
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Finally, we prove Theorem 3.1 as follows. One may see that we do not
need Octic and Bioctic Reciprocity Laws in full generality, rather in the
proof of necessity.

Proof of Theorem 3.1. We first show that the generalized Lucasian condi-
tions are necessary for primality of M . Suppose that M is a prime. Since
n ≥ 7, thus M 6= 17, and the hypotheses allow M∗ ≡ −1, ±2, ±3, ±4, ±5,
±6, ±7, ±8 (mod 17), hence mod π1 or mod π2. Since π1 is primary in D1,
we get

(π1
M

)
8 =

(
M∗

π1

)
8
by applying Octic Reciprocity Law.

(1) Suppose first thatM∗≡±4 (mod 17). Then
(
M∗

π1

)
8
≡ (M∗)(17−1)/8≡

(M∗)2 ≡ −1 (mod π1), that is,
(
M∗

π1

)
8

= −1. Applying Lemma 4.1,

α
M∗−1

8
1 ≡

(
π1
M

)
8

=
(
M∗

π1

)
8

= −1 (mod M)

where α1 = (π1/π̄1)1+3σ3 . Since (M∗ − 1)/8 = (±h) · 2n−3, this gives

α±h·2
n−3

1 ≡ −1 (mod M).

We always have αh·2n−3
1 +ᾱ1

h·2n−3≡−2 (mod M) because of α1ᾱ1 =1. Thus
we find TrK1/Q(αh·2n−3

1 + ᾱ1
h·2n−3) ≡ −4 (mod M) and NmK1/Q(αh·2n−3

1 +
ᾱ1

h·2n−3) ≡ 4 (mod M). By Proposition 4.3, this is equivalent to Tn−3 ≡
−4 (mod M) and Nn−3 ≡ 4 (mod M).

(2) Suppose that M∗ ≡ ±2, ±8 (mod 17). Then
(
M∗

π1

)
8
≡ (M∗)2 ≡

±4 ≡ ±ζ2
8 (mod π1), that is,

(
M∗

π1

)
8

= ±ζ2
8 . Applying Lemma 4.1 again,

α
M∗−1

8
1 ≡

(
π1
M

)
8

=
(
M∗

π1

)
8

= ±ζ2
8 (mod M).

That is to say α±h·2n−3

1 ≡ ±ζ2
8 (mod M) and we have

αh·2
n−3

1 + ᾱ1
h·2n−3 ≡ 0 (mod M).

Similarly by Proposition 4.3, we find Tn−3 ≡ Nn−3 ≡ 0 (mod M).
(3) Suppose now that M∗ ≡ ±3,±5,±6,±7 (mod 17). Then

(
M∗

π1

)
8
≡

(M∗)2 ≡ ±2,±8 ≡ ±ζ8,±ζ3
8 (mod π1), that is,

(
M∗

π1

)
8

= ±ζ8,±ζ3
8 . A final

application of Lemma 4.1 yields

α
M∗−1

8
1 ≡

(
π1
M

)
8

=
(
M∗

π1

)
8

= ±ζ8,±ζ3
8 (mod M).

We thus always have

αh·2
n−3

1 + ᾱ1
h·2n−3 ≡ ±(ζ8 + ζ7

8 ) (mod M).
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By Proposition 4.3, we obtain Tn−3 ≡ ±(ζ8 + ζ7
8 + ζ3

8 + ζ5
8 ) = 0 (mod M),

and Nn−3 ≡ (ζ8 + ζ7
8 ) · (ζ3

8 + ζ5
8 ) = −2 (mod M).

For the last exceptional case (4), let π = µπ2 be a primary element in
D2, where µ is a 16-th root of unity. So we can apply Bioctic Reciprocity
Law to π and M and obtain

(
π
M

)
16 =

(
M∗

π

)
16
. When M∗ ≡ −1 (mod 17),

(
M∗

π

)
16
≡ (M∗)(17−1)/16 ≡M∗ ≡ −1 (mod π)

i.e.
(
M∗

π

)
16

= −1. The hypotheses imply that 27 divides M∗− 1, so Corol-
lary 4.8 applies and

α
M∗−1

16
2 ≡

(
π

M

)
16

=
(
M∗

π

)
16

= −1 (mod M)

where α2 = (π2/π̄2)1+3σ−5+5σ−3+7σ7 . Since (M∗ − 1)/16 = (±h) · 2n−4, this
gives

α±h·2
n−4

2 ≡ −1 (mod M).

Similarly as above, we have αh·2n−4
2 + ᾱ2

h·2n−4 ≡ −2 (mod M). Let ηn−4 =
αh·2

n−4
2 + ᾱ2

h·2n−4 , we find TrK2/Q(ηn−4) ≡ −8 (mod M), NmK2/Q(ηn−4) ≡
16 (mod M), S2(ηn−4, σ3(ηn−4), σ5(ηn−4), σ7(ηn−4)) ≡ 24 (mod M), and
S3(ηn−4, σ3(ηn−4), σ5(ηn−4), σ7(ηn−4))≡−32 (modM). By Proposition 4.4,
this is equivalent to Xn−4 ≡ −8 (mod M), Wn−4 ≡ 16 (mod M), Yn−4 ≡
24 (mod M) and Zn−4 ≡ −32 (mod M). This completes the proof of ne-
cessity.

We now turn to the proof of sufficiency. Let q be an arbitrary prime
divisor ofM . It suffices to prove that any one of the possible congruences on
the generalized Lucasian sequence {(Tk, Nk)} or {(Xk, Yk, Zk,Wk)} could
imply that q >

√
M .

Assuming one of the first three hypotheses on the sequence {(Tk, Nk)} is
satisfied. The hypotheses imply that q is prime to 17, so applying Lemma 4.5
with α = (π1/π̄1)h(1+3σ3), we can obtain q2 ≡ 1 (mod 2n−2). If the last
hypothesis on the sequence {(Xk, Yk, Zk,Wk)} is satisfied, then q 6= 17,
and applying Lemma 4.6 with α = (π2/π̄2)h(1+3σ−5+5σ−3+7σ7), we would
obtain q4 ≡ 1 (mod 2n−3). From these congruences we always get q4 ≡
1 (mod 2n−3). By the hypothesis that M is not divisible by any of the
solutions of x4 ≡ 1 (mod 2n−3) in the range (1, 2n−3), it follows easily that
in all cases q ≥ 2n−3 +1, whence q2 ≥ 22n−6 +2n−2 +1 = 2n(2n−6 + 1

4)+1 >
h · 2n + 1 ≥ M because of h < 2n−6. Thus q >

√
M for arbitrary prime

divisor q of M , clearly M is prime. This completes the proof of sufficiency,
and hence the proof of Theorem 3.1. �
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5. Computational complexity
By Theorem 3.1, we obtain a fast deterministic algorithm for testing the

primality of numbers M = h · 2n ± 1, where 0 < h < 2n−6 is odd, h 6≡ 0
(mod 17) and n ≥ 7. The algorithm can be divided into three steps:

Step 1. We determine if M is divisible by one of the solutions of x4 ≡
1 (mod 2n−3) in the range 1 < x < 2n−3. Actually, all these solutions
are given by Qj ≡ 5j2n−7 (mod 2n−3), j = 1, 2, 3 and Qj+4 ≡ −5j2n−7

(mod 2n−3), j = 0, 1, 2, 3. Thus complexity of step 1 is that of 3 modular
exponentiations of 5j2n−7 (mod 2n−3), which is Õ(log2M) bit operations by
applying Schoenhage-Strassen algorithm (see [7]). Note that n = O(logM)
and Õ(f) stands for O(f ·Poly(log f)) ⊂ O(f1+ε) for any function f and any
positive real number ε > 0, where Poly(log f) indicates some polynomial
in log f .

Step 2. If M∗ 6≡ −1 (mod 17), then we compute the generalized
Lucasian sequence {(Tk (mod M), Nk (mod M))} to see that if one of the
first three congruences is satisfied. Complexity of computing the
seed (T0 (mod M), N0 (mod M)) is equivalent to that of computing
αh1 + ᾱ1

h (mod M). Let βj = αj1 + ᾱ1
j . Since α1ᾱ1 = 1, we easily get

the relations βi+j = βiβj − βi−j for i ≥ j ≥ 0. Thus βh = αh1 + ᾱ1
h can be

deduced from β0 = 2, β1 = α1 + ᾱ1 by two recurrent relations:

β2j = β2
j − 2, β2j+1 = βjβj+1 − β1,

where α1 = (π1/π̄1)1+3σ3 is the same as in Theorem 3.1. Thus complexity
of computing βh (mod M) is Õ(loghlogM) = Õ(logM), since h is fixed in
advance. Next, the term (Tn−3 (mod M), Nn−3 (mod M)) can be deduced
from (T0 (mod M), N0 (mod M)) by the recurrences (3.1) and (3.2), and
the complexity of computing these is Õ(log2M). Hence the total complexity
of step 2 is Õ(log2M) bit operations.

Step 3. If M∗ ≡ −1 (mod 17), then we compute the generalized Lucasian
sequence {(Xk (mod M), Yk (mod M), Zk (mod M),Wk (mod M))}, to
see that if the last congruence is satisfied. Similarly, complexity of com-
puting the seed (X0 (mod M), Y0 (mod M), Z0 (mod M),W0 (mod M))
is equivalent to that of computing αh2 + ᾱ2

h (mod M), hence the complex-
ity is Õ(logM) as in Step 2, where α2 = (π2/π̄2)1+3σ−5+5σ−3+7σ7 is the same
as in Theorem 3.1. And the term (Xn−4 (mod M), Yn−4 (mod M), Zn−4
(mod M), Wn−4 (mod M)) can be deduced from the seed (X0 (mod M),
Y0 (mod M), Z0 (mod M), W0 (mod M)) by the recurrences (3.3), (3.4),
(3.5) and (3.6). Thereby, the total complexity of step 3 is Õ(log2M) bit
operations.
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According to the above analysis, our generalized Lucasian primality test
for numbers M = h · 2n ± 1 (where h 6≡ 0 (mod 17)) runs in deterministic
quasi-quadratic time, that is, the computational complexity of this test is
only Õ(log2M) bit operations.

6. Conclusion and an open problem
Theorem 3.1 together with previous results (given by Bosma, Berrizbeitia

and Berry, etc.) have solved the problem of primality testing of numbers
Mh,n = h · 2n± 1 for the cases of h 6≡ 0 (mod 3), h 6≡ 0 (mod 5) and h 6≡ 0
(mod 17), by means of at most two generalized Lucasian sequences with at
most two seeds which depend only on h (not on n). It’s natural to ask if
such generalized Lucasian primality tests exist for other values of h. Will
the Eisenstein’s Reciprocity Laws of other order help to obtain the suitable
tests for the family of numbers Mh,n = h · 2n ± 1 with n increasing? We
propose an opened problem below, which is the question that we expect to
solve in the future.

Open Problem. Given arbitrary odd h, for all n large enough, does there
exist a generalized Lucasian primality test for the family of numbersMh,n =
h · 2n ± 1 with finitely many seeds which depend only on h (not on n)?
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